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Fourier Transforms of Magnetic Anomalies of 
Two-Dimensional Bodies 

By S. SENGUPTA 1) 

Summary - Fourier transforms of theoretical magnetic anomalies of two-dimensional bodies 
(vertical fault and horizontal cylinder of infinite length) are computed. In both cases it is shown that 
for a particular body the amplitude spectra of horizontal and vertical anomalies are the same and the 
phase spectra differ by n/2. Different parameters like depth and susceptibility contrast can be calculated 
from the amplitude spectrum. 

1. Introduction 

The present paper deals with the Fourier transform of theoretical anomalies of 

two-dimensional magnetic bodies. The magnetic anomaly of a regularly shaped body 
is a function of the direction of magnetization, shape and size of the body and its 
susceptibility contrast with the surrounding material. The Fourier transform of a 
magnetic anomaly, therefore, contains information regarding all these parameters. 

In recent years extensive work has been done regarding the application of spectral 

analysis in gravity and magnetic interpretation (DEAN [3], ODEGARD and BERG [7]). 
ODEGARD and BERG [7] have applied Fourier integration for the interpretation of 

gravity anomalies due to regular bodies. 

2. Method  o f  analysis 

The theoretical magnetic anomalies due to a horizontal cylinder of infinite length 
and a vertical fault are noted from HEILAND [5]. In both cases the plane of observation 
is perpendicular to the strike direction. In the case of a horizontal cylinder the axis of 
the cylinder is perpendicular to the plane of magnetization. The strike of the fault 
makes an angle ~ with the magnetic north through the magnetic west. Exact Fourier 
sine and cosine transforms of these anomalies are calculated. The nature of the phase 
and amplitude spectra are discussed and different parameters like depth of burial and 
throw of fault are calculated from the amplitude spectra. 
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i) Horizontal  cylinder o f  infinite length 

The theoretical vertical and horizontal magnetic anomalies due to a horizontal 
cylinder of  infinite length are given as, 

2 K S  
Z =  - r 4 - [ 2 Z o x d -  Ho(x 2 - d2)] 

and 

2 K S  
H = -  r4 [ 2 H o x d +  Z o ( x  2 - d2)] 

respectively where 

Z = vertical magnetic anomaly, 

H = horizontal magnetic anomaly, 
K = susceptibility contrast, 

S = cross-sectional area of the cylinder, 

Zo = vertical component of Earth's magnetic field, 

Ho = horizontal component of Earth's magnetic field, 
x = horizontal distance of point of observation from origin, 
d = depth of the axis of the cylinder from the Earth's surface, 

r2 = x2 + d2" 

The Fourier transforms of Z and H are taken as Fz(co) and Fn(co) respectively. The 
necessary formulas for integration are given in the Appendix. 

Fz(co) = - 2 K S  4 i Z o d  d2)2 s i ncoxdx  - 2//0 c o s c o x d x [  

0 0 

= -2rcKSco(Ho + iZo)e  -'~ (1) 

In a similar way it can be shown that 

Fn(co) = - 2rrKSto(Zo - iHo) e -~ (2) 

where i = x / -1  and co is frequency in radians per unit distance. The amplitude spectrum 
for both the horizontal and vertical anomalies is given as 

IF(co)l = 2rcgsco(Zg + n ~ )  ~/2 e -~  

= 2~rKScoTe -'~a (3) 

where T is the total magnetizing field. 
The nature of  IF(co) I versus co is shown in Fig. 1 by plotting IF(co)l as coe -~'a versus co. 

[F(co)l will be maximum when co = l i d  as 

d IF(co)l 27rKScoT(1 - cod) e -'~ = 0 
d c o  
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Figure 1 
Fourier transform of vertical and horizontal magnetic anomalies over a cylinder of infinite length 

(amplitude spectrum) 

when o~ = 1/d. Let [f(~o)[ = IF(~o)l/~o, then 

In If(~o) I = lin 2 n K S T -  ~d  (4) 

A plot  of  [f(~o)] versus ~o on a semilog paper  will be a straight line with slope - d  and 
intercept 2nKST. The nature of  In [f(og)] versus ~o is shown in Fig. 2, where d and 
2rcKST are taken as unity. 
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Figure 2 
Modified amplitude spectrum [f(ro)[ versus frequency co for a horizontal cylinder 

The phase spectrum of  vertical and horizontal anomalies are related as 

~bz(r = tan -1 [Zo/Ho] = n/2 - tan -1 [Ho/Zo] = n/2 + (all(co) 

This shows that the horizontal magnetic anomaly lags the vertical anomaly by n/2. 

ii) 

(5) 

Vertical fault 
The vertical and horizontal magnetic anomalies due to a vertical fault are given as 

Z = 2K[ H~ sin ~'ln r2 - Z~ 02)] 

and 

H=2K[Hosin~.(Ol-O2)+Zoln~] 

respectively. The meaning of rl, r2, 0~ and 02 is explanied in Fig. 3. The strike of  the 

fault makes an angle ~ with the magnetic north through west, E.g. for a fault with 
strike in the north-south direction ~ = 0 and when the strike of the fault is in an east-  

west direction ~ = n/2. The Fourier transforms of Z and H are given as Fz(o~ ) and Fn(~o) 
respectively. 

[ f "~/(d+h)2+xz 
Fz(Og) = 2K 2Ho sin e In a/d 2 + x 2 cos ~ox dx 

0 

d 
- i2Zof ( tan-~x- tan- l~-~- )s inmxdx  ] 

o 

2nK 
- [e -'~ - e-~'~a+h)]. [Ho sin ~ + iZo] (6) 

( D  
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Figure 3 
Fourier transform of horizontal and vertical magnetic anomalies over a vertical fault (amplitude 

spectrum) 

In a similar way it can be shown that  

2~zK 
F~(co) . . . .  [e -~'a - e-~(a+h)]. [Zo - i H o  sin c~] (7) 

O) 

The amplitude spectrum IF(e))] is the same for both the horizontal  and vertical 
magnetic anomalies. 

2uK 
IF(w)] = [e  -~ - e-~ [Zo 2 + H~ sin e ~]x/2 

2 n K T "  
- -  [ e  - ~ "  - e - ' ~ ( " §  ( 8 )  

(D 
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where T '  is the total intensity of the magnetizing field in the plane perpendicular to 
the strike of the fault. 

The phase spectra ~bz(co) and q~H(co) are given as 

~bz(co) = tan -I Z------L--~ and ~bH(co) = --tan -1 Ho sin ~t (9) 
Ho sin a Z o  
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Figure 4 
Modified ampli tude spectrum If(B9)] versus frequency o9 for a vertical fault (d = h) 

It can be shown from the above equation that 

C.bz(co) - ~bn(co) = n/2. (lo) 

Equation (10) is the same as equation (,5). The phase of the vertical anomaly thus 
differs from the phase of the horizontal anomaly by an amount of re~2. Figure 3 shows a 
plot of ]F(co)[ versus co in arbitrary units. For simplicity, and as it does not change the 



Vol. 112, 1974) Magnetic Anomalies of Two-Dimensional Bodies 993 

nature  of  the ampli tude spectrum, 2 z K T '  is taken as unity for  comput ing  IF(og)l. Two 

cases of  depth and throw of  fault  are taken.  In  the first case d and h bo th  are taken as 

unity and in the second case d is unity and h is 0.5. F r o m  equat ion (8) it can also be 

shown tha t  

2zrKT'[e -'~ - e -'~ 2rrKT'[ -de  -'~ + (d + h) e -~'(a+h)] 
lira IF(w)] = lim = lim 
w--*O o~---*0 W cocO 1 

= 2~rKT' h (11) 
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Figure 5 
Modified amplitude spectrum If(co)] versus frequency co for a vertical fault (d = 2h) 

The peak  value of  the ampli tude spect rum is, therefore, equal  to 2~rKT'h. Since in the 
present  case 27rKT' is taken as unity so the peak  value of  [F(w) l is 1.0 and 0.5 in the first 

and second case respectively (cf. Fig. 3). I f  we define ]f(w)]  = coIF(w)l as modified 
ampli tude spect rum then 

If(w)( = 2rcKT'[e -a'~ - e -'~ (12) 
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To study the nature of ]f(~o)l, variation of In [e -'~ - e -o~a+h)] versus o9 is shown in 

Figs. 4 and 5. Two combinations of  d and h, namely d = 1, h = 1 and d = 1, h = 0.5 are 

taken into consideration, In both cases the latter part  of  the graph (part A) is linear. 
This part  actually shows the linear variation of In e -~'d or -cod with respect to co. The 

slope of part  A gives-d ,  which is the depth to the top surface of the fault plane. This 

linear part  is extended to the origin and the exponential values of  e -~'d are subtracted 

from the values of [f(~o)[. The residue (part B), when plotted on the same semilog 

graph, gives a straight line with slope as - ( d  + h). As d is known earlier from the slope 

of part  A, h now be calculated from the slope of part  B. Details of this technique are 

discussed in KAPLAN [6]. As h is known so from equation (11), 2~rKT' and hence Kcan  

be determined if T '  is known. 

3. Discussion 

The present investigation is carried out to study the nature of  theoretical horizontal 

and vertical magnetic anomalies due to simple two-dimensional geological bodies in 

frequency domain. Similar derivations for other types of two-dimensional bodies and 

three-dimensional bodies are also found. A set of master curves for different values of 

parameters is under preparation. It  is interesting to note that in the two-dimensional 

cases the amplitude spectrum remains the same for both the horizontal and vertical 

magnetic anomalies. The variation in phase spectra is zr/2. In such a case a set of 

numerical filters (dispersive filters) can be designed to convert horizontal magnetic 

anomalies into vertical magnetic anomalies and vice versa. 
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Appendix 

I. Four ier  t ransform o f f ( x )  = tan -1 d (Ref. [2], p. 87). 
X 

A s f ( x )  is an odd function of  x its Fourier  t ransform F(co) is 

F(CO) = 2i f tan -~ - s i n c o x d x =  e-~'a/2sinh 
X 09 

0 

2zti 
= _ _  e-O~a/2.�89 __ e-O,a/z] 

CO 

= - - [ 1  - e  -~a] 
(.0 

when d > 0, ~o t> 0. 

~T"~2 + x 2 
II. Fourier  t ransform o f f ( x )  = In ~ (Ref. [2], p. 18). 

A s f ( x )  is an even function of  x its Fourier  t ransform F(co) is 

co ~ ' - F  X 2 7[ 

F(CO) = 2 f In cos ogx dx = - (e -B'~ - e - ~ )  
o ~ co 

when ~ > O, fl > 0 and ~o/> O. 

d c o s  o J x  

III .  2 (d 2 + x 2 ) 2 d x =  ~-~(1 +cod)e  -'~ 
o 

f x2c~ • (1 - cod)e -'~ 
IV. 2 (d 2 + x2)2 dx = 2--d 

0 

f x sin cox ~co 
V. 2 (d2-Y-~x~ 2 dx = --2d e-~'a 

o 

(Ref. [4], p. 225). 

(Ref. [4], p. 225). 

(Ref. [41, p. 225). 

when d > 0, o~/> 0. 


