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Abstract. 
"prove((E,F),A,B,C,D) -- !, prove(E, [F]A],B,C,D). 
prove((E;F),A,B,C,D) ~- !, prove(E,A,B,C,D), prove(F,A,B,C,D)o 
prove(all(H,I),A,B,C,D) -- 1, 

\+ length(C,D) , copy_term((H,I,C), (G,F,C)) , 
append(A, [all(H,I)],E), prove(F,E,B, [GIC] ,D). 

prove (i,_, [C I D] .... ) "- 
((A: -(B) ; -(A):B) ) -> (unify(B,C) ; prove(A, [],D .... )). 

prove(A, [EIF] ,B,C,D) :- prove(E,F, [AIB] ,C,D)." 

implements a first-order theorem prover based on free-variable semantic tableaux. It is complete, 
sound, and efficient. 

Key words: logic for artificial intelligence, theorem proving, automated deduction, semantic 
tableaux, first-order logic, Prolog. 

1. Introduction 

The Prolog program listed in the abstract implements a complete and sound 
theorem prover for first-order logic; it is based on free-variable semantic tableaux 
(Fitting, 1990). We call this lean deduction: the idea is to achieve maximal 
efficiency from minimal means. We will see that the program is indeed very 
efficient - not although but because it is extremely short and compact. 

Our approach surely does not lead to a deduction system that is superior to 
highly sophisticated systems like Otter (McCune, 1990) or Setheo (Letz et al., 
1992); these are better on solving difficult problems. However, many applications 
do not require deduction that is as complex as the state of the art in automated 
theorem proving can handle. Furthermore, there are often strong constraints on 
the time allowed for deduction. Our approach can be particularly useful in such 
areas: it offers high inference rates on simple to moderately complex problems 
and a high degree of adaptability. 

Another important argument for lean deduction is safety: It is easily possible 
to verify a couple of lines of standard Prolog; verifying thousands of lines of 
C code, however, is hard - if not impossible - in practice. 
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Satchmo (Manthey and Bry, 1988) can be regarded the earliest application 
of lean theorem proving. The core of Satchmo is about 15 lines of Prolog 
code, and for implementing a refutation complete version another 15 lines are 
required. Unfortunately, Satchmo works only for range-restricted formulae in 
clausal form (CNF). Range-restrictedness can be avoided with some extra effort, 
but the restriction to clausal form is crucial to Satchmo's underlying calculus. 
Many problems become much harder when translating them to clausal form, so 
it seems better to avoid CNF and to preserve position and scope of quantifiers.* 
One way to achieve this is to use a calculus based on free-variable tableaux. 
It is a common, but mistaken belief that tableau calculi are inefficient; we will 
demonstrate the contrary. 

PAPER OUTLINE 

The paper is organized as follows: Section 2 discusses our implementation and 
explains the underlying idea. In Section 3 we present a simple but efficient 
method for computing an optimized negation normal form (NNF). After giv- 
ing some performance data in Section 4, we describe in Sections 5 and 6 how 
the program can be improved by using the "universal formula" mechanism; in 

Section 7 we sketch the proof for leanTAp's soundness and completeness. 
We draw conclusions from our research and give an outlook to future appli- 

cations of lean theorem proving in Section 8. Finally, in an appendix, we briefly 
survey the history of tableau-based theorem provers. 

Through the paper we assume familiarity with free-variable tableaux for clas- 
sical first-order logic (see, e.g., Fitting, 1990) and the basics of programming in 
Prolog (O'Keefe, 1990). All source code given in this paper is available via the 
Worm Wide Web on 

http://il2www.ira.uka.de/~posegga/leantap/leantap.html. 

2. The Program 

The idea behind leanTAp is to exploit the power of Prolog's inference engine as 
much as possible. We rely on Prolog's clause indexing scheme and backtracking 
mechanism, and we modify Prolog's depth-first search to bounded depth-first 
search for gaining a complete prover. 

For the sake of simplicity, we restrict our considerations to closed first-order 
formulae in skolemized negation normal form. This is not a serious restriction; 
the prover can easily be extended to full first-order logic by adding the standard 
tableau rules (cf. Section 3). We will use Prolog syntax for first-order formulae: 
atoms are Prolog terms, "-" is negation, ";" disjunction, and " ,"  conjunction. 

* Using a definitional CNF (Eder, 1992) helps at most partially: it avoids exponential growth of 
formulae for the price of introducing some redundancy into the proof search. Extending the scope 
of quantifiers to clause level, however, cannot be avoided. 
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Universal quantification is expressed as a l l ( X , F ) ,  where X is a Prolog vari- 
able and F is the scope. Thus, a first-order formula is represented by a Prolog 
term (e.g., ( p (0 ) , a l l (N ,  ( -p (N) ;p (s (N)) ) ) )  stands for p(0) /% (Vn (~p(n) V 
p(s(n))))). 

We use a single Prolog predicate to implement our prover: 

p r o v e  (Fml ,  UnExp, L i t s ,  F r e  eV, YarLim) 

succeeds if there is a closed tableau for the first-order formula bound to Fml. 
This is the case if the formula is inconsistent. The proof proceeds by considering 
individual branches (from left to right) of a tableau; the parameters Fml, UnExp, 
and Li t s  represent the current branch: Fml is the formula being expanded, UnExp 
holds a list of formulae not yet expanded, and Li t s  is a list of the literals present 
on the current branch. Freer  is a list of the free variables on the branch (these 
are Prolog variables, which might be bound to a term). A positive integer VarLim 
is used to initiate backtracking; it is an upper bound for the length of FreeV. 

We will briefly go through the program listed in the abstract again (using a 
more readable form now) and explain its behavior. The prover is started with 
the goal p r o v e  (Fml ,  [ ] ,  [ ] ,  [] ,VarL im) ,  which succeeds if Fml* can  be proven 
inconsistent without using more than VarLim free variables on each branch. 

If a conjunction (~-forrnula**) "A and B" is to be expanded, then "A" is 
considered first and "B" is put in the list of not yet expanded formulae: 

p r o v e  ( (h ,  B) ,  UnExp, L i t s ,  F r e e V ,  VarLim) : - ! ,  

p r o v e  (A, [B l UnExp] , L i t s ,  F r e e r ,  Va rL im) .  

For disjunctions (fl-formulae) we split the current branch and prove two new 
goals: 

p r o v e  ( (A ; B) ,  UnExp, L i t s ,  F r eeV ,  VarLim) : - ! ,  

p r o v e  (A, UnExp, L i t s ,  F r eeV ,  V a r L i m ) ,  

p r o v e  (B, UnExp, L i t  s ,  F r eeV ,  Va rL im) .  

Handling universally quantified formulae (';/-formulae) requires a little more 
effort. We first check the number of free variables on the branch. Backtrack- 
ing is initiated if the depth-bound VarLim is reached. Otherwise, we generate a 
"fresh" instance of the current "),-formula all(X,Fml) with copyterm.  FreeV is 
used to avoid renaming the free variables in Fml. The original -,/-formula is put 
at the end of UnExp$, and the proof search is continued with the renamed instance 
Fmll as the formula to be expanded next. The copy of the quantified variable, 
which is now free, is added to the list FreeV: 

* Formally, we should say "the formula that is represented by the Prolog term bound to Fml". 
However, we will simply write "the formula Fml" in the sequel. 

** Due to R. Smullyan, conjunctive type formulae are called c~-formulae in the semantic tableaux 
framework. 

Putting it at the top of the list destroys completeness: the same -y-formula would be used over 
and over again until the depth bound is reached. 
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prove (all (X,Fml) ,UnExp,Lits ,FreeV,VarLim) : - !, 

\+ length(FreeV,VarLim), 

copy_term( (X, Fml ,FreeV), (Xl ,Fmll, FreeV) ), 

append (UnExp, [all (X, Fml) ] , UnExpl), 

prove (Fmll ,UnExpl, Lits, [X11 FreeV] ,VarLim). 

Recall that "\+" denotes Prolog's negation as failure, copy_term(+Term,-Copy) 
makes a copy of Term by replacing each distinct variable in Term by a new vari- 
able that occurs nowhere else in the system, and unifies Copy with the result. 

The next clause of prove closes branches; it is the only one that is not deter- 
minate. Note that it will be entered only with a literal as its first argument. Neg 
is bound to the negated literal and sound unification* is tried against the literals 
on the current branch. The clause calls itself recursively and traverses the list in 
its second argument; no other clause will match since UnExp is set to the empty 
list. 

p rove (L i t , _ ,  [LlLits]  . . . .  ) :-  
(Lit  = -Neg; -Lit = Neg) -> 

(unify(Neg,L) ; prove(Lit, [] ,Lits .... )). 

Note, that the implication "->" after binding Neg introduces an implicit cut: this 
prevents generating double negation when backtracking (which would happen, if 

, were used instead). 
The last clause is reached if the preceding clause cannot close the current 

branch. We add the current formula (always a literal) to the list of literals on the 
branch and pick a formula waiting for expansion: 

prove (Lit, [Next I UnExp] , Lit s, FreeV,garLim) • - 

prove (Next,UnExp, [Lit I Lit s], FreeV,VarLim). 

leanT4p has two choice points: one is selecting between the last two clauses, 
which means closing a branch or extending it. The second choice point within 
the fourth clause enumerates closing substitutions during backtracking. 

The enumeration of closing substitutions is controlled with the limit VarLim: 
if the limit is reached before a closed tableau has been found, the clause for 
universally quantified formulae fails and leanTAp searches for alternate substi- 

tutions for closing branches. However, leanTAp will never change a given value 
for VarLim, thus the program is only complete in the sense that it will find a 
proof if one with less than VarLim ",/-rule applications on each branch exists. 

It is important in practice that the limit is not chosen too high, as the search 
space grows exponentially with garLim. A good solution for this problem is 
to simply wrap the call to the predicate prove in Prolog code that implements 
iterative deepening. The standard solution in Prolog for this is: 

• In contrary to Prolog's built-in unification "=", the predicate unify implements sound unifica- 
tion, i.e., unification with occur check. Most Prolog systems provide un i fy  as a library predicate. 
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inc prove(Fml,VarLim) :- prove(Fml,[],[],[],VarLim). 

i n c _ p r o v e ( F m l , V a r L i m )  : -  NewVarLim i s  VarLim + 1, 

inc_prove(Fml,NewVarLim). 

The prover is then started with inc prove(Fml,N) and searches with the 
values N, N +1, . . .  for VarLim. 

3. Computing a Negation Normal Form 

The prover above works only for formulae in negation normal form (NNF), since 
we did not implement all tableau roles for general formulae. If we want to use 

leanTAP for formulae that are not in NNF, we can either add clauses for prove 
that implement the corresponding roles, or apply the conversion into NNF as a 
preprocessing step. The first alternative means merging the derivation of NNF 
into the proof search, the latter separating it from the proof search. In both cases, 
the same operations are carried out and we do not gain anything from carrying 
them out simultaneously. On the other hand, it is reasonable to keep the proof 
search as simple as possible; we will therefore separate both issues and derive 
an NNF in advance. 

Most operations for deriving NNF are straightforward. What is not straight- 
forward is coming up with a good skolemization. This is one reason we give 
a complete Prolog implementation of the conversion. The second is that we 
show how to optimize the NNF without extra cost by changing the sequence of 
disjunctively connected formulae. 

Recall that the conversion into NNF is linear w.r.t, the length of a formula not 
containing equivalences. With equivalences, it can be implemented with quadratic 
effort (Eder, 1992), but, for the sake of simplicity, we will use a naive version 
which is in the worst case exponential for equivalences. 

The predicate used for computing a negation normal form is 

n n f  (+Fml,  +FreeV,  -NNF, - P a t h s )  

Fml is the formula to be transformed, FreeV is the list of free variables occurring 
in Fml, NNF is bound to the Prolog term representing the computed NNF of Fml, 
and Paths is bound to the number of disjunctive paths in NNF (resp. Fml). We 
will see soon what this latter information is good for. 

The goal for computing the NNF of Fml is nnf (Fml, [] ,NNF,_). We imple- 
ment a more convenient syntax for first-order formulae, using as logical connec- 
tives "v" (disjunction), "~" (conjunction), "=>" (implication), and "<=>" (equiv- 
alence). 

The first clause of the predicate rmf corresponds to the standard rules in 
semantic tableaux; nothing exciting is done - we just use tautologies for rewriting 
formulae: 

n n f  (Fml ,  FreeV,  NNF, P a t h s )  • - 
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(Fml = -(-A) -> Fmll = A; 

Fml = -alI(X,F) -> Fmll = ex(X,-F); 

Fml = -ex(X,F) -> Fmll = alI(X,-F); 

Fml = -(A v B) -> Fmll = -A ~ -B; 

Fml = -(A a B) -> Fmll = -A v -B; 

Fml = (A => B) -> Fmll = -A v B; 

Fml = -(A => B) -> Fmll = A a -B; 

Fml = (A <=> B) -> Fmll = (A a B) v (-A a -B); 

Fml = -(A <=> B) -> Fmll = (A ~ -B) v (-A & B)),!, 

nnf(Fmll,FreeV,NNF,Paths). 

For universally quantified formulae, we add the quantified variable to FreeV 
and compute the NNF of the scope: 

n n f ( a l l ( X , F )  , F r e e V , a l l ( X , N N F )  , P a t h s )  : -  ! , 

nnf  (F,  [X I Freer ]  , NNF, P a t h s ) .  

Skolemization has to be carried out very carefully, since straightforward 
skolemizing can easily hinder finding a proof. Fitting (1990) proposes to insert 
a Skolem-term containing all variables that appear free on a branch. This is 
correct, but too restrictive: it often delays closing of inconsistent branches. The 
current state of the art (Beckert et al., 1993) is less restrictive: It suffices to use 
a Skolem-term that is unique (up to variable renaming) to the existentially quan- 
tified formula. This term only holds the free variables occurring in the formula 
(and not all free variables on the current branch as Fitting proposes).* An ideal 
candidate for such a term is the formula itself.** This can be implemented in 
Prolog in the following way: 

n n f ( e x ( X , F m l )  ,FreeV,NNF,Paths )  : -  ! , 
c o p y _ t e r m (  (X ,Fml,  FreeV) ,  (Fml ,Fml l ,  FreeV) ) ,  
c o p y _ t e r m (  (X, Fml l ,  FreeV) ,  (ex  ,Fml2,  FreeV) ) ,  

nnf  (Fml2,  FreeV,  NNF, P a t h s ) .  

We generate a copy Fmll of the scope Fml; none of the free variables in Fmll 
are renamed (they occur in FreeV), except the existentially quantified variable x; 
Fml is inserted for it. Fml contains all the free variables that have to occur 
in a Skolem-term and we use it for this purpose. We do not need to create 
a new function symbol for skolemization, since we will assume that disjoint 
sets of predicate and function symbols are used. The second copy_term goal 
substitutes the existentially quantified variable that is free in Fmll by the (arbi- 

* From a logical perspective, our version of skolemization results in a stronger calculus than 
the one proposed by Fitting (1990); both calculi are complete, but the shortest proofs in Fitting's 
calculus are sometimes longer. 

** We thank Christian FermOller for pointing out, that this is closely related to the e-formulae 
described in (Hilbert and Bernays, 1939, §1). 
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trary) constant ex, since we do not want to introduce new free variables when 
skolemizing.* 

The next clause is routine, besides counting disjunctive paths: 

nnf(A gz B,FreeV,(NNFI,NNF2),Paths) :- , 

nnf (A, FreeV, NNF1, Paths 1), 

nnf (B, FreeV, NNF2, Paths2), 

Paths is Paths1 * Paths2. 

The number of disjunctive paths in a formula (i.e., the number of branches a 
fully expanded tableau for it will have) is used when handling disjunctions: we 
put the less branching formula to the left. That way the number of choice points 

during the proof search is reduced, since leanTAp will expand the left part of a 
disjunction first. 

nnf(A v B,Freeg,NNF,Paths) :- !, 

nnf (A, FreeV, NNF1, Paths 1), 

nnf (B, FreeV, NNF2, Paths2), 

Paths is Pathsl + Paths2, 

(Paths1 > Paths2 -> NNF = (NNF2;NNFI); 

NNF = (NNF1; NNF2)). 

The last clause will match literals: 

nnf (Lit, _, Lit, i). 

4. Performance 

Although (or better: because) the prover is so small, it shows striking perfor- 
mance. Table I shows experimental results for a subset of Pelletier's problems 
(Pelletier, 1986). We placed the negated theorem in front of the axioms and used 
the above program for computing negation normal form. 

Some of the theorems, like Problem 38, are quite hard: the 37AP prover (Beck- 

ert et al., 1992), for instance, needs more than ten times as long. If lean24p can 
solve a problem, its performance is in fact comparable to compilation-based sys- 
tems that search for proofs by generating Prolog programs and running them 
(Stickel, 1988; Posegga, 1993a; Posegga, 1993b). 

Schubert's Steamroller (Pelletier No. 47) cannot be solved; this is no surprise, 
since the problem is designed for forward chaining based on clauses. It can be 
proven in tableau-based systems only if good heuristics for selecting 7-formulae 
are used. Using a queue, as in our case, is not sufficient. We console ourselves 
with Problem No. 38, which is barely solvable in a comparable time by CNF- 
based provers. 

* Since this might be a bit hard to understand for people not used to programming in Prolog, we 
give an example: the Prolog query nnf (ex (X, p (X, Y) ) ,  [Y] , NNF, _) will succeed and bind 
NNF to p(p(ex,Y) ,Y) (Fml is bound to ex(X,p(X,Y)), Fmll to p(p(X,Y) ,Y), and Fml2 
to p(p(ex ,g)  ,Y)). 
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TABLE I. leanT4P's performance for Pelletier's problems. 

BERNHARD BECKERT AND JOACHIM POSEGGA 

No. Limit Branches Time No. Limit Branches Time 
VarLim closed tried msec VarLim closed tried msec 

17 1 14 14 0 32 3 10 10 10 
18 2 1 1 9 33 1 11 11 0 
19 2 4 6 0 34 5 267 792 700 
20 6 3 3 9 35 4 1 1 0 
21 2 8 8 0 36 6 3 3 0 
22 2 7 14 9 37 7 8 8 9 
23 1 4 4 0 38 4 90 101 210 
24 6 33 33 9 39 1 2 2 0 
25 3 5 5 0 40 3 4 5 0 
26 3 16 17 0 41 3 4 5 0 
27 4 8 8 0 42 3 5 5 9 
28 3 5 5 0 43 5 18 18 109 
29 2 11 11 9 44 3 5 5 10 
30 2 4 4 9 45 5 17 17 39 
31 3 5 5 0 46 5 53 63 59 

The runtime has been measured on a SUN SPARC 10 workstation with SICStus Prolog 2.1; 
"0 msec" means "not measurable". The times reflect the search for a proof with iterative deepening 
on garLim and include NNF derivation. 

Pelletier No.  34 (also called "Andrews '  Chal lenge")  is the hardest  problem; 
it can only be  solved if exact ly the required value of  5 for VarLim is chosen.  

An iterative deepening approach (as applicable to all other problems)  does not 

work: if  ga rLim is set to 4, the prover  does not return after 15 minutes. 

5. Universal Variables in Formulae 

One of  the major  problems with implement ing a first-order tableau calculus is 

to control  the applicat ion of  universal  quantifiers or 7-formulae.  These  generate 
the free variables  in a tableau, which may  be instantiated for  closing branches.  
In tableaux, these free variables are not implicitly universal ly quantified as it is 

for instance the case with variables in clauses when using a resolution calculus. 

Free variables  in tableaux are rigid: the same substitution must  be  applied to all 
occurrences  of  the variable in the whole tableau. 

F r o m  a more  formal  point of  view, this situation is closely related to what  is 

usually called the strong consequence relation. 

D E F I N I T I O N  1 (Strong consequence relation). Let  ¢, ~b be first-order formulae;  

if  for all interpretations I and for all variable ass ignments/3:  

if  val i ,~(¢)  = true then va l i ,o (~)  ---- true. 
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Fig. 1. An example for universal formulae. 

(Note, that for example V(z) ~- (Vzp(z)), but p(z) ~ (Vzp(z)), where " ~ "  
denotes the weak consequence relation.) 

Suppose we have a branch B with a formula q~(z) on it in a tableau. Assume 
further that the expansion of the tableau then proceeds with creating new branch- 
es; some of these branches contain occurrences of :c. For closing the generated 
branches, we must use the same substitution for z on all of them. Figure 1 gives 
an example for the situation: the tableau cannot be closed immediately, since no 
single substitution closes both branches simultaneously. To find a proof, we have 
to apply the -y-role again and create another instance of p(z): 

For particular branches it could be the case that /3 ~ (Vz qS(z)). This is for 
instance the case in Figure 1. On these branches, we can use different substitu- 
tions for z. The tableau in Figure 1 then closes immediately. Recognizing such 
situations and exploiting them yields shorter tableau proofs, since fewer rule 
applications for closing a tableau are needed. 

This is the idea behind the heuristic discussed in this section. We present a 
method that detects universal variables in formulae in some cases.* 

DEFINITION 2 (Universal formula). Suppose ~b is a formula on some tableau 
branch t?. ~ is universal on B with respect to the variable z if 

Now, we can use a new rule for closing branches that takes this definition into 
account. 

* See (Beckert and H~ihnle, 1992) for details; we only give a slightly simplified account here. 
** In the sequel, we will often refer to a formula ~b that is universal on a branch t3 w.r.t, a 

variable :c just by "the universal formula q~", and to the variable z by "the universal variable z" 
(if the context is clear). 
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DEFINITION 3 (Closed tableau). A tableau consisting of k branches Bi (1 ~< 
i ~< k) is closed if there are 

1. a substitution a, 
2. literals li, [i C Bi, and 
3. substitutions oi, such that 

(a) lioi and [icri are complementary, and 
(b) if cri(x) ¢ o'(x) then both li and [i are universal on Bi w.r.t.x. 

With this definition of closed tableaux it is possible that a tableau is closed after 
less applications of expansion roles than in the standard free-variable tableau 
calculus. Thus, the calculus is strengthened. 

The problem of recognizing universal formulae is of course undecidable in 
general. However, a wide and important class can be recognized quite easily: 
assume there is a sequence of tableau rule applications that does not contain a 
disjunctive rule (i.e., the tableau does not branch). All formulae that are generated 
by this sequence are universal w.r.t, the free variables introduced by the sequence. 
Substitutions for these variables can be ignored, since the corresponding inference 
steps could be repeated arbitrarily often to generate new instances of the universal 
variables (without generating new branches). 

More formally, we use the following lemma. 

LEMMA 1. A formula ¢ on a branch t3 is universal w.r.t, x if ¢ was put on 13 
by either 

1. applying a "y-rule and x is the free variable introduced by the application of  
this rule, or 

2. applications of  non-branching rules to a formula ~ E 13, where ¢ is universal 
on 13 w.rt. x. 

A proof is immediate, since the criteria of Definition 2 are implied. 

Recognizing the above subset of universal formulae in the leanTAp program, 
can be implemented by keeping a list of (in this sense) universal variables for each 
formula. This information is used to rename the universal variables occurring in 
literals, such that their instantiation does not affect the rest of the tableau. This 
renaming "simulates" universal quantification of the variable that is renamed; it 
is carried out when expanding a disjunction. 

For this, the arity of prove is extended from 5 to 7: 

prove (Fml, UnExp, Lit s, DisV, FreeV, Univg, VarLim) 

The use of all parameters but UnivV and DisV remains unchanged. UnivV is a list 
of the universal variables in Fml. DisV is a Prolog term containing all variables 
on the current branch that are not universal in one of the formulae (we will call 
these "disjunctive variables"). Each unexpanded formula in UnExp will have the 
list of its universal variables attached. The Prolog functor " :"  is used for this. 

The prover is now started with the goal 
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prove(Fml,[],[],[],[],[],VarLim) 

to prove the inconsistency of Fml. We will discuss the extended program by 
explaining the differences to our previous version. 

All universal variables of a conjunction are universal for each of its compo- 
nents: 

prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :-  !, 
prove(A,[(UnivV:B)]UnExp],Lits,DisV,FreeV,UnivV,VarLim). 

Disjunction destroys universality: the universal variables of a disjunction are 
not universal to its components. The tableau is split and the universal variables 
become non-universal on both resulting branches. We therefore add them to DisV 
by creating a new Prolog term.* Universal variables occurring in the literals on the 
branch are renamed by copy te rm.  Renaming allows to instantiate the universal 
variables differently on the two resulting branches. 

prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !, 
copy term((Lits,DisV),(Litsl,DisV)), 

prove(A,UnExp,Lits,(DisV+UnivV),FreeV,[],VarLim), 
prove(B,UnExp,Litsl,(DisV+UnivV),FreeV,[],VarLim). 

When introducing a new variable by the quantifier rule, this variable becomes 
universal for the scope (it may lose that status if a disjunction in the scope is 
expanded; see above). 

prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !, 

\+ length(FreeV,VarLim), 

copy_term((X,Fml,FreeV),(Xl,Fmll,FreeV)), 

append(UnExp,[(UnivV:all(X,Fml))],UnExpl), 

prove(Fmll,UnExpl,Lits,DisV,[XlJFreeV],[XllUnivV],VarLim). 

The next clause remains unchanged except for having two more parameters. 

prove(Lit,_,[LJLits] ........ ) :- 
(Lit = -Neg; -Lit = Neg ) -> 

(unify(Neg,L); prove(Lit,[],Lits ........ )). 

Recall that the sixth parameter of prove holds the universal variables of the 
current formula (not of the whole branch). Thus, when extending branches we 
must change this argument: 

prove(Lit,[(UnivV:Next) JUnExp],Lits,DisV,FreeV,_,VarLim) :-  
prove(Next ,UnExp,[LitJLits] ,DisV,FreeV,UnivV,VarLim).  

* We could use a list, but creating a new term by "+" (an arbitrary functor) is faster. 
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TABLE II. leanT4p's performance 
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with the universal formula mechanism. 

No. Limit Branches Time 
VarLim closed t r i ed  msec 

No. Limit Branches Time 
garLim closed t r i ed  msec 

17 1 14 14 
18 2 1 1 
19 2 3 3 
20 6 3 3 
21 2 8 8 
22 2 4 4 
23 1 4 4 
24 6 33 33 
25 3 5 5 
26 3 16 17 
27 4 8 8 
28 3 5 5 
29 2 11 11 
30 2 4 4 
31 3 5 5 

10 32 3 10 10 10 
0 33 1 11 11 10 

10 34 5 79 79 109 
9 35 2 1 1 0 
0 36 6 3 3 0 
0 37 7 8 8 30 
0 38 4 90 101 489 

39 39 1 2 2 0 
0 40 3 4 5 0 

19 41 3 4 5 9 
10 42 3 5 5 9 
10 43 5 18 18 179 
19 44 3 5 5 19 
0 45 5 17 17 79 

10 46 5 53 63 189 

The runtime has been measured on a SUN 
"0 msec" means "not measurable". 

SPARC 10 workstation with SICStus Prolog 2.1; 

6. Performance with the Universal Formula Mechanism 

Problem No. 34 can now be solved faster, as Table II shows. The runtime for other 

problems (like 38) increased, since some overhead is involved with maintaining 

universal variables. Note that Problem No. 22 works better now: we need only 

four instead of  seven branches. 

7. Proving lean2AP's Soundness and Completeness 

7.1. PRELIMINARIES 

One of  the advantages of  lean~'P's compactness is that it is possible to formally 

prove its correctness, i.e., its soundness and completeness. Nevertheless, due to 

space restrictions, we will not give a detailed proof  here, but only a proof  sketch. 

We present the theorems that have to be proven and the main arguments that may 

be used. 
The proof  makes use of  the well-known fact that free variable semantic 

tableaux are a sound and complete calculus. In addition, we assume (and do 

not prove) the Prolog compiler (resp. interpreter) to be correct, as well as the 

implementation of  library predicates. 
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First, we formally define the free variable tableau calculus, using a slightly 
non-standard representation:* Tableaux are multi-sets of multi-sets of  first-order 
formulae; as usual, the branches of  a tableau are implicitly disjunctively con- 
nected, and the formulae on a branch are implicitly conjunctively connected. 

DEFINITION 4. A tableau is a (finite) multi-set of tableau branches, where a 
tableau branch is a (finite) multi-set of  first order formulae. 

Three types of rules can be applied to a tableau to derive a new one: expansion 
rules, the closure rule, and the substitution rule. The expansion rules are the 
classical o~-,/3- and 7-rules for formulae in NNF (only using our set notation). 
The closure rule removes closed branches instead of just marking them as being 
closed. 

DEFINITION 5. Let T be a tableau, /3 E T a branch of T, and q5 E B a formula 
on B,  

Expansion rules: The tableau may be derived from T that is constructed by 
removing the branch /3 from T and replacing it by one (resp. two) new 
branch: 

(B \ {~}) u {Wl, ~2} 
( e  \ {qS}) U {~31} and (/3 \ {qS)) U {~P2} 
/3 U {~b(y)} (where y is a new variable) 

i f  q5 = ~1 A ~2, (O!) 
i f  q5 = gal V ~b2, (/3) 
if q5 = (Vz)~b(z). (7) 

Closure rule: If  B is closed (i.e., if there are complementary literals l, i E B), 
then T \ {B} may be derived from T. 

Substitution role: The tableau To- may be derived from T, where a is any sub- 
stitution that does not instantiate bound variables in T (including the empty 
substitution). 

During lean2-AP's proof search, the current prove goal together with the prove 
goals on the Prolog goal stack** represent the tableau that has been computed so 
far. A goal prove (Fml, UnExp, L i t  s ,  Freeg,  VarLim) represents the tableau branch 
consisting of  the formulae in Fml, UnExp and L i t s ,  that still has to be closed. 

7.2. SOUNDNESS 

The soundness theorem to be proven is as follows. 

* We stress that this calculus differs from classical free variable tableaux (e.g., Fitting, 1990) 
only in notation and the way tableaux are represented. 

** The state a Prolog computation has reached is usually represented as a list (stack) [G1, . . . ,  Gk] 
of atomic formulae (called goals), and a substitution cr of the Prolog variables occurring in this 
list. ~r is the answer substitution computed up to that point. For our purposes, however, it is not 
necessary to separate the substitution from the goals; we therefore consider [GI~,..., Gk~] to be 
the current goal stack. 
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THEOREM 1. I f  Fml is bound to a closed first-order formula q5 in NNF, and the 
goal prove (Fml, [ ] ,  [] ,  [] ,  VarLim) succeeds, then q5 is inconsistent. 

The proof is based on the soundness of free variable tableaux. 

FACT 2. If ~b is a closed first-order formula 4) in NNF, and the empty tableau 
(the empty set) can be derived from the initial tableau {{~b}} by applying a finite 
sequence of the rules from Definition 5, then q5 is inconsistent. 

Given Fact 2, it suffices to validate the following statements to prove Theo- 
rem 1: 

- ff Fral is bound to ¢, the initial goal prove(Fml, [] ,  [ ] ,  [] ,VarLim) repre- 
sents the initial tableau {{~b}}. 

- Whenever leanTAP changes the set of prove goals on the Prolog goal stack 
(i.e., derives a new tableau), this corresponds to an application of one of the 
tableau rules from Definition 5.* 

- leanT4P terminates successfully only when the goal stack is empty, that is, 
when the empty tableau has been derived. 

7.3. COMPLETENESS 

The completeness theorem to be proven is as follows. 

THEOREM 3. I f  ¢ is an inconsistent first-order formula in NNF, then there is 
an n >1 0 such that, if Fml is bound to ¢ and VarLira is bound to n, then the 
goal prove (Fml, [ ] ,  [] ,  [] ,VarLim) succeeds. 

Central to the proof of Theorem 3 is the notion of fully expanded tableaux 
and that of a sequence of tableau derivations that ends with a fully expanded 
tableau. 

DEFINITION 6. A sequence To , . . . ,  Tn of tableaux is a fully expanding tableau 
sequence w.r.t, the limits p and q (/9, q >1 0) if Ti+l has been derived from T~ by 
using one of the rules from Definition 5 (1 4 i <~ n), and: 

1. only expansion rules have been applied in the sequence, 
2. there are only literals and ,y-formulae in Tn, 
3. if there is a ,),-formula ~b on a branch B E Ti (0 <<. i <~ n) that is one of the 

first q formulae that have been added to /3  (or were initially present on/3) ,  
then the 3'-rule has been applied at least p times to this occurrence of qS. 

o~- and fl-formulae are removed from a tableau once their according rule has 
been applied to them. Therefore, Condition 2 in Definition 6 is equivalent to: 

* lean2AP's  last clause does not change the tableau, but only its internal representation. 
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There is no a-  or/3-formula in the tableau that the according rule has not been 
applied to. 

Using the notion of fully expanding sequence, one can formulate the well- 
known completeness theorem for free variable semantic tableaux in the following 
way: 

FACT 4. If the first-order formula q5 that is in NNF is inconsistent, then there 
are limits p and q (p, q i> 0) such that for any sequence To , . . . ,  Tn of tableaux 
that begins with the initial tableau To = {{qS}} and that is a fully expanding 
sequence w.r.t, p and q, there is a substitution ~r such that each branch of the 
tableau Tna is closed. 

That is, there are (i) literals li and li on each branch/3 ~ (1 ~< i ~< m) of Tn, 
and (ii) substitutions #i that are more general than cr such that li#i and [#i are 
complementary. 

The tableau sequences computed by [eanTAp are not fully expanding, because 

leanS/AP closes branches immediately that contain complementary literals. How- 

ever, we can achieve this with a variant [eanTAp ' of the program that is identical 

to leanTAP except that (i) the fourth clause, which closes branches, is omitted; 
and (ii) there is an additional clause 

prove (Fml, UnExp, Lit s .... ) :- 

write(['The branch consisting of ', Fml, UnExp, Lits, 

' is part of the fully expanded tableau']). 

at the end of leanTAP '. This last clause is needed, because we do not want the 
construction of the expansion sequence to fail when a branch is fully expand- 
ed. 

Now, if Fml is bound to the inconsistent formula ¢ in NNF, garLim is chosen 

high enough, and leanTAp ' is started by the goal prove ( F m l ,  [] , [] , [] , V a r L i m ) ,  

then it constructs a fully expanding sequence T~,..., T~, w.r.t, arbitrary limits 
p, q/> 0, in particular w.r.t, the limits that exist according to Fact 4. Therefore, 
the tableau T}~, is closed (as described in Fact 4) if only VarLim is high enough. 
The proof of this can be based on the following arguments (that have to be 
validated): 

- leanT4P ' neither applies substitutions nor closes and removes branches 
(Definition 6, Cond. l), 

- the a- and the/3-rule are applied as often as possible (Definition 6, Cond. 2), 
- the list UnExp  implements a priority queue. Therefore, the "/-rule is applied 

arbitrarily often to each -,/-formula, if only VarLim is high enough (Defini- 
tion 6, Cond. 3), 

- the computation of tableau branches and tableaux terminates, since with each 
step either the formulae on the branch become less complex, the length of 
FreeV increases, or the number of formulae in UnExp decreases. 
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It remains to be proven that the original leanTAp constructs a closed tableau 
as well and, in addition, actually closes the branches. To do this, we change - in 

two steps - the fully expanding sequence T~,. . . ,  T~, constructed by leanTAp ', 

such that the resulting sequence is constructed by the original leanTAp and ends 
with the empty tableau: 

First, all expansions of branches are removed from the sequence that already 

contain the pair li, [i of closing literals (since leanTAp does not expand such 
branches). It is easy to check that the last tableau in the resulting sequence is 
closed in the same way as T~,, using the same literals and substitutions. 

In a second step, substitution and closure rule applications are inserted into 
the sequence. As soon as closing literals li, [i occur on a branch B E T/~, the 
substitution #i is applied to T~, and the closed branch/3ffi is removed by using 
the closure rule. 

Obviously, the resulting tableau sequence To , . . . ,  Tn (n ~< n I) ends with the 
empty tableau T~ = 0. By induction on i one proves that after a finite number 

of the original leangAP's computation steps (and possibly after backtracking, if 
there are choice points), the prove goals exactly represent the tableau Ti. For 

i = n this immediately implies that leangA/:' derives the empty tableau, that is, 
terminates with success.* 

For the induction proof, one has to validate that applying closing substitutions 
and deleting closed branches does not affect the expansion of the rest of the 
tableau, i.e., of those branches that have not been closed yet. The order in which 
formulae are chosen for expansion remains the same. 

8. Conclusion and Outlook 

We showed how a first-order calculus based on free-variable semantic tableaux 
can be efficiently implemented in Prolog with minimal means. The proposed 
implementation is surprisingly efficient, especially if universal formulae are taken 
into account. 

One could regard leanTA/:' as a Prolog hack. However, we think it demon- 
strates more than tricky use of Prolog: it shows that semantic tableaux can be effi- 
ciently implemented with little effort. Among other benefits, this feature makes 

lean2AP ideal for classroom use. 
Furthermore, the philosophy of "lean theorem proving" is interesting. We 

showed that it is possible to reach considerable performance by using extreme- 
ly compact (and efficient) code instead of elaborate heuristics. One should not 
confuse "lean" with "simple": each line of a "lean" prover has to be coded with 
a lot of careful consideration. 

* There may be other possibilities to construct an empty (closed) tableau; in that case it is not 
obvious which one leanTAp will find first. 
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"lean" provers 

provers 

Problem Complexity 

Fig. 2. Lean vs. large deduction systems. 

It is interesting to consider the principle of lean deduction w.r.t, applications. 
Deduction systems like ours have their limits, in that many problems are solv- 
able with complex and sophisticated theorem provers but not with an approach 

like leanTAP. However, when applying deduction in practice, this might not be 
relevant at all: Figure 2 oversimplifies but shows the point; the x-axis gives a 
virtual value of the complexity of a problem, and the y-axis shows the run time 
required for finding a solution. The two graphs give the performance of lean and 
of large deduction systems. 

We are better off with a system like leanTAp below a certain degree of prob- 

lem complexity: leanTAP is compact, easier to adapt to an application, and also 
faster because it has less overhead than a huge system. Between a break-even 
point, where sophisticated systems become faster, and the point where small 
systems fail, it is at least not immediately clear which approach to favor: adapt- 
ability can still be a good argument for lean deduction. For really hard problems, 
a sophisticated deduction system is the only choice. This last area, however, 
could indeed be neglectable, depending on the requirements of an application: 
if little time can be allowed, we cannot treat hard problems by deduction at all. 
Thus, lean deduction can be superior in all cases - depending on the concrete 
application*. 

* Researchers in automated reasoning often regret/complain that there are sparse applications 
of the techniques they develop. One reason might be that implementation-oriented research favors 
huge and highly complex systems. It is hard to see how to apply these besides using them as a 
black box. Adaptability, however, is an important criterion for applying techniques; systems such 
as lean2-AP do give a good starting point here. 
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There is still room for improvement without sacrificing simplicity and/or ele- 
gance of our approach. We can, for instance, use an additional preprocessing step 
that translates a negation normal form into a graphical representation of a fully 
expanded tableau (see (Posegga, 1993a) for details). This can be implemented 
equivalently simply and requires only linear effort at run time. The prover itself 
then becomes smaller, since no compound formulae are present any more and all 
branches are already fully developed. The speedup will not be dramatic, but it 
will be considerable. Furthermore, we can implement the compilation principle 
described by Posegga (1993a): the idea is to translate tableau graphs into Prolog 
clauses that carry out the proof search at runtime. Compared with "conventional" 
implementations of tableau-based systems, this gains about one order of magni- 
tude of speed. It will be subject to future research to apply this principle in the 
spirit of lean deduction. 

Appendix 

A Brief Historical Survey of Tableau-based Provers 

Compared with resolution, few attempts have been made in the past to implement 
tableau-based calculi; thus we can take the risk of presenting a brief survey 
(which, nevertheless, is likely to be incomplete).* 

The first tableau-based theorem prover was developed in the late fifties by 
Dag Prawitz, Hfikan Prawitz, and Neri Voghera (Prawitz et al., 1960). It ran on a 
computer named Facit EDB (manufactured by AB Advidabergs Industrier). The 
tableau calculus implemented was already quite similar to today's versions; it 
did not, however, use free variables. This prover was perhaps the earliest for 
first-order logic at all.** 

At about the same time, Hao Wang implemented a prover for first-order logic 
that was based on a sequent calculus similar to semantic tableaux (Wang, 1960). 
The program ran on IBM 704 computers. 

Ewa Oflowska implemented a calculus that can be seen as tableau-based in 
1967 on a GIER digital computer*. The calculus was based on deriving if-then- 
else normal forms rather than disjunctive normal forms. Only the propositional 
part of the calculus was implemented. 

We are not aware of any implementation-oriented research around tableaux 
in the seventies; there have been a number of theoretic contributions to tableau 
calculi but nothing seems to have been implemented. 

In the eighties, the research lab of IBM in Heidelberg, Germany, was a major 
driving force of tableau-based deduction. Wolfgang Sch~Snfeld developed a prover 

* It is restricted to approaches for formulae of first-order logic in non-clausal form. 
** Actually, Prawitz et al. implemented a calculus for first-order logic without function symbols; 

that, however, has the same expressiveness as full first-order logic. 
The GIER (Geodaetisk Instituts Elektroniske Regnemaskine) was produced by Regnecentralen 

in Copenhagen (Denmark) in the early sixties. 
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within a project on legal reasoning (Sch6nfeld, 1985). It was based on free- 
variable semantic tableaux and used unification for closing branches. A few 
years later Peter Schmitt developed the THOT theorem prover at IBM (Schmitt, 
1987); this was also an implementation of free-variable tableaux and part of 
a project aiming at natural language understanding. Both implementations have 
been carried out in Prolog. Based on experiences with the THOT theorem prover, 

the development of the 37@ system started around 1990 at Karlsmhe University 
(Beckert et al., 1992); the project was funded by IBM Germany and carried 

out by Peter Schmitt and Reiner Hfihnle. The 3T4p prover was again written in 
Prolog and implemented a calculus for free-variable tableaux, both for classical 
first-order logic with equality as well as for multi-valued logics. This program 

can be seen as the direct ancestor of leanTAP. 
Besides the line of research outlined above there was also other work on 

tableau-based deduction in the eighties: Oppacher and Suen published their well- 
known paper on the HARP theorem prover in 1988 (Oppacher and Suen, 1988). 
This prover was implemented in LISP and is probably the best-known instance of 
a tableau-based deduction system. Another implementation, the Helsinki Logic 
Machine (HLM), is a Prolog program that actually implements about 60 different 
calculi, among them semantic tableaux for classical first-order logic, nonmono- 
tonic logic, dynamic logic, and autoepistemic logic. Approximately at the same 
time a tableau-based prover was implemented at Karlsmhe University by Thomas 
Kfiufl (K~iufl and Zabel, 1990); the system, called "Tatzelwurm," implemented 
classical first-order logic with equality but did not use a calculus based on free 
variables. Its main purpose was to be used as an inference engine in a program 
verification system. 

Since 1990, the interest in tableau-based deduction continuously increased, 
and we will not try to continue our survey beyond this date. From 1992 onwards, 
the activities of the international tableau community are quite well document- 
ed, as annual workshops were started; we refer the interested reader to the 
workshop proceedings (Fronhrfer et al., 1992; Basin et al., 1993; Broda et al., 
1994).* 
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