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The Loading Problem for a Linear Viscoelastic Earth: I. Compressible, 
Non-Gravitating Models 

By DAVID L. CAMPBELL l) 

Summary - A Legendre mode solution is given for deformation of a solid isotropic linear visco- 
elastic sphere under applied surface stresses. Under the simplifying assumptions that the sphere is 
elastic in compression and standard linear solid in shear two relaxation times appear; one the creep 
relaxation time of the material, the other depending on mode. It is shown formally how to reduce the 
case of a layered viscoelastic sphere to an equivalent unlayered one. 

1. Introduction 

In order to elucidate various geodynamical processes, the geodynamicist often 

resorts to various simple earth models. Using such models, rough calculations may be 
made of the deformation due to a particular geodynamical process. Processes of interest 
in this connection are: a) decay of the non-hydrostatic bulge, b) isostatic adjustments 
due to loads of various time-histories and areal extents, c) decay of the Chandler wobble, 
d) solid-earth tidal deformation and e) eigenvibrations following a large earthquake. 

Spherical earth models (as opposed to flat layered ones) are clearly needed to analyze 
processes a) through e). We expect the earth to be affected to considerable depth by these 
long-period processes; on the other hand there should be operative in these large-scale 
processes a smoothing effect which averages the physical properties of any given depth 

with those nearby. Since delayed response effects are an important part of such geo- 
dynamical phenomena, the model must show these. 

We shall be interested in constructing spherical earth models to analyze phenomena 
a) and b). As a constraint, the models must show at least the general features of c), d), 
and e). The observed time-delayed responses will be accommodated by taking the models 
to be isotropic and linear viscoelastic. For  simplicity, the model earth will be either 
uniform (unlayered) or constructed of a small number of concentric viscoelastic shells. 
We shall call such a model a 'net earth', under the supposition (and hope !) that each 
shell averages the net viscoelastic properties of its corresponding region of the real earth. 

Problems a) and b) both involve earth loads of various extents and time-histories 
on the earth's surface. Analysis using net-earth models thus calls for access to certain 
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results involving loads on uniform and layered viscoelastic spheres. In principle, such 
results can be derived using the so-called 'correspondence principle' (GuRTIN and 
STERNBERa [3]) from solutions developed for elastic spheres (e.g. SLICHTER and CAPUTO 
[6], LONG,AN [5], ALTERMAN et al. [1 ]). In practice, however, the work only begins there, 
especially if one wishes to develop the results for viscoelastic constitutive rules of any 
more complexity than simple Maxwell or Voigt ones. In this paper, therefore, we show 
our results in some detail, listing in full all equations which are apt to be of use to the 
geodynamicist. 

This is the first of three papers on the viscoelastic loading problem. In this paper we 
display the machinery needed to treat loaded compressible but non-gravitating visco- 
elastic spheres. In the second paper the loaded self-gravitating but incompressible sphere 
will be treated. The third paper will compare the two approaches, and will show that the 
general prbblem of compressible and self-gravitating spheres is much harder to solve 
than either of the two more limited problems. 

2. Equation of  motion 

The general equation of motion for an isotropic linear viscoelastic body under quasi- 
static deformation is given by GtJRTIN and STERNBERC [3] as 

A 
V 2 u * dG1 + V(V.u) * d ~ + 2F = 0 (la) 

where 

A = G1 + 2(72. (lb) 

In this equation G1 and G2 are time functions characteristic of the material giving its 
stress relaxation after unit steps in shear and compressive strain, respectively. The nota- 
tion A * dB stands for the Stieltjes convolution 

A �9 aB = f A(t - r) dB(~) a~. (2) 
& 

- -o0 

The displacement vector is u and the body force F. Note that these equations reduce to 
the familiar elastostatic case by making the substitutions 

* dG1 +- 2p (3a) 

* dG2 +- 3k (3b) 

where/~ is rigidity and k incompressibility. 
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In the present paper, we shall suppose F = 0. In spherical polar coordinates (r, 0, q~) 

and assuming axial symmetry (O/Ocp = 0), the field equation (1) then becomes 

1 0 

r 2 sin 0 00 

OA 
(sin 0 2rw) * dG1 - ~r * d Gt + = 0 (4a) 

r Or (2rw) * dG1 + r 0-0 * d G1 + = 0 (4b) 

where 

1 O 2 1 0 (sin0u0) (4c) 
A = ~3 Or (r u,) + r sin~ O0 

and 

0 0 
2rw = -~r (ruo) - ~-~ u,. (4d) 

Following the well-known elastostatic analogue of this problem (SLICHTER and 
CAI'UTO [6]), we separate variables by 

ur = U ( r ,  t)&(cos 0) (Sa) 

•Pn 
Uo = V(r, t) ~ (cos 0) (5b) 

where P,  (cos 0) is the Legendre polynomial of order n. The result is the set of four equa- 
tions in four unknowns, U, V, W, and X: 

n ( n + l ) ~ * d G a + ~ r  * d  G I +  = 0  (6a) 

- - * d G ~ + X * d  G ~ +  = 0  (6b) 
ar 

OU 2U V 
- -  - n ( n  + 1) - -  (6c)  X =  Or-r + r r 

W OV V - U  
~- - -  (6d)  

r Or r 

These four unknowns are functions of  time t, radius r, and Legendre order n, but are 
independent of polar angle 0. 
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3. General solution 

Solving equations (6), we have 

where 

and 

U =  A i r  "+1 + A2r-"  + A3r "-1 + A4r -"-2 (7a) 

1 1 
V =  A1 * dMr  "+1 + Az * dNr-"  + - A 3 r  "-1 - - -  A4r  -"-2 (7b) 

n n + l  

X = A ~  * d[(n+ 3 ) h - n ( n +  1)M]r"  

+ A2 * d[ ( -n  + 2)h - n(n + l ) N ] r  -"-~ (7c) 

n ( n + l ) M = ( n + 3 ) h ( t )  + 6(2n + 3)G1 * d [ ( n - 6 )  G~+2nG2] -~ (8a) 

- n ( n  + 1)N = (n - 2)h(t) - 6(2n - 1) G1 * d[(n + 7)Gx + 2(n + 1)G2] -1. (8b) 

Notice that for the Legendre mode n = 6 the function M takes a particularly simple 

form, with the second term involving G1 * dGiL  

The solution for W involves a complicated function times r -"  plus another times 

r "+1. Since we shall not need them in this paper, we do not bother to write these compli- 

cated functions out explicitly. 
In the above equations, h(t) is the Heaviside unit step, 

1 t > 0  
h(t) = (9) 

0 t < 0 .  

The inverse ( )-1 is defined in such a way that 

A �9 dA -1 = h (10a) 

for any function A(t).  From a computational standpoint, inverse functions are found 

using the property that 

~-1=  _t ~ (10b) 
pZ 

where the hat denotes Laplace transform of variable p. Thus some sort of Laplace and 
inverse Laplace transform scheme proves useful for calculation of functions like M and 

N. 
Note that the functions Ai in equation (7) depend on time t and Legendre order n, 

but not on radius r. These functions are determined by the boundary conditions of  
the problem at hand. Clearly, this solution is the general one, appropriate for a spherical 
shell. I f  the sphere is solid all the way to the center, finiteness conditions there will 
require that A2 = A, = 0. Similarly Ax = A3 = 0 for the problem of a spherical hole in an 

infinite medium. 
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4. Stresses  

Radial and tangential stresses ~',r and ~,o are given by 

OU r 
cr,, = �89 * d(G2 - Ga) + ~ * dG1 (lla) 

It will prove useful to bring the present notation in line with that of ALTERMAN et al. 

[1 ]. To that end we define the following functions of r, n, and t: 

It is easily verified that 

Yl = U (12a) 

OU 
y2 = }X �9 d(a2 - a l )  + ~ -  * dG1 

y3 = V 

Y4 = 2\ '-~r + r * dG1. (12d) 

ur(r, O, t, n) = yl (r ,  t, n) P.(cos 0) (13a) 

0P. 
uo(r, 0, t, n) = y3(r, t, n) ~ -  (cos 0) (13b) 

a , ( r ,  O, t, n) = y2(r, t, n) P,(cos 0) (13c) 

0P, 
aro(r, O, t, n) = y , (r ,  t, n) - ~  (cos 0). (13d) 

Thus the functions Yi, where i = 1, 2, 3, 4, represent the r-dependent parts of displace- 
ment and stress in axially symmetric spherical polar coordinates. Note that these 
' A J P  variables', as we shall call the Yi, are precisely those which are continuous at a 
welded contact between two concentric spherical shells. 

Substituting (7) into (12), we see that 

y 2 = r " A l * d H l + r - " - l A 2 * d H 2 + r " - 2 A 3 * d H 3 + r - " - 3 A 4 * d H  4 (14a) 

y , = r " A l * d K ~ + r - " - l A 2 * d K 2 + r " - 2 A 3 * d K 3 + r - " - 3 A 4 * d K ~  (14b) 

(12b) 

(12c) 

= + * dG1. ( l ib)  
a,o ~ O0 r Or ] 
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//1 = (n + 1) G1 - 2(2n + 3) G1 * d[(n - 6) G1 + 2nG2] -~ * d[G2 - G1] (15a) 

H2 = -nG~ - 2(2n - 1)G~ * d[(n + 7)Gx + 2(n + 1)G2] -~ �9 d[G2 - GI] (15b) 

( n +  l ) K l = ( n +  2)G~ + 3(2n+ 3)G~ *dG~ * d [ ( n - 6 ) G l  + 2nG2] -x (15c) 

nK2 = (n - 1) G~ - 3(2n - 1) G~ * dG~ * d[(n + 7) G1 + 2(n + 1) G2] -~ (15d) 

H a = ( n - 1 ) G 1  H 4 = - ( n + 2 ) G a  (15e, f) 

n K a = ( n - 1 ) G ~  ( n + l ) K 4 = ( n + Z ) G ~ .  (15g, h) 

Note  that  N may be derived from M , / / 2  f rom Hi,  K2 f r o m / ( 1 , / / 4  from Ha, and / (4  

from Ka by substituting - n  - 1 for  n. 
The solution given in equations (7) and (14) is sufficient in case stress relaxation 

functions Gl(t)  and G2(t) are known for the material in question. In certain situations, 

however, it may be more convenient to use creep curves J l ( t )  and J2(t) instead. Analytic- 
ally, it can be shown (GuRa'IN and STERNBERC [3]) that 

J~(t) = G ~ ( t )  (16a) 

and 

J2(t) = G ~ ( t )  (16b) 

where the inverse is taken in the convolution sense of  (10a). Physically, J~(t) represents 

shear creep upon application of  a Heaviside unit shear stress, and J2(t) represents dilita- 
tional creep upon application of  a Heaviside unit hydrostatic stress. 

In terms of  creep functions J1 and "/2 we have that 

( n +  l ) M = [ ( n + 9 ) J E +  2 ( n +  3 ) J ~ ] * d [ 2 n J ~ + ( n - 6 ) J 2 ]  -1 (17a) 

- n N = [ ( n - 8 ) J 2 + 2 ( n - 2 ) J ~ ] * d [ 2 ( n + l ) J ~ + ( n + 7 ) J 2 ]  -~ (17b) 

whence 

(n - 6)/ /1 = n(n - 1)J i  -1 - 6(2n + 3)(n - 2) [(n - 6)J2 + 2n J1] -1 (18a) 

( n + 7 ) H z = - ( n + l ) ( n + 2 ) J ; a - 6 ( Z n - 1 ) ( n + 3 ) [ ( n +  7 ) J 2 + 2 ( n + l ) J ~ ]  -1 (lSb) 

(n + 1)(n - 6)K1 = (n - 1)(n + 3)Si -1 - 6n(2n + 3) [(n - 6)J2 + 2nJ1] -1 (18c) 

n(n + 7)K2 = (n 2 - 4 ) J i  -1 + 6(n + 1)(2n - 1) [(n + 7)Jz + 2(n + 1)J~] -~. (18d) 

In deriving equations (17) and (18), we have used the following properties of  Stieltjes 
convolutions:  

A * d B  * d (aA + bB) -~ = (bA -x + aB-~)  -a (19a) 

and 

1 b 
A �9 dB -1 * d(aA + bB) -x = - B -1 - - (aA + bB) -~. (19b) 

a a 
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Here A and B represent arbitrary time functions, while a and b represent scalars (inde- 

pendent of time). These properties are readily derived (FtJNG [2], p. 414) from the group 

property of the Stieltjes operator '*d'.  
For the mode n = 6 equations (18a) and (18c) do not hold since in their derivation 

we have divided by a quantity which vanishes for that mode. Reverting to equations 
(15a) and (15c) we see that for this case 

5 j - 1  nlIn=6 = 9 J l X  + -ff 1 * d J i  x * dJ i  (20a) 

Kiln=6 = 8J i -1  q_ 15 r - t ,  d j ; t ,  dJz .  (20b) 28 'Sl 

Example:  Solid sphere surface loaded by P,  stress 

As a simple example using the above results we calculate the deformation of a solid 
linear viscoelastic sphere loaded at its surface by a stress system consisting of a single 

Legendre mode. Any given axial stress system can, of course, be built up by superposing 

such modes in the appropriate fashion, and, since the model is linear, the total deforma- 

tion due to it will be the corresponding superposition of deformation modes. We will 

treat the cases of pure radial and pure shear stresses separately, since by the same reason- 

ing the two results may be superposed to give the general case. 
The finiteness condition at the center of the solid sphere gives 

A2 = A4 = 0. (21) 

We first consider the case of pure radial stress. The boundary conditions at the sur- 
face of the sphere r = a are approximately 

at, l~ =/~. P.(COS 0) 

GroL. = 0 .  

(22a) 

(22b) 

(These conditions are approximate since as deformation proceeds, the sphere's surface 
departs from the surface r = a where the stress system (22) is taken to apply. Thus we are 
neglecting ur (r = a) in comparison with a. The assumption seems in line, given that the 
formulation of equations (1) has used an infinitesimal strain measure only.) 

Using (21) and (22) in (14), we have 

whence 

[ l , - -a"A1  * d i l l  + a"-ZA3 * dH3 

0 -- a"Ax * dK1 + a"-2A3 * dK3 

(23a) 

(23b) 

A1 = a - ' f t ,  * d[H1 - K1 * d K f  1 * dH3] -1 (24a) 

A3 = -a - "+2  fl, * d[H1 - K1 * dK~ 1 * dH3] -1 * dK1 * dK~ 1. (24b) 
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For the case of pure tangential stress we take the boundary conditions at the surface 
of the sphere to be 

a=l,, = 0 (25a) 

Then 

whence 

aP.(cos 0) 
O'.ola = fl" (25b) 

O0 

0 = a"A~_ * d i l l  + a " - 2 A 6  * dH3  

f l ~ , = a " A ~  * d K ~  + a " - Z A ~  * d K 3  

(26a) 

(26b) 

a~ = a-" f l~  * d [ K l  - H1 * d H ~  1 * dK3] -1 (27a) 

A~ = a -"+2 fl~ * d[K~ - H1 * d H ~  ~ * dK3] -~ * d H i  * d H 3 L  (27b) 

The primes here indicate pure tangential loading. Note the interchange of H's  and K's 

between equations (24) and (27). 
The above solutions include the possibility that ft, or fl~ may be a function of time. 

The displacement of the sphere's surface, r = a, under a P, radial stress, for example, 
is given by substitution of (24) into (8) 

U .  = a f t ,  * d[H~ - Ka * d K ~  ~ * d e 3 ]  -~ * d[h - K~ * d K ~  ~] (28a) 

1 V .  = af t ,  * d[Ha - K I  * d K ~  ~ * dH3] -~ * d m - n Ka * d K ~  ~ . (28b) 

Thus even in this simple problem the loading time function, ft,, convolves with some 
rather complicated time functions in order to give the time history of surface deforma- 

tion. 
The results of equation (28) are listed formally in terms of Hi and Ki for reasons to 

appear later. For the problem at hand, we see that by (15) 

K ~  ~ * dH3  = n h ( t )  (29a) 

H ~  1 * dK3 = h ( t ) / n .  (29b) 

Using (29), (18) and (19) in (24) we find that 

(n+l) 
A~ - - -  a - "  ~ .  * dY~ * d L  -1 * d[2nJa + (n - 6)d2] (30a) 

2 

n a - " + 2  

A3 - - -  f t .  * dJ~ * d L  -~ * d[2n(n  + 2)J1 + (n + 3) (n - 1)J2] (30b) 
2 ( n -  1) 
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where 

L = (2n z + 4n  + 3)J1 + n(n  - 1)J2 (30c) 

a similar result holds for A[ and A;. Specifically 

, n(n + 1) 
A1 = ~ a-h1~ ' * dJa * a L - '  �9 [2nJ~ + (n - 6)J2] (30d) 

2 

t 
m 3 ~  - -  

n(n  + 1) 

2(n-I) 
a -'+2 ,8,~ * d J l  * d L  -~ * d[2(n  z - n - 3)J1 + n(n - 1)J2]. (30e) 

The above solution fails for the Legendre mode n = 1 because this mode represents the 

stress system which gives the sphere a rigid translation without deformation. 

We remark that the solution for a P, stress applied to the surface of a spherical hole 

in an infinite viscoelastic medium is obtained by substituting - n  - 1 for n in equations 

(30). The mode n -- 1 remains valid for this latter problem. 

5. P o s s i b l e  s i m p l i f y i n g  a s s u m p t i o n s  

In some situations the effect of  shear creep may be of much more interest than that of  

compressional creep. The impenetrability of  matter, for example, assures that any 

possible J2(t) functions must be bounded, often within limits which can be determined 
empirically. Meanwhile the J l ( t )  curves may be unbounded, or at any rate dominant 

over J2(t) with respect to their total variations. In such situations we may be justified 

in supposing our material to be essentially elastic in compression, but viscoelastic in 

shear. That is, in the foregoing equations we substitute 

J2( t )=  h ( t ) / 3 k  or Gz(t )= 3 k h ( t )  (31) 

where k is some equivalent elastic incompressibility. 

Under assumption (31), the equations (28) for the displacement of the surface of a 
P. normally loaded solid sphere becomes 

1 ]-1 
U ,  = a f t ,  * d J1 * d (2n 2 + 4n + 3)J1 + n(n  - 1) 

�9 d { n ( 2 n  + 1 ) J ~ / ( n  - 1) + (4n + 3)/3k} 

[ V . = 3 a , 6 , , * d J ~ * d  ( 2 n 2 + 4 n + 3 ) J ~ + n ( n - 1 ) ~ - s  * d { ( J ~ / ( n - 1 ) - J 2 } .  

(32a) 

(32b) 
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As a final simplifying assumption we suppose the material's viscoelastic shear be- 

havior is that of a 'standard linear solid'. Such a solid (FUNG [2], p. 23) is characterized 

by creep and stress relaxation curves of  the following simple exponential type : 

J~(t)=21~[1--(1--~a)e-t/~G ] . (33b) 

The standard linear solid has the particular virtue that both J~ and Ji  -~ take an ele- 

mentary form, a characteristic by no means true of  certain other functions sometimes 

used to fit empirical creep and stress-relaxation data. It  has only three adjustable para- 

meters, the 'elastic rigidity' /~, and the creep and Stress-relaxation time constants 

zj and ~a. Various physical restrictions limit the ratio ~G/zj to the range between zero 

and unity. 

In general, using (lOb) one may show that the inverse of  a given function 

is the function 

where 

J = a + b e -~/~ (34a) 

(a + b) z 

a 

It  is also true that given two functions 

A = al + a2 e -t/~~ 

B = bl  + b2 e -t/~b 

their convolution is given by 

A * dB = al bl + (a2 b l  + - -  
a2b2%) ( (Zo-- Z.) e-t/~" + al b2 + - -  

if z. # zb 

if r ,  = Tb = z. 

a2bz'r~ t (z. - zb) ] e-t/'b 

=albl+(alb2+a2bl+azb2-azb2~)e -~/~ 

(34c) 

(35a) 

(35b) 

(35c) 

(35d) 
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where 

Using (33), (34), (35) and (19) on equations (32), we arrive at the following result: 

~ I ( b2 U , : - ~ f l . * d  a lb l  + azbl + azb2% ] e - ' / ~ " + ( a l b 2 +  a2Z" ]e-r/~b] (36a) 

a c 2  Tc I - - - -  
V , = - ~ f l , * d  a l c l +  a 2 c 2 + ( % _ % ) j e - ' / ~ " +  aiCz-t-(Ta .Cc) ] ] 

at = 3k/[3k(2n z + 4n + 3) + 2#n(n - 1)] 

az = 3k'cJ[3k(2n 2 + 4n + 3) z~ + 2#n(n - 1)zs] 

bl = n(2n + 1)/(n - 1)# + (4n + 3)/3k 

b2 = n(2n + 1)(zs /zG-  1 ) / (n -  1)2# 

cl = 1 / ( n -  1 ) 2 # -  1/3k 

cz = (rs/zo - 1)/(n - I) 2# 

3k(2n 2 + 4n + 3) z~ + 2#n(n - 1) "cj 
C a = : T n 

3k(2n 2 + 4n + 3) + 2 # n ( n  - 1) 

T b = T c ~ T j .  

(36c) 

(36d) 

(36e) 

(36f) 

(36g) 

(36h) 

(36i) 

(36j) 

An interesting feature of this solution is that two characteristic time constants occur. 

The first, as expected, is z j, the time constant of  the material creep curve. The second, 
% is seen to depend on mode number n. Thus the general loading program, involving 
all Legendre orders n, will generate an infinite number of creep time constants z,. 
As can be seen from Table 1, the time constants so generated are a slowly monotonically 
increasing function of n and are larger than but roughly of the order of r~ in magnitude. 

In point of fact, of  course, the time constants of the actual deformation are those gen- 
erated by convolving fin(t) with e- t/,j and e -t/*.. The deformation itself has time constants 
�9 j and z, only if some linear term of  ft,(t) goes as h(t). We see that according to (35d) a 
'resonance' is possible with (exponentially damped) deformation linearly proportional 

to time whenfln(t) itself goes as e -t/'J or e -t/~.. The reader is reminded that this result is 
approximate, however, since the boundary conditions we have used do not follow the 
deforming surface, but are taken to hold only at r = a. 

6. Formulation o f  solution for  layered sphere 

We now wish to treat the deformation under a given program of surface stresses of a 
layered isotropic linear viscoelastic sphere. Such a sphere is assumed to be built up of 
concentric isotropic linear viscoelastic shells, welded at their interfaces. Each shell has 
its own characteristic compliance functions J~(t) and J2(t), presumably differing from 
those of neighboring shells. 
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Table 1 

rn/vs versus n. The following values of vn/zs 
were calculated from equation (36i) assuming 
3k/21z = 5/2 (i.e., that Poisson's ratio v = 1/4) 

n zG/rj = 0.5 0.l 0.01 

0 0.500 0.100 0.010 
I 0.500 0.100 0.010 
2 0.520 0.136 0.050 
3 0.534 0.161 0.077 
4 0.543 0.177 0.095 
5 0.549 0.189 0.108 
6 0.554 0.197 0.117 
8 0.560 0.209 0.130 

10 0.565 0.216 0.138 
12 0.567 0.221 0.143 
15 0.570 0.227 0.149 
20 0.573 0.232 0.155 
25 0.575 0.236 0.159 
30 0.577 0.238 0.162 
40 0.578 0.241 0.165 
50 0.579 0.243 0.167 
75 0.581 0.245 0.170 

100 0.581 0.246 0.171 
150 0.582 0.248 0.172 
200 0.582 0.248 0.173 
500 0.583 0.249 0.174 

1000 0.583 0.250 0.175 

(Pageoph, 

We re-write the general solution (7) and (14) in the following subscripted form:  

y,(r) = T~j(r) * dAj (i , j  = 1,2, 3, 4) (37a) 

where 

I rn+l r-n rn-1 r-n-2 "~ 

Hlr~ H2r-~-I  H3rn-21 H4r-n-31 

Tii = ~ M r  "+1 Nr-"  _ : - 1  _ ~ r- . -2  

I n n + l  

1 1 
| K , r "  K2r -n-1 - H 3 r  "-2 - - - H 4  r-"-3 \ - -  

n n + l  

(37b) 

In  (37) the variables Yl, T~s, K~, H~, M, N, and Aj are unders tood to depend on time t 

and Legendre order n, but  the dependence on radius r is written out  explicitly. 

Note that the At are independent  of r. In  fact we may write 

A~ = T~l(r~) �9 dy,(r2) (38) 



Vol. 112, 1974) The Loading Problem for a Linear Viscoelastic Earth: I 1009 

where r2 is some conveniently chosen value of radius r, and the 'inverse' of Tkt is taken 

in both the matrix algebra and the convolution sense. In other words, we define T~ ~ by 

T;l~(r2) * dTu(r2 ) = h(t)6kj (39) 

where ~kj is the Kronecker delta. Under this definition (38) is seen to be the result of 
operating on (37a) with T~-~ 1 * d. 

Referring (37a) to radius r 1 and eliminating Ak by (38) gives 

y,(rO = T~(rl) * dT~l(r2) * dy~(rz). (40) 

Thus the 'AJP vector' y~ at level r = rl may be derived from that at leyel r = r 2 by con- 
volving with the matrix 

Hil(rl, rz)=Tik(rO * dT~l(r2). (41) 

We now let rl be the coordinate of the top of shell n u m b e r / an d  rz be the coordinate 
of its bottom. The matrix Hu then represents a layer matrix of the HASKELL [4] type, 
translating the AJP vector through the layer. But, by the comment after equations (13), 
the AJP vector is continuous at a welded boundary. Hence an iteration scheme is estab- 
lished which reduces the layered sphere to the unlayered case we have already considered. 

To illustrate, consider a two-layered sphere having outer radius r = a and an inner 
welded interface at r = b. By (40) 

y,(a) = H,,,(a, b) * dym(b ). (42) 

Substituting for y,,(b) by (37) we have 

yi(a) = l l , , (a ,  b) * dTmi(b) * dAj (43) 

where Him (a, b) is evaluated with respect to the parameters of the outer shell (layer 1) 
and T,,,j(b) with respect to those of the inner sphere (layer 2). In case the two layers have 
identical parameters (no interface), (43) clearly reverts to (37). Otherwise, (43) is the 
form: 

yi(a) = Su(a, b) * dAj (44a) 

where 

Su(a, b) = Ho, (a, b) * dT,,j(h). (44b) 

For the inner core (21) continues to hold, so that solution (44) is left with only two free 

constants, A 1 and A3; these are determined as usual by the surface boundary conditions. 
The composite layer matrix S u has thus replaced the matrix T u of the solid sphere 

example, and equations (24) through (27) for A~ and A' continue to hold. It is only 
necessary to make the substitutions: 

Hi +- Szi a ~-"-1 (45a) 

K~ ~ S4i a -" - l .  (45b) 
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Equations (28), for example, are then replaced by:  

U. = ft.  �9 d[Slx  * d S ,  a - S la  * dS4,]  * diS21 * d S ,  a - S2a * dS41] -~ (46a) 

V .  = ft .  * d[Sa~ * d S ,  a - $33 * dS41] * d[S21 * d S ,  a - S2a * dS,~] -~ (46b) 

where the inverse sign now indicates Stietjes convolut ion inverse only. 

The generalization to an N-layered sphere is apparent. We comment  that  the 

deformation under prescribed surface stresses o f  a multiply cased spherical hole in an 

infinite viscoelastic medium is given by substituting - n  - 1 for n in the above solution. 
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