
Clin. Exp. Metastasis, 1993, 11, 103-112 

Tumor progression and metastasis in murine D2 
hyperplastic alveolar nodule mammary tumor cell 
lines 

Vincent L. Morris*5$, Alan B. Tuck*§ll, Sylvia M. Wilson§, Dean Percy¶ 
and Ann F. Chambers*t§ 

*Department of  Microbiology and Immunology, and fDepartment of  Oncology, 
University of  Western Ontario, London, Ontario, Canada N6A 5C1. §London Regional 
Cancer Centre, London, Ontario, Canada N6A 4L6. ¶Department of  Pathology, 
University of  Guelph, Guelph, Ontario, Canada NIG 2W1 

(Received 21 May 1992; revision received 23 September 1992; accepted 30 September 
1992) 

We have examined tumor progression and metastatic properties of three clonal murine mammary  tumor 
cell lines of recent origin (D2A1, D2.OR and D2.1). These lines were derived from spontaneous mammary  
tumors which originated from a D2 hyperplastic alveolar nodule (HAN) line. D2A1 cells were more 
malignant than D2.OR or D2.1 cells, whether measured by experimental metastasis assays after intravenous 
injection in nude mice or chick embryos, in vivo growth rate of pr imary tumors following mammary  fat 
pad injection in nude mice, or spontaneous metastasis assay from primary tumors growing in mammary  fat 
pads. D2A1 cells also were more invasive in vitro in a Matrigel invasion assay than D2.1 cells, while the 
D2.OR cells were non-invasive in this assay. The increased invasiveness and malignancy of D2A1 cells were 
associated with increased levels of mRNA for the cysteine proteinase cathepsin L. Levels of osteopontin 
(OPN), nm23, int-1 and int-2 mRNAs were also examined. Nm23 levels were highest in the most malignant 
cell line. These cell lines provide a model for studying the tumorigenic and metastatic ability of mammary  
tumor cells and offer several advantages: they were cloned from mammary  tumors that originate from a 
common source of preneoplastic cells (D2HAN); they are of relatively recent origin; and they have 
spontaneously arrived at different stages of tumor progression. 
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Introduction 

Established cell lines have been used frequently to 
study mammary tumor progression. While valuable 
information can be obtained from these studies, 
concerns have been raised about use of tumor lines 
long removed from their origins [1]. Also, when 
parental mammary tumor cell lines are not metas- 
tatic (i.e. SP1 cells), then metastatic variants may 
have to be selected from chemically treated cells 
[2] or cells that are transfected with oncogenes [3]. 

~To whom correspondence should be addressed. 
IlPresent address: Department of Pathology, Queen's Univer- 
sity, Kingston, Ontario, Canada K7L 3N6. 

We are using mammary tumor lines of recent 
origin and low passage number to study the pro- 
cess of mammary tumor metastasis. These clonal 
murine mammary tumor lines (D2A1 [4], D2.1 [5] 
and D2 .OR [5]) were derived in the laboratory of 
Dr F. Miller (Michigan Cancer Foundation,  De- 
troit, MI, USA),  from spontaneous mammary tu- 
mors, which in turn originated from a D2 hyper- 
plastic alveolar nodule (HAN) line. HANs have 
properties that resemble both normal and malig- 
nant cells. The morphology of the hyperplastic 
cells is indistinguishable from that of normal 
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prelactating mammary tissue [6-9]. However, 
HAN cells have a higher risk for mammary tumor 
development than corresponding normal mammary 
alveolar cells when injected into 'cleared' mam- 
mary fat pads [10]. HANs are thus referred to as 
'premalignant' [11] or 'protoneoplastic' [12]. This 
system thus permits study of early steps of tumor 
progression in mammary cells. The three cell lines 
(D2A1, D2.1 and D2.OR) appear to represent 
mammary tumor cells at different stages of tumor 
progression. Their differences have developed 
naturally and have not been induced artificially by 
chemicals or exogenously added oncogenes. A 
previous study, which included D2A1, D2.1 and 
D2.OR cells, revealed an association between 
mammary tumor metastasis (in an experimental 
metastasis assay in syngeneic BALB/c mice) and a 
decreased binding of peanut agglutinin [5]. 

We have characterized the in vivo properties of 
these three cell lines, using both experimental 
metastasis assays (after i.v. injection into 
two immunodeficient hosts: nude mice and chick 
embryos) and spontaneous metastasis assays (after 
injection into mammary fat pads of nude mice). 
We assayed for invasive ability into Matrigel base- 
ment membrane, and for expression of three genes 
that have been associated with tumor progression 
and metastasis: cathepsin L, osteopontin (OPN), 
and nm23. We also tested for expression of two 
loci (int-1 and int-2) which often contain exogen- 
ous mouse mammary tumor virus integrations in 
mouse mammary tumors [13, 14]. 

Materials and methods 

Cell lines 
The tumor cell line D2A1 was cloned from a 
spontaneous mammary tumor which arose in a 
syngeneic BALB/c female mouse implanted with a 
D2 hyperplastic alveolar nodule [4]. The D2.OR 
cell line was cloned from a separate spontaneous 
mammary tumor (ST5) which also arose in a 
syngeneic BALB/c female mouse implanted with a 
D2 hyperplastic alveolar nodule [5]. D2.OR cells 
were then injected subcutaneously into a BALB/c 
mouse, and one of the few resulting tumors was 
recloned to give the D2.1 cell line [5]. The D2A1, 
D2.1 and D2.OR cell lines were isolated and 
cloned in the laboratory of F. Miller (Michigan 
Cancer Foundation). In our laboratory, the cells 
were grown in Dulbecco's minimal essential me- 
dium (DMEM) supplemented with 10% fetal calf 
serum (Bocknek, Toronto, Canada), L-glutamine, 

penicillin, and streptomycin [15]. The DMEM and 
all supplements except the fetal calf serum were 
obtained from Gibco Laboratories (Grand Island, 
NY, USA). The cell lines were all used before 
they had undergone 20 passages. 

Invasion of  basement membrane 
We tested the ability of D2A1, D2.1 and D2.OR 
cells to invade reconstituted basement membrane 
("Matrigel") in a transwell assay as described 
previously [16], using either fibronectin or laminin 
as the chemoattractant. 

Experimental metastasis assays 
The experimental metastatic ability of the cell lines 
was determined as described previously [17] by 
intravenous injection (lateral tail vein) of 5 x 105 
cells/mouse in a volume of 0.2 ml of medium, into 
female BALB/c nude mice (4-5 weeks old). The 
mice were killed after 5-12 weeks; lungs, spleen, 
liver, heart, and kidneys were removed, fixed in 
neutral buffered formaldehyde (pH 7.6), and the 
number of macroscopic lung tumors was counted. 
The tissues were then prepared for histopathology 
as described previously [15]. 

The results of the tail vein metastasis assay were 
confirmed with an experimental metastasis assay in 
the chick embryo by injecting 5 × 105 cells/embryo 
into chorioallantoic veins of l l -day-old chick em- 
bryos and determining the number of viable tumor 
cells in chick livers 7 days later, as described 
previously [18, 19]. 

Assays for spontaneous metastasis from mammary 
fat pad injection 
Mammary tumor cells (5 x 106/mouse) were in- 
jected into the mammary fat pads of 4- to 5-week- 
old BALB/c nude mice as described previously 
[10]. Tumors were measured (length and width) 
with calipers every 2-5 days. Growth curves were 
graphed and the growth of the primary tumors was 
monitored from these curves. Mice were killed 
after the tumor reached a cross-sectional area of 
approximately 4 cm 2 or when the mice began to 
succumb to the burden of the tumor. Lungs, 
spleen, heart, liver and kidneys were removed and 
treated as above. In addition, the site of injection 
(mammary fat pad) was removed and examined by 
histopathology. 

RNA analysis 
RNA was extracted from BALB/c virgin mammary 
glands, lactating mammary glands, and the three 
mammary tumor cell lines. Tissues were dispersed 
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using a Virtis homogenizer  (Gardiner,  NY, USA) "~" 
into a urea-LiC1 buffer (6 M urea, 3 M LiC1). -~ 
Tissue culture cells were scraped into the same ~-- 
buffer. R NA was then extracted as described pre- 03 
viously [20]. -~ 

The Northern transfer procedure has been de- o 
scribed previously [21]. RNA was hybridized with c- 
denatured,  oligolabeled ([32p]dCTP) cDNA ._° 
probes, under moderately stringent conditions 03 

O 
(42°C, 50% formamide,  5 x SSC). The cathepsin L > c- 
probe was the 1.19 kb cassette of plasmid pSP65- - -  
MEPA [22]. The OPN probe was a murine 2ar/os- 
teopontin cDNA probe [21]. The nm23 probe was _-~ 
a human nm23 cDNA insert from plasmid ._  

M-- 
pNM23-1 [23], and was a kind gift of Dr  P. S. 
Steeg (NIH,  Bethesda, MD, USA).  The int-1 "C"  _m 
plasmid was supplied by Drs H. E. Varmus (Uni- -~ 

O 
versity of California at San Francisco, San Fran- v 
cisco, CA, USA) and R. Nusse (Netherlands t-- 
Cancer Institute, Amsterdam, The Netherlands) . 2  

O3 
[13]. The int-2 " C "  plasmid was provided by Drs O 
C. Dickson (Imperial Cancer Research Fund >t-- 
Laboratories,  Lincoln's Inn Fields, London,  UK) 
and G. Peters (Imperial Cancer Research Fund 
Laboratories,  St. Bartholomew's  Hospital, Lon- 
don, UK) [14]. Ribosomal cDNA prepared from 
virgin mammary gland RNA [15, 24] was used as a 
control. For comparison, an actin probe was also 
used as a secondary control (murine 2.1-kb /3-actin 
cDNA in pBR322) [25]. 

Results  

Invasion of  basement membrane 
We determined the ability of D2 .OR,  D2.1 and 
D2A1 cells to invade into Matrigel basement mem- 
brane matrix (Figure 1). D2A1 cells were the most 
invasive in this assay. D2.1 cells were poorly 
invasive, and D2 .OR cells were essentially non- 
invasive. These results were found whether fi- 
bronectin (Figure la)  or laminin (Figure lb) was 
used in the lower chamber  as a chemoattractant.  

Experimental metastasis assays 
We determined the ability of D2A1, D2.1 and 
D2 .OR cells to survive in the circulation and 
colonize at a secondary site after i.v. injection in 
nude mice. At 5 weeks post inoculation (p.i.), four 
of five mice injected with D2A1 cells had macro- 
scopic lung metastases, ranging in number  from six 
to 21 per mouse (Table 1). No visible tumor 
nodules were visible at 5 weeks p.i. in lungs of 
mice injected with D2.1 cells. However ,  by 10-12 
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Figure 1. In vitro invasion assay. A Matrigel basement 
membrane (12.5 txg/well) was reconstituted in the upper 
compartment of a transwell chamber [16]. The lower 
chamber contained either (a) fibronectin (5 ixg/ml) or 
(b) laminin (8txg/ml). D2A1, D2.OR or D2.1 cells 
(5 x 104) were applied to the upper compartment of the 
transwell chamber and incubated for 24 h at 37°C. The 
cells that migrated through the gel were fixed, stained 
and counted, as described [16]. Each bar represents the 
mean number of cells (_+ S.D.) that had invaded in a 
single experiment, using triplicate samples. In each case, 
results from three separate experiments per cell line are 
shown. 

weeks p.i., four of four mice injected with D2.1 
cells had visible lung metastases (1-8  per mouse). 
Metastases were not seen in mice injected with 
D2 .OR cells at 5-12 weeks p.i. 

Histopathology was performed on lungs, heart,  
liver, spleen and kidneys of all injected animals to 
confirm and expand on visual observations (Table 
1, Figure 2). By 5 weeks, all D2Al- injected anim- 
als had moderate  to extensive metastasis to the 
lungs. Two of five D2Al- injected mice also had 
extensive metastasis to the heart.  No metastases 
were detected in other organs examined. In the 
D2Al- injected mice, lung metastases consisted of 
perivascular, subpleural and subendothelial infiltra- 
tion. In addition, multiple thrombi composed of 
neoplastic cells were present in many of the large 
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Table 1. Exper imenta l  metastat ic  ability in nude mice 

Mouse Cells ~ Time b No. of 
injected (weeks) macroscopic  

lung metas tases  

His topathology c 

Lung Hear t  

A1 D2A1 5 13 + + + + + 
A2 D2A1 5 21 + + +  + + +  
A3 D 2 A  1 5 0 + + - 
A4 D2A1 5 6 + + - 
A5 D2A 1 5 9 + + - 

D l l  D2.1 5 0 - - 
D12 D2.1 5 0 - - 
D13 D2.1 5 0 - - 
D 14 D2.1 5 0 - - 
D15 D2.1 5 0 - - 
D1 D2.1 5 0 - - 
D2 D2.1 10 3 + + +  - 
D3 D2.1 10 l + + +  - 
D4 D2.1 12 8 + + +  + + +  
D5 D2.1 12 1 + + - 

C1 D 2 . O R  5 0 - - 
C2 D2. O R  10 0 - - 
C3 D 2 . O R  10 0 - - 
C4 D 2 . O R  12 0 - - 
C5 D 2 . O R  12 0 - - 

,Cel ls  (5 × 105) were injected in the tail veins of  4- to 5-week-old female nude BA L B/ c  
mice. 
~'Time post  inoculation. 
~ - ,  Normal;  + ,  minimal neoplasia;  + + ,  modera te  neoplasia;  + + + ,  extensive neoplasia.  No 
metastasis  was observed  in the kidney, liver or spleen.  

A B 

Figure2 .  His topathology of metastat ic  mammary  tumors.  (A) Section of intercostal  muscle from D2Al - in j ec t ed  
mouse  A5 (see Table 1) illustrating marked  displacement  of muscle tissue, with separat ion and obl i terat ion of the 
architecture by the infiltrating neoplast ic  cells. Note  the identifiable myofibers  (arrows) adjacent  to the malignant 
ceils. H & E .  Bar  -- 43/~m. (B) Section of lung from D2Al - in j ec t ed  mouse  A103 (see Table 2). Intravascular  metastasis 
has complete ly  occluded a large per ibronchial  vessel (arrow).  H & E .  Bar  = 61 p,m. 
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pulmonary  vessels. In some cases, there was vascu- 
lar occlusion by neoplastic cells. In addition, multi- 
ple nodules of neoplastic cells were observed with 
cellular infiltration into mediast inum and inter- 
costal muscles (Figure 2A). In the heart ,  neoplastic 
infiltrates were most commonly  observed attached 
to the endocardium in the auricles. The metastatic 
loci were characterized by the formation of sheets 
and palisading patterns.  

No metastatic cells were observed in sections of 
lungs, liver, kidney, heart ,  or spleen f rom six mice 
inoculated with D2.1 cells and examined at 5 
weeks p.i. However ,  by 10-12 weeks p.i. ,  all four 
of the D2.1-inoculated mice had modera te  to ex- 
tensive lung metastases (Table 1). The histopatho- 
logy of the lung and heart  metastases were similar 
to that described above. Mice injected with 
D 2 . O R  cells were examined microscopically for 
signs of micrometastases,  and none were observed 
in the organs examined from 5 to 12 weeks p.i. 

The experimental  metastasis results f rom nude 
mice were confirmed in an experimental  metastasis 
assay in chick embryos  (Figure 3). The results of 
this assay have been shown generally to predict 
experimental  metastatic ability in assays in mice 
[19]. With this assay, we confirmed that D2A1 
cells were the most  metastatic,  followed in order  
by D2.1 and D 2 . O R  cells. 
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Figure3. Experimental metastatic ability in chick em- 
bryos. D2AI, D2.1 or D2.OR cells (5x  105 ) were 
injected intravenously into the chorioallantoic membrane 
veins of ll-day-old chick embryos [18, 19]. After 7 days, 
the chick livers were removed, the cells dispersed and 
cultured in a ouabain-containing medium, which kills the 
chick embryo cells [18]. The numbers of mouse tumor 
cells that had metastasized to the liver were quantified 
and are shown for each cell line. Each point represents 
the number of tumor cells present in the liver of one 
chick embryo: the solid circle represents the median 
value. 

Assays for tumorigenicity and spontaneous 
metastases from mammary fat pad injections 
We also determined the ability of the D2A1,  D2.1 
and D 2 . O R  cells to form pr imary tumors and 
spontaneously metastasize when injected into the 
m a m m a r y  fat pads of BALB/c  nude mice. We 
used fat pad injections instead of subcutaneous 
injections of tumor  cells to provide a more  natural 
environment  for tumor  cell growth. It has been 
repor ted that m a m m a r y  tumors grow preferentially 
in m a m m a r y  fat pads [26] and are more  metastatic 
when implanted in m a m m a r y  fat pads [27]. Prim- 
ary m a m m a r y  tumors in D2Al- in jec ted  mice grew 
most  quickly (14-18 days to reach 2 cm z length 
x width) followed in order by D2.1 (44-52 days) 
and D 2 . O R  cells ( 6 0 - > 9 0  days), the same rank 
ordering as was seen for invasive and experimental  
metastatic abilities (Table 1; Figure3) .  Histo- 
pathology of the pr imary tumors revealed that the 
neoplastic infiltrates in the m a m m a r y  glands con- 
sisted of masses of fusiform cells arranged in a 
loose to tight network,  and forming sheets, palisa- 
ding and whorl patterns.  His topathology confirmed 
the presence of a pr imary m a m m a r y  tumor  at the 
site of injection in all but one mouse (Table 2). 
The tumor  cells seen in the pr imary tumors were 
similar to those observed in the metastases to 
other  organs. 

At 4 weeks p.i. in the m a m m a r y  fat pads, 
macroscopic lung metastases were apparent  in two 
of five mice injected with D2A1 cells (Table 2). 
However ,  histopathology revealed that all five of 
the D2Al- inocula ted  mice had minimal to moder-  
ate lung metastasis at 4 weeks p.i. None of the 10 
mice injected with D2.1 cells had macroscopic 
metastases at 4-11 weeks p.i., a result that was 
confirmed by histopathology (Table 2). None of 
the nine mice injected with D 2 . O R  cells had 
macroscopic metastases at 4-13  weeks p.i. in the 
lungs, and histopathology revealed minimal metas- 
tases in only two mice at 13 weeks p.i. (one in the 
lung and another  in the spleen) and extensive 
metastasis to the liver in one of these mice (Table 
2). 

Lung metastases in D2A1- and D2.OR-injected 
mice contained intravascular neoplastic aggregates 
in major  peribronchial  vessels (Figure 2B). Infiltra- 
tion in subpleural areas was also seen. In animal 
C8 (Table 2), there was a single splenic metastasis 
present.  In animal C7 (Table 2), there were large 
areas within the liver that were infiltrated with 
neoplastic cells, with complete  replacement  of the 
parenchyma,  and obliteration of the normal  archi- 
tecture. 
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Table 2. Spontaneous  metastat ic  ability 

Mouse Cells a Time h No. of 
injected (weeks) macroscopic 

lung 
metastases  

His topatholog U 

Lung Spleen Liver Primary 
mammary  
tumor  

A 101 D2A 1 4 0 + - - + + + 
A102 D2A1 4 2 + - - + + +  
A103 D2A1 4 0 + + - - + + + 
A 104 D2A 1 4 0 + - - + + + 
A105 D2A1 4 8 + + - - + + + 

D101 D2.1 4 0 - - - + 
D102 D2.1 4 0 - - - + + +  
D103 D2.1 4 0 - - - + +  
D104 D2.1 4 0 - - - + + +  
D 105 D2.1 4 0 - - - + + 

D6 D2. l 6 0 - - - + + 
D7 D2 . l  6 0 - - - + +  
D8 D2 . l  11 0 - - - + + +  
D9 D2.1 11 0 - - - + + +  
D10 D2.1 11 0 - - - + + +  

C101 D 2 . O R  4 0 - - - + 
C102 D 2 . O R  4 0 - - - + 
C103 D 2 . O R  4 0 - - - + 
C104 D 2 . O R  4 0 - - - + 
C105 D 2 . O R  4 0 . . . .  
C6 D2. O R  12 0 - - - + + + 
C7 D 2 . O R  13 0 + - + + +  + + +  
C8 D 2 . O R  13 0 - + - + + +  
C9 D2. O R  13 0 - - - + + + 

"Cells (5 x 106) were injected in the mammary  fat pad of 4- to 5-week-old female nude BA L B/ c  mice. 
~'Time post  inoculation. 
, - ,  Normal ;  + ,  minimal neoplasia;  + + ,  modera te  neoplasia;  + + + ,  extensive neoplasia.  No heart  or kidney 
metas tases  were observed.  

T h u s ,  all t h r e e  l ines  a r e  t u m o r i g e n i c  a f t e r  m a m -  

m a r y  fat  p a d  i n j e c t i o n ,  w i t h  D 2 A 1  cel ls  g r o w i n g  

m o s t  q u i c k l y ,  f o l l o w e d  in o r d e r  by  D 2 . 1  a n d  

D 2 . O R  cel ls .  D 2 A 1  cel ls  w e r e  s p o n t a n e o u s l y  m e -  

t a s t a t i c ,  w h i l e  D 2 . 1  cel ls  w e r e  n o n - m e t a s t a t i c  o v e r  

t h e  t i m e  p e r i o d  e x a m i n e d ,  a n d  D 2 . O R  cel ls  w e r e  

o n l y  m i n i m a l l y  m e t a s t a t i c  f r o m  p r i m a r y  t u m o r s  

g r o w i n g  in m a m m a r y  fa t  p a d s  a f t e r  p r o l o n g e d  

g r o w t h  i n t e r v a l s  (13 w e e k s ) .  

RNA expression 
W e  e x t r a c t e d  R N A  f r o m  D 2 A 1 ,  D 2 . O R  a n d  D 2 . 1  

cel ls  as  we l l  as f r o m  B A L B / c  l a c t a t i n g  m a m m a r y  

g l a n d  a n d  v i rg in  m a m m a r y  g l a n d  t i s sue .  T h e s e  

R N A s  w e r e  u s e d  in N o r t h e r n  t r a n s f e r  e x p e r i -  

m e n t s .  T h e  e x p r e s s i o n  o f  c a t h e p s i n  L in D 2 A 1  

cel ls  w a s  a p p r o x i m a t e l y  5- to  6 - fo ld  h i g h e r  t h a n  in 

D 2 . O R  a n d  D 2 . 1  cel ls .  In  a d d i t i o n ,  e x p r e s s i o n  o f  

c a t h e p s i n  L in D 2 A 1  cel ls  w a s  a p p r o x i m a t e l y  

26- fo ld  h i g h e r  t h a n  in v i rg in  m a m m a r y  g l a n d s  a n d  

17-fold  h i g h e r  t h a n  in l a c t a t i n g  m a m m a r y  g l a n d s  

( F i g u r e  4).  T h e s e  r e s u l t s  w e r e  c o n s i s t e n t  w i t h  t he  

fac t  t h a t  D 2 A 1  cel ls  w e r e  t h e  m o s t  i n v as i v e  in t h e  

in vitro i n v a s i o n  a s say  a n d  t h e  m o s t  m e t a s t a t i c  in 

t h e  e x p e r i m e n t a l  a n d  s p o n t a n e o u s  m e t a s t a s i s  as-  

says .  T h e  r a n g e  o f  v a l u e s  f o r  n m 2 3  e x p r e s s i o n  in 

t h e  m a m m a r y  t u m o r  cel ls  w a s  a p p r o x i m a t e l y  2- to  

7 - fo ld  h i g h e r  t h a n  t h e  n m 2 3  e x p r e s s i o n  in v i rg in  o r  

l a c t a t i n g  m a m m a r y  g l a n d s ;  t h e  e x p r e s s i o n  in D 2 A 1  

cel ls  w a s  a p p r o x i m a t e l y  3 - fo ld  h i g h e r  t h a n  in D 2 . 1  

o r  D 2 . O R  cel ls .  N o  s ign i f i c an t  d i f f e r e n c e  was  

o b s e r v e d  b e t w e e n  e x p r e s s i o n  o f  n m 2 3  in l a c t a t i n g  

a n d  v i rg in  m a m m a r y  g l a n d  t i s sue .  T h e  e x p r e s s i o n  
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Figure 4. Relative expression of cathepsin L, nm23, and 
osteopontin (OPN) RNA in mammary tumor cell lines 
and in normal mammary tissue. Northern transfer ex- 
periments were performed, and the RNA on the blots 
annealed with gene probes (see Materials and methods). 
The murine cathepsin L transcript is approximately 
1.8 kb [22], nm23 is approximately 1.0 kb [23] and OPN 
is approximately 1.6 kb [21]. The intensity of the appro- 
priate band was determined with a laser densitometer. 
The 32p radioactivity bound to the blots was allowed to 
decay until it was no longer detectable, and the blots 
were reannealed with a ribosomal cDNA probe; the 
intensity of annealing to the ribosomal probe was also 
determined with a densitometer and used to correct for 
any differences in amount of RNA present in each blot. 
For each gene, the value of the ratio (intensity gene 
mRNA/intensity 18S ribosomal RNA) for the D2.OR 
sample has been normalized to 1.0. The following abbre- 
viations for RNA samples are used: 2.0 = D2.OR mam- 
mary tumor cells; 2.1 = D2.1 mammary tumor cells; 
A1 = D2A1 mammary tumor cells; V = BALB/c mouse 
virgin mammary gland; L =  BALB/c mouse lactating 
mammary gland. Average values from at least three 
Northern transfers are shown and error bars indicate 
standard errors. 

of OPN was approximately 23-fold higher in lacta- 
ting mammary glands than in virgin glands 
(Figure 4). In addition, the range of values for 
OPN expression in the three mammary tumor cell 
lines was 8- to 17-fold higher than the OPN 
expression in virgin glands (Figure 4). No detect- 
able R N A  expression was observed with int-1 or 
int-2 probes (data not shown) in D2A1, D2.1, or 
D 2 . O R  cells. These results were calculated relative 
to levels of 18S ribosomal R N A  as a control. 
When actin m R N A  levels were used as a control 
instead, similar results were obtained for the 
D2.OR,  D2.1, D2A1 and the virgin mammary 
gland R N A  samples (data not shown). However,  
the corresponding results for the lactating mam- 
mary gland R N A  were reduced as much as 4-fold 
when actin was used as a control compared to 
values obtained with the 18S ribosomal control. 
This finding implies that the relative levels of actin 
m R N A  may be reduced during mammary gland 
development. 

Discussion 

There is a need for models to examine early stages 
in mammary tumor progression. Tumors that arise 
from murine D2 HANs provide one such model 
[10]. We have used three low-passage cell lines 
(<20 passages), D2A1, D2.1 and D 2 . O R  cells, 
that were isolated from mammary tumors. These 
tumors all originated from the same D2 H A N  line 
that was implanted in BALB/c  mammary fat pads. 
In spite of the parallel origin of these three cell 
lines, we found that they exhibited different in 
vitro and in vivo properties, suggesting that they 
represent cells at different stages of mammary 
tumor progression. In vitro D2A1 cells were most 
invasive, followed in order by D2.1 and D 2 . O R  
cells. The same rank ordering was found for ex- 
perimental metastatic ability after i.v. injection 
into two immunodeficient hosts, nude mice and 
chick embryos. Growth rate in vivo after injection 
into mammary fat pads of nude mice also followed 
the same rank order. D2A1 cells were spontan- 
eously metastatic to lung from primary mammary 
fat pad tumors. Spontaneous metastases were ob- 
served rarely for D 2 . O R  cells and not at all for 
D2.1 cells. Thus, these cells may represent mam- 
mary tumors at different stages of progression, 
with D2A1 cells being most malignant by all assays 
used, and D2.1 and D 2 . O R  cells being less malig- 
nant. 
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We have used these cell lines to look for associ- 
ations between metastatic ability and expression of 
genes that have been implicated in tumor progres- 
sion and spread. Cathepsin L, a cysteine protei- 
nase, has been shown to be associated with inva- 
sion and metastatic properties of ras-transformed 
tumor cells of fibroblastic origin [16, 28, 29]. We 
have extended these observations to mammary 
tumor cells of epithelial origin. The expression of 
cathepsin L in D2A1 cells was 5- to 6-fold higher 
than in D2 .OR cells and in D2.1 cells. Increased 
expression of this cysteine protease may contribute 
to the increased invasiveness and malignancy of 
D2A1 cells relative to D2 .OR or D2.1 cells. 

Low levels of nm23 have been reported to be 
associated with metastatic ability and poor  patient 
prognosis in human breast cancer [23, 30]. We did 
not find this inverse relationship between nm23 
expression and metastatic potential among the 
three murine mammary cell lines examined here. 
Instead, we found that the most malignant of the 
three lines, D2A1, had approximately 6-fold 
higher expression of nm23 mRNA than did virgin 
mammary glands. In addition, expression of nm23 
in D2A1 cells was approximately 3-fold higher 
than was observed in the less metastatic D2 .OR 
and D2.1 cells. Other  studies have also suggested 
that high levels of nm23 can be associated with 
increased malignancy in various tumors, including 
colon and breast cancer [31,32]. Homology of 
nm23 to an NDP kinase [33, 34] has suggested a 
signal transduction function for nm23, but the role 
of this protein in tumor progression and metastasis 
remains to be clarified [35]. 

OPN is a secreted phosphoprotein produced by 
a limited set of normal tissues, including bone,  
kidney and milk [36-39]. Several studies have 
shown the OPN gene to be regulated develop- 
mentally [36, 40-42]. Structural features of the 
OPN protein (e.g. an R G D  cell binding site, a 
calcium-binding domain) suggest possible func- 
tions, but the role of this protein in either normal 
or tumor cells remains poorly understood. We 
found high levels of OPN mRNA in murine lacta- 
ting mammary glands when compared with virgin 
glands, consistent with the presence of OPN pro- 
tein in milk. This result also is consistent with that 
of Craig and Denhardt  [36], who found high OPN 
mR NA levels in skin and ventral fatty tissue of 
lactating mice; moderate levels in tissues from 
pregnant mice, and low levels in non-pregnant 
mice. OPN is also a transformation-associated pro- 
tein whose expression can be induced by ras and 
tumor promoters [21, 37, 43-45]. We found that all 

three mammary tumor cell lines had increased 
levels of OPN mRNA,  relative to levels in virgin 
mouse tissues, which were similar to the OPN 
levels in lactating tissues. Our results are consis- 
tent with OPN being a transformation-related pro- 
tein. 

While int-1 and int-2 expression is often ob- 
served in mammary tumors, our inability to detect 
expression of these genes in D2A1, D2 .OR or 
D2.1 cells is consistent with observations that 
expression of these genes is not detected in all 
mammary tumors [13, 14]. 

The cell lines we have characterized here pro- 
vide a useful model for studying tumor progression 
in mammary tumors, and for identifying genes 
whose expression may contribute to malignancy in 
these cells. Since the three cell lines differ in their 
invasive, tumorigenic and metastatic properties, 
they may differ in their abilities to fulfil different 
steps in the metastatic process. These cells thus 
provide the opportunity to study steps in tumor 
progression and metastasis in a series of closely 
related, but phenotypically distinct, mammary tu- 
mor cells. 
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