
Journal of Automated Reasoning 15: 359-383, 1995. 359
@ 1995 Kluwer Academic Publishers. Printed in the Netherlands.

Branching Rules for Satisfiability*

J. N. H O O K E R
Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, U.S.A.
e-mail: jh38 @ andrew, cmu. edu

and

V. VINAY
Centre for Artificial Intelligence and Robotics, Bangalore, India
e-mail: vinay@yantra.ernet.in

(Received: 7 June 1994)

Abstract. Recent experience suggests that branching algorithms are among the most attractive for
solving propositional satisfiability problems. A key factor in their success is the rule they use to
decide on which variable to branch next. We attempt to explain and improve the performance of
branching rules with an empirical model-building approach. One model is based on the rationale
given for the Jeroslow-Wang rule, variations of which have performed well in recent work, The
model is refuted by carefully designed computational experiments. A second model explains the
success of the Jeroslow-Wang rule, makes other predictions confirmed by experiment, and leads
to the design of branching rules that are clearly superior to Jeroslow-Wang.

Key words: branching, algorithms, satisfiability, Jeroslaw-Wang rule.

Recent computational studies [2, 7, 13, 21] suggest that branching algorithms
are among the most attractive for solving the propositional satisfiability problem.
An important factor in their success - perhaps the dominant f a c t o r - is the
branching rule they use [13]. This is a rule that decides, at each node of an
enumerat ion tree, which variables should be set to true or false in order to

generate the children of that node. A clever branching rule can reduce the size
of the search tree by several orders of magnitude.

One rule that has been found to be particularly effective in a wide variety of
problems [13] is the Jeros low-Wang rule [17], which we define below. Another
promising rule is the shortest positive clause rule used by Gallo and Urbani in
their Horn relaxation algorithm [11]. There is little understanding, however, of
when and why these rules work well.

Our purpose here is to try to improve our understanding of branching rules
and to design better ones. We will show that the original motivation for the J - W
rule, namely that it takes a branch in which one is most likely to find a satisfy-
ing truth assignment, does not explain its performance. A proper explanation is

* GSIA Working Paper 1994-09. The first author is partially supported by ONR grant N00014-
92-J-1028. The authors wish to thank Ajal Kapoor for assistance in computational p667 testing
and statistical analysis.

360 J.N. HOOKER AND V. VINAY

considerably more nuanced and reveals that the original motivation produces a
good rule only through a remarkable coincidence.

Furthermore, our analysis leads us to a "two-sided" J-W rule that, in compu-
tational tests, is significantly better than J-W. We find that the shortest positive
clause rule is inferior to the 2-sided J-W rule but has the interesting feature
that it branches only on variables that occur in positive clauses. When this fea-
ture is added to the two-sided rule, the latter's performance appears improved,
although statistical analysis does not permit us to establish improvement with
95% confidence.

We implement each branching rule within the same basic Davis-Putnam-
Loveland (DPL) algorithm [5, 20], with a slight modification when shortest clause
branching is used. The algorithm performs unit resolution and monotone variable
fixing at each node. For the sake of providing a controlled testing environment, we
omit numerous other devices that might accelerate performance. Our computation
times should therefore not be taken as the best that might be achieved, and they
are in fact generally longer than those obtained by DPL-based algorithms that
were tested as part of the Second DIMACS Challenge [7, 9, 23, 25]. Because the
DIMACS algorithms differ from each other and from ours in several respects, it
is impossible to identify the factors that account for differences in performance.
By using a rudimentary DPL algorithm, we sacrifice performance but isolate the
influence of the branching role.

Although we focus on a DPL-based algorithm, it is reasonable to believe
that the insights gained here could be profitably applied to other algorithms that
involve branching, such as the Horn relaxation algorithm, the branch-and-cut
algorithm of Hooker and Fedjki [15], and the hypergraph algorithms of Gallo
and Pretolani [10].

A second purpose of this study is to demonstrate some elements of the empir-
ical paradigm for the study of algorithms recommended in [14]. Rather than
simply compare branching rules in computational tests, we formulate models
that purport to explain the behavior of branching rules. We view these models as
empirical theories analogous to those developed in physics or chemistry. They do
not and are not intended to lead to mathematical theorems, but they make certain
testable predictions. We design computational experiments to test the predictions
and analyze the results statistically. Negative results refute a theory, whereas
positive results provide some degree of confirmation.

We begin in Section 1 by stating a generic branching algorithm for the satis-
fiability problem. In Section 2 we describe our experimental design, defend our
procedures for statistical analysis, and summarize the computational results. The
remainder of the paper refers to these results repeatedly in order to test various
predictions.

In Section 3 we formulate a Satisfaction Hypothesis that seems best to capture
the traditional motivation for the J-W rule. On this hypothesis the rule works
because it takes a branch in which the probability of satisfiability is maximized.

BRANCHING RULES FOR SATISFIABILITY 361

The hypothesis, however, does not explain the behavior of the J -W rule on
unsatisfiable problems. It does lead to a probabilistic model from which one can
derive the J -W rule as an approximation. But the model makes a prediction that
is contradicted by experience. Furthermore, a rule derived in Section 4 from a
more refined model, one based on a generalized Lovfisz local lemma, does not
result better performance as it should.

In Section 5 we propose a Simplification Hypothesis that explains a rule's
performance in terms of how effectively it simplifies the problem. We develop
a Markov Chain model that estimates the degree of simplification. We find that
the model explains observations that refute the satisfaction model and correctly
predicts superior performance for a two-sided branching rule. In Section 6 we
discuss the clause branching rule and the value of its strategy of branching only
on variables that occur in a positive clause. Section 7 summarizes the results and
conclusions.

1. A Generic Branching Algorithm

The satisfiability problem (SAT) of propositional logic is generally given in con-
junctive normal form, or clausal form. A clause is a disjunction of literals, each
of which is an atomic proposition or its negation. The following is a clause,

X 1 V ~X2 V -~X3,

where V means "or," -~ means "not," and the xj 's are atomic propositions (atoms)
that must be either true or false. (A clause may not contain more than once
occurrence of any given atom.) The SAT problem is to determine whether some
assignment of truth values to atoms makes a given conjunction of clauses true, or
equivalently, whether some assignment makes every clause in a set S of clauses
true. It is the original NP-complete problem [3].

Any propositional formula may be converted to clausal form in linear time,
possibly by adding new atoms [26].

The Davis-Putnam algorithm [5], as modifed by Loveland [20], is a generic
branching method for solving SAT. It searches a tree in which the root node is
associated with the original problem. It applies monotone variable fixing and unit
resolution (explained below) at each node to simplify the problem and perhaps fix
some variables to true or false. The leaf nodes are those at which unit resolution
finds a contradiction, or the variables fixed so far satisfy all the clauses. Each
nonleaf node has two children associated with simpler subproblems that are
obtained by setting some variable to true and then to false. The search is depth-
first and terminates when it reaches a node at which all clauses are satisfied or
until it backtracks to the root node, in which case the problem is unsatisfiable. A
branching rule determines which variable is fixed to true and false at each node,
and which child is explored first.

362 J.N. HOOKER AND V. VINAY

Davis-Putnam-Loveland Algorithm.

Procedure B r a n c h (S , k)
P e r f o r m M o n o t o n e V a r i a b l e F i x i n g on S.
P e r f o r m U n i t R e s o l u t i o n on S.
I f a c o n t r a d i c t i o n i s found, r e t u r n .
If S is empty,

declare problem to be satisfiable and stop.
Branch :

Pick a literal L containing a variable

that occurs in S.

Perform Braneh(S U {L} ,k + I).
P e r f o r m Branch(S t3 {-~L},k + 1).

End.

Procedure Monotone Variable Fixing.
While S contains a monotone literal L do:

Fix L to true.

Remove from S all clauses containing L.

End.

Procedure Unit Resolution
While S contains a unit clause L do :

Fix L to true.

Remove from S all clauses containing L.

Remove from S all occurrences of ~L.

If ~L is removed from a unit clause,

return with contradiction.
End.

A statement of the algorithm appears above. The algorithm is initiated with
the procedure call Branch(S ,1) , where S is the set of clauses to be checked
for satisfiability, k is the current level in the search tree. The branching rule
determines the choice of the literal L. For convenience we say that the algorithm
branches on the variable in L and branches to L. S is unsatisfiable if and only
if the algorithm never declares it satisfiable.

Monotone variable fixing simply fixes to true any variable that always occurs
posited, and to false any variable that always occurs negated. It deletes all clauses
containing the fixed variables and repeats the process. Unit resolution fixes to true
any literal that belongs to a unit clause (a clause containing exactly one literal).

BRANCHING RULES FOR SATISFIAB1LITY 363

This allows the problem to be simplified. The process continues until a variable
is fixed to both true and false (contradiction), or no unit clauses remain.

2. Experimental Design and Analysis

There is no generally accepted approach to the design and analysis of compu-
tational experiments, as only a handful of papers in the literature use rigorous
methods (e.g., [1, 12, 19]). The first rigorous treatment of which we are aware is
that of Lin and Rardin [19]. They use a traditional factorial design in which the
response variable (in our case, the computation time or the number of nodes in
the search tree) is influenced by two factors, namely the algorithm type and the
problem type. A fixed number of random problems are generated in each cell
(i.e., each algorithm/problem type combination). The problem type is specified
by setting parameters in the problem generator.

Lin and Rardin recommend "blocking on problems" for comparing algorithms.
This approach runs each algorithm on the same set of random problems and
therefore removes one source of noise that may obscure the relative performance
of the algorithms. Golden and Stewart [12] also use blocking on problems, and
Amini and Racer [1] use it in the context of a split plot design.

We use a similar factorial design with blocking on problems. The factors
are the branching rule and the problem type. The problems themselves (152
in number) are taken from a library of satisfiability problems collected by the
DIMACS project mentioned earlier. They are publicly available via anonymous
ftp to dimacs.rutgers.edu. Some of the problems in the library could not be solved
within the memory limitations of our computer. We deleted still other problems
that fit into memory but could not be solved within two hours by any of the
branching rules. The remaining problems appear in Tables I and II.

The intent of using multiple factors in a design is to isolate the effect of such
nuisance parameters as problem type and problem size from the effect of the
branching rule. We did not use problem size as a separate factor, because the test
problems of a given type are generally of similar size or else difficult to classify
in size categories. When size classes could be distinguished we split a problem
type into two subtypes, based on size. This yielded 11 problem types, listed in
Tables I and II. We tested 9 branching rules and thereby obtained 99 cells.

An analysis of variance (ANOVA) is traditionally used to determine which
factor levels have a statistically significant effect on the response. We did not use
ANOVA, for two reasons. First, it requires that each cell contain an equal number
of problems. This is not the case for the DIMACS library, whose problem classes
differ in size. In such cases Petersen [22] recommends that one use multiple
regression with dummy variables, and we followed this advice.

Secondly, the traditional ANOVA is based on an interpretation of the blocked
design that seems strained here. The notion of a block is inspired by agricul-
tural experimentation, in which each of several plots of land receives various

364 J.N. HOOKER AND V. VINAY

TABLE I. List of satifiability problems solved

Problem No. of
class problems Problem names*

aim100 21

aim200 15
aim50 24
Dubois 3
ii32 11
ii8 11
jnh 48
par16 4
par8 9
pret 4
ssa 2

aim- 100-[l_6-[no,yes 1]-[1,2,3,4], 2_0-[no-[2,3,4],yes 1-[1,2,3,4]],
[3_4-yes 1-[3,4], 6_0-yesl-[1,2,3,4]]]
aim-200-[[l_6, 3_4,6_0]-[1,2,3,4], 2_0-[1,3,4]]
aim-50-[1_6, 2_0]-[no,yesl]-[1,2,3,4], aim-50-[3_4, 6_0]-yesl-[1,2,3,4]
dubois[20,21,100]
ii32[al ,b[1,2,3,4],c[1,2,3],dl,e[4,5]]
ii8[a[1,2,3,4],b[2,3],c[1,2],d[1,2],e 1]
jnh[2,3 8,10 20,201 220,301 310]
par16-[1,1-c,2,2-c]
par8-[1,2,2-c,3,3-c,4,4-c,5,5-c]
pret60_[25,40,60,75]
ssa[7552-038,0432-003]

*Brackets indicate multiple problems. For instance, a[b,c] indicates problems ab and ac; a[b,c[d,e]]
indicates problems ab, acd, and ace; a[[b,c]d[e,f],g] indicates abde, abdf, acde, acdf and ag.

TABLE II. Problem characteristics

Problem Number of Number
class variables clauses sat unsat Description*

aiml00 100 " 160-600 14 7 Problems generated by method of Iwama,
aim200 200 320-1200 15 0 Albeta and Miyano [16]; satisfiable
aim50 50 80-300 16 8 instances have exactly one solution.

Dubois 60-300 160-598 1 2 Hard random instances [6]

ii32 225-522 1280-11636 11 0 Inductive inference problems coded
ii8 66-950 186-6689 11 0 as SAT instances [18]

jnh 100 800-900 15 33 Random instances [13, 15]

parl6 317-1015 1264-3374 4 0 Parity learning problems coded as
par 8 67-350 266-1171 9 0 SAT instances [4]

pret 60 161 0 4 Graph 2-coloring problems [23]

ssa 435-1501 1027-3575 1 1 Circuit stuck-at fault analysis [25]

Total 97 55

*Further information is available by anonymous ftp to dimacs.rutgers.edu, or from the sources cited.

BRANCHING RULES FOR SATISFIABILITY 365

treatments (fertilizer type, watering level, etc.). Each treatment is used once in
each plot. The rationale is that the soil in a given plot (block) is likely to be
homogeneous, so that the treatments get a fair comparison. This approach obvi-
ously implies that each treatment is used an equal number of times (i.e., each
cell contains the same number of data).

In a computational context, the problem type and the algorithm must be
regarded as treatments applied to an underlying block of problems. This is rea-
sonable in the case of algorithms but not in the case of problem types. There
is no underlying class of problems 1 , . . . , n to which one applies different treat-
ments to obtain problems A1 , . . . ,An of type A, problems B1, . . . , Bn of type
B, and so on. One merely generates n problems of types A, n more problems
of type B, etc.

The regression approach, which we used, regards problem type simply as an
attribute that may affect the response variable. There is no need to generate an
equal number of problems of each type. We used the following regression model,
which accounts for interactions between the problem type and branching rule.

10 8 10 8

z= +Eb Xi+Ecj + EEd,jx
i=1 j = l i=1 j = l

The response
variables are,

variable Z is the computation time or node count. The dummy

1, if problem type is i,
Xi = 0, otherwise,

1, if branching rule j is used,
YJ = 0, otherwise.

Note that in the summations, i ranges over all but one of the problem classes
(numbered 0 , . . . , 10), and j over all but one of the branching rules (numbered
0 , . . . , 8). Thus if Z is computation time,

= predicted time required by rule 0 on problem class 0,
+ bi = predicted time required by rule 0 on class i (i > 0),
+ cj ---- predicted time required by rule j on class 0 (j > 0),
+ bi + cj + dij = predicted time required by rule j on class i (i, j > 0),

and similarly if Z is the node count. We will refer to these quantities as the
summed effects. The regression problem has a unique solution because the number
of parameters (99) equals the number of cells.

Missing data points are a perennial problem in computational testing, because
computation must be cut off if it runs impracticably long. Lin and Rardin discuss
various ways of estimating missing data. But these approaches make assumptions
about the distribution of computation times that are unrealistic here, due to the
extreme outliers that satisfiability problems typically generate. We simply used
the cutoff time (two hours) as a surrogate for the true time. In the context of our

366 J.N. HOOKER AND V. VINAY

TABLE III. Summed effects on computation time (seconds)

Problem Class
0 1 2 3 4 5

Branching Rule aiml00 aim200 aim 50 Dubois ii32 ii8

0. Random 4787 5713 7.37 1515 514 0.6
1. J-W 461 3151 0.50 1698 16 2001
2. 1st order 4378 5555 6.69 1555 45 3399
3.2nd order 2839 5003 5.07 4826 958 5205
4. Reverse J-W 414 3134 0.46 1694 143 0.9
5. 2-sided J-W 183 1465 0.27 1673 10 1920
6. Clause 2162 3055 1.89 579 135 499
7. Pos J-W 325 2518 0.33 1424 7 1023
8. 2-sided pos J-W 162 1431 0.24 1410 5 1111

6 7 8 9 10
Branching Rule jnh parl6 par 8 pret ssa

0. Random 23.44 6660 0.129 1462 478
1. J-W 0.76 358 0.041 1298 5
2. 1st order 11.63 4511 0.101 1174 5
3.2nd order 222.33 6648 4.014 7200 392
4. Reverse J-W 0.87 357 0.041 1297 172
5. 2-sided J-W 0.39 355 0.037 1280 170
6. Clause 3.70 335 0.048 665 3603
7. Pos J-W 0.80 317 0.041 711 3
8. 2-sided pos J-W 0.40 314 0.038 701 53

study this tends to provide a conservat ive test. Whenever we conclude that one

algori thm is significantly better than another, the better algori thm is cut off less

often than the worse. It is likely therefore that their difference would be even

more significant if the true t imes were used. We note below, however, that a
different approach is required in the case of the second-order branching role.

The p rob lems were solved on an HP Series 9000 workstat ion using a code

written by J. Hooke r in C and compi led with the HP U X C compi ler with
optimization. The computat ion times exclude t ime required to set up the data

structures and read the p rob lem into memory. In the case of satisfiable problems,
they reflect the t ime required to find one solution only; no at tempt is made to
find all solutions. Each of the 9 branching rules was applied to 152 problems,
resulting in 1368 data points.

The resulting est imates for the summed effects are displayed in Table III.
For instance, the predicted computat ion t ime for solving a p rob lem in Class 0
with the 2-sided posi t ive J - W branching rule is 162 seconds. (The branching

BRANCHING RULES FOR SATISFIABILITY 367

TABLE IV. Branching rules. The rules are more precisely defined in subsequent sec-
tions. For a given literal L, the quantity J(L) is defined to be the sum of 2 -n~ over
all clauses C~ containing L, where ni is the number of literals in C~

0. Random

1. J -W

2. 1st order

3 .2nd order

4. Reverse J -W

5. 2-sided J -W

6. Clause

7. Pos J - W

8. 2-sided pos J -W

Random branching: randomly select unfixed literal.

Jeroslow-Wang rule: maximize J(L)over literals L.

First Order Probability rule: maximize J(L) - J(-~L),
a lst-order estimate of satisfaction probability.

Second Order Probability rule: maximize a 2nd-order

estimate of satisfaction probability, based on a

generalization of the Lo%sz local lemma.

Reverse Jeroslow-Wang rule: maximize J(--,L).
Two-Sided Jeroslow-Wang rule: maximize J(xj) + J(-~xj)
over variables xj .

Shortest Positive Clause Branching: Branch on the literals

in a shortest clause containing all positive literals.

Positive Jeroslow-Wang ru l e : J -W rule, but branch only

on literals that occur in an all-positive clause.

Two-Sided Positive Jeroslow-Wang rule: 2-sided J-W,

but branch only on literals that occur in a positive clause.

rules are defined in Table IV.) Summed effects on the number of nodes in the
search tree are displayed in Table V. It is clear from these tables that the choice of
branching rule can make an enormous difference in the behavior of the algorithm,
sometimes two or three orders of magnitude.

The statistical significance of each coefficient hi, cj, dij can be estimated using
statistics. 32 of the 80 interaction coefficients dij a re significantly different from

zero at the 95% confidence level. This indicates that the relative performance of
the branching rules differs significantly from one problem class to another. Their
performance should therefore be examined in each problem class individually.

It is also possible, using t statistics for the difference between coefficients,
to determine whether one rule is significantly better than another within a given
problem class. It turns out that rather large differences fail to be significant at
the 95% level. For instance, Rule 0 is not significantly better than Rule 4 in
problem class 0, even though its predicted running time is only a third as much.
This is due to the fact that problems in a single class tend to differ widely in
difficulty (e.g., by factors of 1000 or more). This introduces intra-class variation
that reduces the ability of the regression to detect significant differences between
branching rules even when controlling for problem type.

To alleviate this difficulty, we followed Golden and Stewart [12] in using
Wilcoxon's signed rank test, a nonparametric test that can be used to determine
whether one algorithm is better than another on a common set of problems.
Since it measures differences between two branching rules by rank rather than

368

TABLE V. Summed effects on node count (thousands)

J. N. HOOKER AND V. VINAY

Problem Class
0 1 2 3 4 5

Branching Rule aiml00 aim200 aim 50 Dubois ii32 ii8

0. Random 18286 9590 39.9 3515 35.8 631
1. J-W 1337 4847 2.0 6291 1.6 1445
2. 1st order 17302 9582 34.6 6291 6.1 2876
3. 2nd order 883 249 2.3 538 0.02 27
4. Reverse J-W 1227 4863 1.8 6291 4.2 0
5.2-sided J-W 507 1825 1.0 6291 0.8 1061
6. Clause 8047 6974 9.5 3146 37.5 83
7. Pos J-W 983 4217 1.3 5243 0.8 594
8. 2-sided pos J-W 482 1990 0.9 5243 0.6 480

6 7 8 9 10
Branching Rule jnh parl6 par 8 pret ssa

0. Random 9.19 2761 0.105 4814 526.9
1. J-W 0.18 67 0.017 5542 3.7
2. 1st order 4.62 1059 0.068 5542 3.8
3. 2nd order 0.46 6 0.020 1074 5.0
4. Reverse J-W 0.20 67 0.019 5542 47.4
5.2-sided J-W 0.08 67 0.017 5542 46.6
6. Clause 1.26 79 0.029 3111 733.4
7. Pos J-W 0.19 64 0.019 3207 2.1
8. 2-sided pos J-W 0.08 64 0.019 3207 16.4

actual values, it is not affected by the ext reme outliers typical of satisfiability
problems. For instance, if rule A is 1 second faster than rule B on p rob lem 1, 10

seconds faster on p rob lem 2, and 100,000 seconds faster on a very hard p rob lem

3, the differences would be equated with their respective ranks 1, 2, 3 rather than

their actual values. We found that the Wilcoxon test is somewhat more likely
to judge differences be tween rules to be statistically significant. It permits only
pairwise compar i son (Fr iedman's test can be used for multiwise comparison) ,
but this is adequate for our purposes. We computed Wilcoxon statistics for all
pairs of branching rules within each of the 11 problem classes. All significance
results quoted henceforth will be those of the Wilcoxon test at the 95% confidence
level.

The meaningfulness of significance testing obviously rests on the assumption
that the p rob lem sample is r andom in some sense. The D I M A C S problems may
represent a biased sample, and another p rob lem set could yield different results.
But these problems resulted in performance variations so large that only very

BRANCHING RULES FOR SAT1SFIABILITY 369

pronounced differences between branching rules could pass the significance tests.
These tests may therefore screen out many of the results that are likely to be
artifacts of the problem sample.

3. The Satisfaction Hypothesis

We first attempt to capture the rationale for the Jeroslow-Wang rule in an empir-
ical hypothesis. The hypothesis is somewhat imprecise but will shortly provide
the motivation for two precise models that make testable predictions.

Satisfaction Hypothesis: Other things being equal, a branching rule performs bet-
ter when it creates subproblems that are more likely to be satisfiable.

First, we describe the J -W rule itself. It branches to a literal that occurs in a
large number of short clauses. To state it more precisely, let S contain the clauses
CI,... ,Cm.

i. Jeroslow-Wang Rule

Branch to a literal L that maximizes

J (L) : ~ 2 -n{,
i

LE~

over all literals L, where ni is the number of literals in

ci.

Table III shows that the J -W rule (Rule 4) can indeed result in much more
intelligent branching than a random choice of branching variable (Rule 1). It is
better than random branching in 9 out of 11 problem classes. The superiority
is statistically significant in 6 classes (0, 1, 2, 4, 6, 7) and often substantial (an
order of magnitude or more).

Jeroslow and Wang justify their rule as one that tends to branch to a sub-
problem that is most likely to be satisfiable ([17, pp. 172-173]). They reason
that clause Ci rules out 2 n- '~ troth valuations, so that all the clauses remaining
after branching to L rule out at most 2 n ~ i 2-r~ = 2n J(L) valuations. By max-
imizing the number of valuations ruled out by the clauses that are deleted, they
maximize the number that are not ruled out by those clauses remaining in the
subproblem. This presumably makes a satisfiable subproblem more likely.

To begin with this, this motivation does nothing to explain the performance
of the J -W rule on unsatisfiable problems.

370 J, N, HOOKER AND V. VINAY

But this aside, a more careful analysis shows that the motivation is problematic
even for satisfiable problems. Let Xi be an indicator random variable that is 1
when a random truth assignment falsifies Ci and 0 otherwise. Clearly

Pr(Xi = 1) = E(Xi)= 2 -n~.

Here E(Xi) is the expected value of Xi. If we define X = X 1 -}- . - . -/- X m ,

Pr(X = 0) is the probability that a random truth assignment satisfies all the
clauses. Since this probability is hard to compute, we can approximate it with
the following well-known lower bound:

Pr(X = 0) > a - E (X) . (1)

The right-hand side gives a kind of first-order approximation of Pr(X = 0). (We
will discuss higher order approximations in Section 4.) The expected number
of falsified clauses E(X) is easy to compute, since by the linearity of expecta-
tions,

m

E (x) =

i = 1

Thus we can maximize an approximation of Pr(X = 0) by minimizing E(X).
In particular, we obtain a satisfiable problem if one exists, since Pr(X = 0) > 0
if E(X) < 1.

To derive a branching rule, we suppose that S is the problem at the current
node and consider the effect of branching to a literal L. The expected number of
falsified clauses in the resulting subproblem is

E(X[L) = ~ 2 -(n{-1) + ~ 2 -n{, (2)

i i

~L E Ci L, ~L ~ Ci

because the clauses containing L are removed, whereas the clauses containing
~L contain one less literal. We wish to branch to a literal L that minimizes
E(XIL). Since the above expression may be rewritten as

E(X[L) : E (X) - 2 -hi + ~ 2 -hi,

i i

L ~ Ci -~L E Ci

(3)

we have the following branching rule.

BRANCHING RULES FOR SATISFIABILITY 371

2. First-Order Probability Rule

Branch to a literal L that maximizes

2 - n ' - ~ 2 - n i = J (L) - J (~ L) .

i i

L E ~ ~ L E ~

over all literals L.

Note that the J -W rule neglects the term J(-~L). Thus it fails to consider the
fact that setting L to true not only removes some clauses from the subproblem,
but it shortens some clauses that remain in the subproblem (those containing
=L). Thus the J -W rule does not even maximize a first-order approximation of
satisfaction probability, but a truncation of the first-order formula.

If the Satisfaction Hypothesis is correct, one might initially expect the full
first-order rule to be superior to the J -W rule, since it provides a more accurate
estimate of the probability of satisfaction. Table III shows, however, that the
full first-order rule is worse than the truncated rule in 9 of 11 problem classes.
The difference is statistically different in 6 classes (0, 1, 2, 4, 6, 7) and often
substantial. The full rule is never significantly better than J-W.

The poor performance of the full first-order rule might be traced, however,
to a property peculiar to this rule rather than to a weakness in the Satisfaction
Hypothesis. Namely, if L maximizes E (X I L) = J(L) - J(=L), then -~L min-
imizes it. Thus if the algorithm branches to the best literal L and is obliged to
backtrack, it must branch to the worst literal -,L.

If one anticipates the possibility of backtracking and considers the sum of the
first-order probability estimates for both L and --,L, one obtains a constant:

E (X I L) + E(-~XIL) : [E(X) - J(L) + J(=L)]

+ [E (X) - J(-~L) + J(L)] = 2E(X) .

So in a first-order approximation, the advantage of branching to L always exactly
complements the advantage of branching to -~L.

The J -W rule, one might argue, avoids this peculiarity while still maximizing
an approximation, however crude, of satisfaction probability. The J -W rule also
shares a desirable property with the first-order rule.

LEMMA 1. The first-order and J -W rule branch to a literal L for which

E (X I L) ~< E(X) .

Thus both rules select a literal that does not increase the expected number of
falsified clauses.

372 J .N. HOOKER AND V. VINAY

Proof. From (3) it suffices to show that J(L) >1 J(-~L). This follows from the
way L is chosen in the J -W rule. It also follows from the first-order rule, which
ensures that J(L) - J(-,L) >1 J(-,L) - J(L) and therefore J(L) >1 J(-~L). []

It is more difficult, however, to reconcile another prediction of the Satisfaction
Hypothesis with experience. A truncated version of a rule that minimizes the first-
order probability of satisfaction should, on this hypothesis, result in very poor
behavior. To minimize the first-order criterion is to maximize J(-~L) - J(L). A
truncated version, which we might call a "reverse" J -W rule, would maximize
J(-,L). One might expect this rule to be worse than random branching, because
it picks the worst branch as measured by one term of the first-order criterion. In
any case it should be substantially worse than J-W.

Table III shows that the performance of a reverse J -W rule (Rule 7) is actually
about the same as that of the J -W rule in 8 problem classes, significantly better in
one, and worse in two; it is significantly worse in only one (class 4). Furthermore,
the reverse J -W rule is better than random branching in 9 of 11 classes, and
significantly better in five (0, 1, 2, 6, 7).

4. A Second-Order Branching Rule

A further test of the Satisfaction Hypothesis is to branch so as to maximize a
more accurate estimate of satisfaction probability than provided by either the J -
W or first-order rule. The hypothesis implies that such a rule should be superior
to J-W.

By estimating Pr(X = O) to be 1 - E(X) , the first-order rule assumes that
XI , . . •, Xm are mutually exclusive events. One way to attempt to correct this
oversimplification is to note that 1 - E(X) contains the first two terms of an
inclusion-exclusion series:

Pr(X = 0)

= 1 - E (X) + E(X Xj) + . . . +
q

(4)

If the third term is used as well, one obtains a branching rule that accounts for
two-way interactions among the Xi's. The resulting approximation, however, is
no longer a lower bound on Pr(X = 0) as in (1). Also the approximation is often
poor because the second order term tends to dominate, due to the large number
of clauses relative to the size of any E(XiXj) .

We will therefore take the opposite approach of assuming independence of

Xl, • . . , Xm:

Pr(X = 0) = l-I(1 - E(Xi)) ,
i=1

BRANCHING RULES FOR SATISFIABILITY 373

and again making a partial correction by taking account of pairwise dependencies.
Our vehicle for doing this is a straightforward generalization of the Lov~sz local
lemma [8, 24].

To state the generalized lemma, let {As, • . . , Am} be a collection of events. A
dependency graph is a graph defined over a set of vertices { 1 , . . . , m}, in which
vertices i and j are connected by an edge if and only if Ai and Aj are dependent.
Ordinarily the graph is taken to be a directed graph, but in our application it may
be assumed to be undirected.

LEMMA 2. Let { A 1 , . . . , Am} be a set of events, with respective probabilities
pl, •. •, Pro, that define an m-vertex dependency graph G such that

1 i = l , . , m ,
{i,j}EE

where E is the edge set of G. (The edges are written {i, j } because G is undi-
rected.) Then

Pr(A1 n. . . n ~) > I I (1 - 2 p 0 >0,
i=1

l f o r i = 1 , . . , m . where the last inequality holds if pi <<. ~
Proof The proof is similar to that of the symmetric version of the local

lemma. We first show the following.

Pr(A~ I NjcT At) <~ 2pq for all T C_ { 1 , . . . , m } . (5)

As in the original proof, we prove the claim by induction on the size of T. When
T is empty, there is nothing to prove. For the inductive step, assume by a suitable
relabelling that T is the first s events. Then,

-- -- Pr(As+l N AI n . . " n Ad)
Pr(As+11A1 N . . . n An) = Pr(AI N . . . N AdlAd+l n ' - " N As) ' (6)

where the first d events of T may depend on As+l. Now,

d

Pr(A1 N... nAdlAd+~ n . . . hA,) > 1 - ~Pr(AilAd+l n... n-As)
i = l

d

) 1 - 2 ~ p i ,
i=1

using the induction hypothesis. Applying this and the fact that the numerator of
(6) is bounded above by Ps+l, we obtain from (6) that

- - m

Pr(As+l I& n . . . n A~) < 2p~+~,

which proves (5).

374 J .N. HOOKER AND V. VINAY

To complete the proof of the lemma, observe that

F - - T I ~ P r (A 1 N . . . A A n) = IIi=lPr(A i l A 1 N . . . n A t _ ,)

> IIi~=1(1 - 2pi)/> 0.

The last expression is clearly nonnegative when Pi ~< 1/2 for all i. []

To apply this result to a set of clauses, we let event Ai be the falsification of a
clause Ci, i.e., Xi = 1. Thus Pi = E (X i) = 2 -n~. Two events are dependent if
the corresponding clauses have a common atom. The lemma now tells us that
if

then,

1

{i,j}EE
i = 1 , . . . , m , (7)

m

Pr(X = 0) > I I (1 - 2E(Xi)) i> 0.
i=1

The last inequality clearly holds because each Pi = 2-n~ ~< 1/2, due to the fact
that the clauses are nonempty.

It is reasonable to design a branching rule that minimizes the sum of the
quantities on the left of (7) over all i, after a literal L is fixed. We therefore
introduce a potential function

i j

{i,j} e E

It is a simple matter to check that

¢ (a) = ~ p i + p j .

{i,j}eE

Now consider the effect of setting literal L to true.

¢ (G I L) = Z 2(v + pj) +
{~, j} e E

~L e C~, Cj

+ Z +pJ),
{~, j} e E

L,=L @ C~,Cj

i j
~L E Ci { i , j } E E

L,~L ~ Cj

BRANCHING RULES FOR SATISFIAB1LITY 375

which, by suitable regrouping, may be written as

¢(GIL) = ¢ (G) - ~ (p i+pj)+
{<j} c z

Le C~uC~
i j

~L C Ci { i , j } =~ E
L¢Cj

- + v ,) .

{i, j} c E
Ci n C~ = {L}

Since the last term is negligible, we obtain the following branching rule.

(8)

3. Second-Order Branching Rule

Branch to a literal L that maximizes

(2n~ + 2r~') - ~

{i, j} e E i j
L E C i U C j ~ L E C i { i , j }C E

Lev i

over all literals L.

2h i

It is not too difficult to see that for the literal L chosen by the rule, the first
term in (8) dominates the second term. This leads to an improvement property
similar to the one we obtained for the J - W and first-order rules.

LEMMA 3. The second-order branching rule selects an L such that

¢(ClL) ¢(C).

Computational testing of the second-order branching rule is complicated by the
substantial burden of evaluating its criterion function. Comparison of Tables III
and V reveals that the second-order rule requires from 10 to 1000 times more
computation per node (or even more) than other rules. This is because its com-
plexity is O (m N) rather than O(N), where m is the number of clauses and N
the number of literal occurrences.

Clearly the second-order rule is unsuitable for practical use because its total
consumption of computer time is much greater than that of J-W. But it is unfair
to conclude on this basis that the second-order rule is a less intelligent branching
rule than J-W, and thereby to refute the satisfaction model. A fairer test of
the model is to compare the number of nodes generated under either branching
rule.

Unfortunately a comparison of node count is difficult, because the second-
order rule consumes the entire allotment of two hours in a large fraction of cases.

376 J.N. HOOKER AND V. VINAY

This means that its search is often cut off long before completion, whereas the
J -W search is only rarely cut off. Thus Table V seriously underestimates the
number of nodes generated by the second-order rule.

Five of the problem classes, however, are easy enough so that the second-
order algorithm is never cut off (classes 2, 4, 6, 8, 10). One can therefore obtain
a fairer comparison of the node counts in these classes. This does not completely
remove the bias against J-W, because it selects classes in which the second-order
rule is known to be faster than in other classes. Nonetheless J -W generates about
the same or fewer nodes in 4 of the 5 classes. The superiority of the J -W rule is
statistically significant only in class 6, but the evidence clearly fails to confirm
the implication of the Satisfaction Hypothesis that a more accurate estimate of
probability should result in a better rule.

5. A Simplification Model

Having found that the computational experience refutes or fails to confirm the
Satisfaction Hypothesis, we propose another line of explanation. It views the
J -W role as choosing the branch that most simplifies the problem after unit
resolution. Simplification will be more precisely defined in the model to follow,
but basically a simpler problem is one with fewer and shorter clauses.

Simplification Hypothesis: Other things being equal, a branching rule works bet-
ter when it creates simpler subproblems.

The basic motivation for this hypothesis is that a branching rule that produces
simpler subproblems is more likely to resolve the satisfiability of subproblems
without a great deal of branching.

This motivation becomes more compelling when one reasons as follows. Let
a single branch node be a node only one of whose children is visited, and a
double branch node at which both children are explored. Clearly, if there are n
atoms, at most n - 1 nodes visited will be single branch nodes. Since far more
than n - 1 nodes are visited in most searches, even when clever branching rules
are used, the great majority of nonleaf nodes are double branch nodes in most
problems. In other words, the subtrees rooted at most visited nodes contain no
solution.

A branching rule that maximizes the probability of satisfaction may cause
the algorithm to backtrack from fewer nodes before finding a solution (assuming
the problem is satisfiable to begin with). But since the subtrees rooted at most
nodes will contain no solution in any case, it makes sense to branch in such a
way that these subtrees are as small as possible. This leads to the Simplification
Hypothesis.

A branching rule simplifies a problem when it allows unit resolution to elim-
inate more literals and clauses. We therefore propose a probabilistic model that
provides a partial analysis of unit resolution.

BRANCHING RULES FOR SATISFIABIL1TY 377

When a literal L is fixed to true, two-literal clauses containing ~L are reduced
to unit clauses, allowing elimination of several clauses. So it is reasonable to
choose an L for which ~L occurs in the most two-literal clauses. But the resulting
unit clauses, when fixed to true, create still more unit clauses. Therefore it is more
reasonable to fix a literal that will result in the creation of a maximum number
of unit clauses at some point in the unit resolution algorithm.

Let Ui be a random variable that takes the value ! if Ci becomes a unit clause
at some point during unit resolution after L is fixed to true. U = U1 + .." +Um
is the total number of unit clauses generated. We wish to choose L so that the
this number is maximized. We will analyze unit resolution as a random process
for which we can calculate the expected number E(U[L) of unit clauses created
if L is fixed to true. Since E(U[L) ra = ~i=~ E(UilL), it suffices to compute
E(Ui[L) = Pr(Ui = l lL) for an arbitrary clause Ci.

The random process is a Markov chain. Let the state be the number of literals
remaining in. Ci. A state transition occurs each time the unit resolution algorithm
fixes the value of a literal. If we assume that the fixed literal is randomly selected
from { x l , . . . , xn, -~x l , . . . , -~xn} and that Ci contains k > 1 literals in a given
step, the transition probabilities are:

Pr(Ci eliminated) = k/2n,
Pr(Ci reduced to k - 1 literals) = k/2n,
Pr(Ci unchanged) = 1 - kin.

We suppose that the process terminates when Ck is eliminated or reduced to a
unit clause.

In reality, the fixed literal is not randomly chosen, and the process is prema-
turely terminated when a contradiction is found or no more unit clauses remain.
But we will determine empirically whether the model correctly predicts compu-
tational performance despite its simplifying assumptions.

The transition probability matrix P for this Markov chain has the following
form.

1 0 0 0 0
0 1 0 0 0

2/2n 2/2n 1 - 2/n 0 0
3/2n 0 3/2n 1 - 3In 0
4/2n 0 0 4/2n 1 - 4 I n

If ~- = (~rl , . . . , 7rn) is the vector of probabilities ~k that Ci contains k literals at
a given stage, then ~rP is the vector of probabilities after one more transition.

Lengths 0 and 1 are the two absorbing states. When Ci eventually leaves its
current state, it is eliminated (length 0) with probability 1/2 and shortened by
one with probability 1/2. Obviously, if Ci begins with k literals, it eventually

378 J.N. HOOKER AND V. VINAY

reaches state 1 (becomes a unit clause) with probability Pr(Ui[L) = 2 - (k - 0 .
Thus

E(UIL) : ~ 2-(n{-2)+ ~ 2 -(n{-1)

i i

-~L~ S L , ~ L ~ S

: E(U)- ~ 2 -(n{-') + ~ 2 -(n{-1)

i i

LGS ~L6S

: E(U) - 2J(L) + 2J (~L) .

Since the factor of two can be ignored, we obtain precisely the opposite of the
first order probability rule stated earlier! The best literal for one rule is the worst
for the other.

The simplification criterion also shares the property that when it branches
to the best literal L and backtracks, it must branch to the worst literal ~L.
This property is particularly damaging here, because the simplification criterion
branches on a literal precisely because backtracking is likely.

In fact it seems desirable to evaluate both L and ~L simultaneously, since
branching to one is likely to be followed by a branch to the other. That is, one
should choose a variable xj that maximizes E(U[xj) + E(UI--,xj). But as in the
case of the first order probability criterion, E(U[xj) + E(U[-~xj) is a constant,
2E(U), for all L.

One option is to use the strategy used earlier in an attempt to justify the J -W
rule, namely delete the negative term in E(UIL).

4. Reverse Jeroslow-Wang Rule

Branch to a literal L that maximizes

J(~L)

over all literals L.

We have already found that, contrary to the Satisfaction Hypothesis, this is an
effective branching role, and now we are beginning to understand why. In fact,
if all nonleaf nodes were double branch nodes (and most are), maximizing J(L)
(the J -W rule) and maximizing J(-~L) have the same effect. At single branch
nodes, one should take the branch most likely to be satisfiable, which is better
predicted by J(L) than J(-~L). On balance, then, one should generally obtain
slightly better performance by maximizing J(L) than maximizing J(-~L). As
noted earlier, computation testing found that the former is about the same as the
latter in 8 of 11 problem classes, better in two, and significantly worse in one.
So observation is at least consistent with the prediction.

BRANCHING RULES FOR SATISFIABILITY 379

Most importantly, the Simplification Hypothesis predicts the good perfor-
mance from the J -W rule that several investigators have observed. That the
Satisfaction Hypothesis inspired a good role is a stroke of luck.

In the meantime, we should be able to improve both the J -W and Simplifi-
cation roles by considering both L and --L; that is, by branching on the variable
xj that maximizes J(xj) + J(-~xj). The first branch should be to the literal
L (xj or -~xj) for which the satisfaction probability is higher. Measuring the
satisfaction probability by the First-Order Probability rule, we branch to L if
J(L) - J(-~L) >1 J(-~L) - J(L); i.e., if J(L) >1 J(-~L). This yields

5. Two-Sided Jeroslow-Wang Rule

Branch on a variable xj that maximizes

J(xj) + J(~xj)

over all variables in S. Branch first to xj if

J(xj) >1 J(~xj) ,

and otherwise first to-~xj.

Table III reveals that the 2-sided J -W rule (Rule 8) is better than J-W in
every problem class but one. The difference is statistically significant in classes
0 , 1 , 2 , 6 , 7 .

6. Shortest Positive Clause Branching

An interesting variation of the Davis-Putnam-Loveland algorithm branches on
positive clauses rather than on variables [11]. Rather than setting some xj to
true and then to false in order to generate successor nodes, it picks a shortest
positive clause, such such as xl V x2 V x3. (A positive clause is one with all
positive literals.) It then creates a successor node for each literal in the clause,
three in this case. For the first node, xl is set to true. For the second, x2 is set to
tree and x 1 to false (to avoid regenerating solutions in which xl is true). For the
third, x3 is set to tree and both x 1 and x2 to false. A statement of the algorithm
follows.

The algorithm is actually very similar to a DPL algorithm with an approxi-
mation of the J -W branching rule. By branching to a literal in a shortest positive
clause, it branches to a literal L for which J (L) is likely to be fairly large. The
three successor nodes generated by a clause xl V x2 V x3 would in effect be
generated by DPL if one branches on xl ,x2 and x3 in that order. The second
branch would occur upon branching to -~xl and then to x2, and the third upon
branching to -~xl, then to -~x2 and then to x3.

380 J.N. HOOKER AND V. VINAY

6. Shortest Positive Clause Branching

P r o c e d u r e Branch(S,k)
P e r f o r m Monotone Variable Fixing on S.
P e r f o r m Unit Resolution on S.
If a contradiction is found, return.

If S is empty~

declare problem to be satisfiable and stop.

Branch :

If S contains no positive clauses~

declare problem to be satisfiable and stop.

Else pick a positive clause xjl V ... V Xjp in S.
For i = 1 , . . . , p do :

P e r f o r m Braneh(S tO { - - ~ x j , , . . . , ~ x j ~ _ l , x j ~ } , k + 1).
End.

The positive clause branching rule has one feature lacked by branching rules
hitherto considered. By branching only on positive clauses, it exploits the fact
that there is no need to branch on any variable that never occurs in a positive
clause. This is because if only such variables remain, the remaining clauses can
always be satisfied by setting all variables to false.

The computational results provide little motivation to use clause branching
rather than DPL. The positive clause branching rule is better than J -W in 4
problem classes but never significantly better. It is worse than J -W in 7 problem
classes and significantly worse in classes 2 and 6. It is worse than the 2-sided
J -W rule in 7 problem classes and significantly worse in classes 0, 1, 2, 4, 6
(while significantly better in no class).

The strategy of branching only on variables that occur in some positive clause,
however, could prove useful in a DPL algorithm. We modified the J -W rule and
the 2-sided J -W rule to incorporate it.

7. Positive Jeroslow-Wang Kule

Branch to a literal L that maximizes J(L) over
all variables in S that occur in some clause that

contain all positive literals.

The two-sided role (Rule 8) is better than the 2-sided J-W rule in every
problem class, although the difference is statistically significant only in class 4.

BRANCHING RULES FOR SATISFIABILITY 381

8. Positive Two-Sided Jeroslow-Wang Rule

Branch on a variable xj that maximizes

J(xj) + J(- xj)

over all variables in S that occur in some clause

that contain all positive literals. Branch first

to xj if

J(xj) >>t

and otherwise first to-~xj. If there is no such

xj, the remaining clauses can be satisfied by

setting all remaining variables to false.

7 . C o n c l u s i o n s

We found that the Jeroslow-Wang rule is substantially better than random branch-
ing, but the original motivation for it (the Satisfaction Hypothesis) does not
explain its success, for several reasons.

- It does not explain the rule's behavior on unsatisfiable problems.
- The J - W rule actually maximizes a truncation J (L) of a criterion J (L) -

J (~ L) based on a first-order estimate of satisfaction probability. If this
predicts good J -W performance, then a truncation J(--,L) of the reverse
criterion J (- ,L) - J (L) should result in a very poor rule. But the reverse
rule is only slightly worse than J -W and much better than random branching.

- A better, second-order estimate of satisfaction probability should, on the
Satisfaction Hypothesis, result in better performance. But performance is no
better and sometimes worse.

We found that performance is better explained by a Simplification Hypothesis
that focuses on a rule's propensity to choose branches that simplify the problem.
The reasons are as follows.

- An estimate of simplification based on a Markov chain analysis leads to
the criterion J(--,L) - J (L) , whose truncation J(-~L) was found to perform
nearly as well as J-W, contrary to predictions of the Satisfaction Hypothesis.

- The Simplification Hypothesis, as interpreted by our Markov Chain model,
implies that both J -W and reverse J -W should perform well, with some
preference for the former. This accords with experience.

- The hypothesis also suggests that a 2-sided J -W rule should be superior to
J-W, and it is.

We also found that clause branching is worse than the 2-sided J -W rule. But
its strategy of branching only on variables that occur in positive clauses appears

382 J.N. HOOKER AND V. VINAY

to improve the 2-sided J - W rule when added to it, although the statistical analysis
cannot conf i rm this with confidence. In any case, the resulting posit ive 2-sided
J e ro s low-Wang rule appears to be the best examined here and is significantly

better than the old Je ros low-Wang rule.

Finally, our exper ience does not suggest that more accurate est imates of the
branching criterion are worth the expense. The computat ional overhead of a

second-order (O (m N)) est imate of satisfaction probabil i ty far outweighed any

reduction in the size of the search tree relative to a first-order (O (N)) estimate.

References

1. Amini, M. M. and Racer, M.: A variablerdepth-search heuristic for the generalized assignment
problem, Management Science, to appear.

2. Bt~hm, H.: Report on a SAT Competition, Technical report No. 110, Universit~it Paderborn,
Germany, 1992.

3. Cook, S. A.: The complexity of theorem-proving procedures, in Proc. 3rd Annual ACM Symp.
on the Theory of Computing, 1971, pp. 151-158.

4. Crawford, J.: Problems contributed to DIMACS. For information contact Crawford at
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ, 07974-0636 USA, e-mail
jc@research.att.com.

5. Davis, M. and Putnam, H.: A computing procedure for quantification theory, J. ACM 7 (1960),
201-215.

6. Dubois, O.: Problems contributed to DIMACS. For information contact Dubois at Lafo-
ria, CNRS-Universit6 Paris 6, 4 place Jussieu, 75252 Paris cedex 05, France, e-mail
dubois @laforia.ibp.fr.

7. Dubois, O., Andre, P., Boufkhad, Y., and Carlier, J.: SAT versus UNSAT, manuscript, Lafo-
ria, CNRS-Universit6 Paris 6, 4 place Jussieu, 75252 Paris cedex 05, France, 1993, e-mail
dubois @laforia.ibp.fr.

8. Erdt~s, P. and Lov~isz, L.: Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and Finite Sets, North-Holland, Amsterdam, 1975.

9. Freeman, T. W.: Failed literals in the Davis-Putnam procedure for SAT, manuscript, Computer
and Information Science, University of Pennsylvania, Philadelphia, PA, 19104 USA, CA, 1993,
freeman@gradient.cis.upenn.edu.

10. Gallo, G. and Pretolani, D.: A new algorithm for the propositional satisfiability problem, report
TR-3/90, Dip. di Informatica, Universit~i di Pisa, Discrete Applied Mathematics, to appear.

11. Gallo, G. and Urbani, G.: Algorithms for testing the satisfiability of propositional formulae, J.
Logic programming 7 (1989), 45-61.

12. Golden, B. L. and Stewart, W. R.: Empirical analysis of heuristics, in Lawler, Lenstra, Rinnooy
Kan, and Schmoys (eds), The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, Wiley, New York, 1985, pp. 207-249.

13. Harche, F., Hooker, J. N., and Thompson, G.: A computational study of sastifiability algorithms
fo r propositional logic, ORSA J. Computing 6 (1994), 423-435. For more information contact
J. Hooker, email jh38@andrew.cmu.edu.

14. Hooker, J. N.: Needed: An empirical science of algorithms, Operations Research 42 (1994),
201-212.

15. Hooker, J. N. and Fedjki, C.: Branch and cut solution of inference problems in propositional
logic, Annals of Mathematics and AI 1 (1990), 123-139.

16. Iwama, K., Albeta, H., and Miyano, E.: Random generation of satisfiable and unsatisfiable CNF
predicates, in Proc. of I2th IFIP World Computer Congress, 1992, pp. 322-328. For further
information contact Eiji Miyano, Dept. of Computer Science and Communication Engineering,
Kyushu University, Fukuoka 812, Japan, e-mail miyano@csce.kyushu-u.ac.jp.

17. Jeroslow, R. and Wang, J.: Solving propositional satisfiability problems, Annals of Mathematics
and AI 1 (1990), 167-187.

BRANCHING RULES FOR SATISFIABILITY 383

18. Kamath, A., Karmarkar, N., Ramakrishnan, K., and Resende, M.: A continuous approach to
inductive inference, Mathematical Programming 57 (1992), 215-238. For further information
contact Mauricio Resende, AT&T Bell Laboratories, Murray Hill, NJ 07974 USA, e-mail
mgcr@research.att.com.

19. Lin, B. W. and Rardin, R. L.: Controlled experimental design for statistical comparison of
integer programming algorithms, Management Science 25 (1980), 1258-1271.

20. Loveland, D. W.: Automated Theorem Proving: A Logical Basis, North-Holland, Amsterdam,
1978.

21. Mitterreiter, I. and Radermacher, E J.: Experiments on the running time behavior of some
algorithms solving propositional logic problems, manuscript, Forschungsinstitut fur anwen-
dungsorientierte Wissensverarbeitung, Ulm, Germany, 1991.

22. Petersen, R. G.: Design and Analysis of Experiments, Marcel Dekker, New York, 1985.
23. Pretolani, D.: Efficiency and stability of hypergraph SAT algorithms, manuscript, Dip. di

Informatica, Univ. di Pisa, Corso Itali 40, 56125 Pisa, Italy. For information on problems
contact e-mail pretola@di.unipi.it.

24. Spencer, J.: Ten Lectures on the Probabilistic Method, Regional Conference Series in Applied
Mathematics 52, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1987.

25. Van Gelder, A. and Tsuji, Y. K.: Satisfiability testing with more reasoning and less guessing,
manuscript, University of California, Santa Cruz, CA, USA, 1994. For information on problems
contact e-mail avg@cs.ucsc.edu or tsuji@cs.ucsc.edu.

26. Wilson, J. M.: Compact normal forms in propositional logic and integer programming formu-
lations, Computers and Operations Research 90 (1990), 309-314.

