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Abstract--Can a simple multi-block-spring model with total symmetry make interesting predictions 
for fault behaviour? Our model consists of a symmetric, slowly driven, two degree-of-freedom block- 
spring system with static/dynamic friction. The simple friction law and slow driving rate allow the state of 
this fourth order system to be described between slip events by a single variable, the difference in the 
stretch of the driving springs. This stretch difference measures the locked-in stress and is closely related to 
fault stress inhomogeneity. 

In general, smoothing is not observed. A spatially homogeneous stress state is found to almost 
always be unstable, in that the system tends toward an inhomogeneous state after many slip events. The 
system evolves either to a cycle that alternates between two types of earthquakes, or to a cycle with 
repeating but identical asymmetric earthquakes. One type of alternating earthquake solution is structur- 
ally unstable, which implies a great sensitivity to model perturbations. 

For this simple model, spatial asymmetry necessarily occurs, despite the symmetry in the model, thus 
suggesting that spatial structure in seismicity patterns may be a consequence of earthquake dynamics, not 
just fault heterogeneity. 
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Introduction 

One approach to the understanding of seismicity patterns and earthquakes is the 
construction of deterministic models. These models are used with the hope of 
simulating seismic patterns, and observing such features as a reasonable frequency- 
magnitude relationship, stable and unstable slip, preseismic slip, aftershocks, and 
stress deficit roughening. Since understanding is now at a fairly primitive stage, 
insight may be gained by examining both the predictions and limitations of simple 
models. A crude class of such models uses blocks, springs, and friction. 

Many have investigated the possible role of the friction law on instabilities and 
pre- and post-seismic slip by using a single block model, including BYERLEE (1970, 
1978), DtETERICH (1980, 1981), RICE and TSE (1986), Gu et  al. (1984), CAO and AKI 
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(1986), BLANPIED and TULLIS (1986), WEEKS and TULLIS (1985), RUINA (1983), and 
NUR (1978). Though such models aid in the understanding of frictional instabilities, 
they are limited by their inability to model spatial variations. To address the spatial 
aspect of seismicity patterns, BURRIDGE and KNOPOEF (1967) studied (experimentally 
and numerically) a one-dimensional chain of blocks connected by springs. Others 
followed up using similar models, but different friction laws, elastic properties, initial 
states, and loading conditions. 

One frequent observation in numerical simulations of multi-block models is the 
presence of 'smoothing,' a term which has had several meanings. ANDREWS (1975, 
1978) used smoothing to mean the tendency (over many slip events) for the state of 
stress along the fault to move toward a more uniform spatial distribution (stress 
smoothing). However, CaD and Aki (1986) defined the term to indicate the transition 
from events in which few or small regions on the fault slip, to events where many or 
large regions on the fault slip, until eventually every event involves slip along the 
entire fault (event smoothing). These similar definitions have subtle differences, for it 
is possible for a heterogeneous stress distribution to still lead to nearly simultaneous 
slip of many regions and hence large earthquakes. Stress smoothing leads to event 
smoothing, but event smoothing does not necessarily imply stress smoothing. The 
appearance of smoothing is thought to be an unrealistic prediction of an earthquake 
model, because it seems inconsistent with real seismic patterns. For example, the 
entire San Andreas fault does not slip in every earthquake. Rather, a complicated 
spatial structure seems to persist over the centuries. 

The simulations and experiments of BURRIDGE and KNOPOFF (1967) do not 
indicate either stress or event smoothing as previously defined. Their work shows 
evidence of cycles of smoothing, then roughening. Large events were preceded and 
followed by numerous smaller events. ANDREWS (1975, 1978) found stress smoothing 
using a numerical two-dimensional elastic plate model, static/dynamic friction, and 
uniform fault strength. In the three initial conditions he tried, the 'self energy', a 
measure of fault stress heterogeneity, decreased during a simulated earthquake event. 
He claimed that in order to predict seismicity patterns, a model must include inhomo- 
geneous material properties, branching and bending of the fault zone, migration of 
pore fluids, or a more complicated friction law. COHEN (1977) also studied a multiple 
block model. He introduced spatial variations in elastic and frictional parameters 
and did not observe smoothing of either kind. NUR (1978) and ISRAEL and NUR 
(1979) concluded that inhomogeneous properties are essential to the maintenance of 
spatial structure in seismic patterns. DIETERICH (1972) also varied material properties 
in space, using elastic and viscoelastic models and static/dynamic or time dependent 
friction. He found no smoothing. Viscoelasticity and time dependent static friction 
also allowed him to simulate aftershocks. In their spring block model with static/ 
dynamic friction, Cao and Aki (1986) describe event smoothing, independent of 
heterogeneity in frictional strength. They claim that the coupling ratio C/L (the 
coupling stiffness C divided by the driving spring stiffness L) must be sufficiently low 
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(as in CONEY (1977) and DIETERICH (1972)) in order to preclude even smoothing. 
Cao and Aki proceeded to use a more complex friction law with spatially inhomo- 
geneous properties in order to mimic certain aspects of seismicity patterns. 

The research succeeding BURRID6E and KNOPOFF (1967) attempted to simulate 
seismic features by choosing elaborate spatially-varying models for friction and fault 
strength. What we would like to address is: can a simple model produce certain 
kinds of complex behavior? HoRowrrz and RUINA (1986) found complex spatial 
patterns with a homogeneous two-dimensional elastic fault model, and a rate and 
state dependent friction law. Based on these results (and in opposition to some of 
the papers cited above) we suspect that some of the complexity of earthquakes 
is due to the appropriate governing equations having complicated solutions, even 
in the absence of inhomogeneous material properties and complicated friction laws. 
To address this question in a simple way, we simulated a strike-slip fault using a 
two-block mass-spring model with static/dynamic friction. Our emphasis is on the 
patterns of events after many slip cycles have occurred over long periods of time. 

After describing the model, we will show that the configuration of our two- 
block system is characterized by a single variable, the difference in stretch of the 
driving springs at the end of an event. The subsequent values of this stretch difference 
are then used to describe the long-term dynamics of the system. We look at trajec- 
tories in configuration space, utilizing a failure locus, and display the system con- 
figuration as a function of its previous configuration with a one-dimensional iteration 

map. The one-dimensional map is used to describe the evolution and stability of the 
system. 

The Model 

The two-block model, which will be further simplified below, is shown in Figure 
1. Two masses are connected by a linear spring with spring constant kc and driven 
by a slowly moving support. The support is coupled to the masses by springs of 
stiffness k 1 and k2. Between the blocks and their supports are the friction forces F1 
and F2 (in general not constant). Here m~ and m 2 represent the masses, and Yl and 
Y2 are the position coordinates (spring stretches) for each mass, referred to the driver. 
The driver, which is assumed to move at a constant rate, is meant to represent 
inexorable tectonic processes; the masses are two regions near a fault surface; the 
springs k 1 and k 2 are connections between the remote loading and the fault; the 
coupling spring kc is the interconnection between fault regions. The springs, kl, 
k 2 and k~ represent appropriate stiffnesses for the axial and shear deformation in 
strike-slip or thrust faulting. Roughly, kt and k2 are shear springs for strike-slip 
faulting (the case schematically represented in Figures 1 and 2), the axial springs for 
thrust faulting; while kc is an axial spring for strike-slip faulting and a shear spring 
for thrust faulting. 
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V 

F 1 = Friction Force i Force 
on Block 1 zk 2 

Figure 1 
Schematic of a Discrete (Block-Spring) Earthquake Model. Two massive blocks are connected by springs 

and slowly loaded. Friction inhibits block motion. 

Newton's second law leads to the following equations of motion: 

m~j}~ + (k I + k~)y~ - k~y z ~ V~ 
(1) 

m2Y2 + (k2 + k c ) y 2  - key ,  = F 2  

For plausible friction laws (the functional form of the dependence of F i on the slip 
history [ V t  - yi(t)] (with i = 1, 2)), equations (1) represent at least a fourth-order 
nonlinear system of ordinary differential equations. We make the following further 
simplifications: 

1) The driver is assumed to move slowly, so slowly that it may be considered 
stationary during any block motion (as in BURRIDGE and KNOPOFF (1967)). 
Thus driver motion loads the system but V = 0 is used in all dynamical 

calculations. 
2) Complete spatial uniformity is assumed. By moving from a general to a 

symmetric model, the problem may be examined in greater depth. Also, an 
interesting question can be addressed, namely whether a symmetric model 
produces asymmetric solutions. Accordingly, we set m 1 = m 2 = m, and k 1 = 
k 2 = k as indicated in Figure 2. The coupling spring constant is defined in 
terms of k: kc = c~k. For this two block system, this reflection symmetry is 
also equivalent to translation symmetry and a periodic boundary condition. 
The friction forces also are assumed to have no spatial dependence. 

3) The friction is static/dynamic. It is characterized by F,, the static friction force 
(at impending slip), and F d, the dynamic friction force (during slip). Each is 
assumed to be constant. Static/dynamic friction (together with slow driver 
motion) leads to stick-slip. Thus there will be a long loading period (during 
which no blocks slide), then a sliding period, then another loading period, 
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4) 

and so forth. Later  some results will be generalized to other  friction laws, 

such as an added linear rate dependency (which might  be used to simulate 

e las todynamic  radiat ion,  as suggested by BURRIDGE and KNOPOFF (t967)). 
Slip occurs in only  one direction (block velocities are never positive during 

slip). Reverse slip is forbidden. It  is easily shown that  reverse slip never occurs 

in a single block model  if FJFd < 3. We feel the restriction is reasonable  for a 
multiple block-spr ing model ,  since physically realistic values of F~/F e are 
p robab ly  not  much  larger than unity. 

The equat ions of mo t ion  are simplified by a change of variables based on the 

above  assumptions.  Time is rescaled: t = z ~ ,  where r is original t ime and t is 

dimensionless time. A dimensionless spring stretch s i is defined by scaling and off- 
setting yi: (i = 1, 2) 

(Fs - Fe) Fd y~k F d (2) 
Y i  = Si k + k -  or  inversely si - F s - F d F~ -- Fa 

Thus  we obta in  the system shown in Figure 2, which is fully equivalent  to the system 

in Figure 1 when the assumpt ion  of symmet ry  is made  and s ta t ic /dynamic friction 

(with no reverse slip) is used. The masses, driving springs, and static friction force 
are now all unity. The  coupl ing spring cons tant  (equivalent to the coupling rat io 

C / L  in CAO and  AKI (1986)) is ~, and  the dynamic  friction force is zero. 

V (very slow) 

F = I  
S 

F = 0 ~ , , ~  d 

- -  ,\xS..,.\x. \ \ \ \ \ \  ~ , ~ , q  
~ ~ ~ F i x e d  Support 

Figure 2 
Scaled Schematic Model. After scaling of variables and assumptions of spatial uniformity, the only system 

parameter is the coupling ratio ~. 

A balance of forces leads to condit ions on s 1 and s a for impeding slip: 

(1 + c0s 1 -c~s2 = 1 for block 1 to slip 
(1 + c0s a -  esl  = 1 for block 2 to slip. 

(3) 
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For  any n-block system, the condit ions for slip onset can be viewed on a failure 
locus shown in n-dimensional  configurat ion space (s 1, s 2 . . .  s,). Slip does not  occur 

until the failure locus is reached, that  is to say some f (sx ,  sz . . . .  s,) reaches a critical 

value. An arb i t ra ry  two-dimensional  failure locus in (sl, s2) coordinate  space is shown 
schematically in Figure 3. The failure locus we use, equat ion (3), shown in Figure 4. 

Slip begins when the trajectory in configurat ion space (as influenced by the remote  
loading) reaches the failure locus. 

s 1 ~ ~ . . . . - F a i l u r e  S" - -~ '  . . . .  / ) l l ,  ] Locus 

S t a r t i n g _ ~ d ~  r ~ -~Slip ( 

Contiguration I 

$2 / v 

Figure 3 
Schematic Graph of a Two-dimensional Failure Locus. The dark line is the failure locus, representing all 
(s I, Sz) pairs for impending slip using an arbitrary model. No slip occurs until the the trajectory reaches 

the failure locus. 

s 1 

.1.4_1_ 
i+~ 

(o,o) I 

Locus for block 1 (1,1) 
to start slipping 

,LI'I  �84 '7 

Figure 4 

r to start slipping 

1+~ 

Statically accessible 
region 

s 2 

Actual Two-block Failure Locus. The static friction force is overcome when a trajectory (sl(t), s2(t)) 
reaches the failure locus. The shape of the locus depends only on the coupling ratio c~. It tends to a unit 

square as c~ ~ 0, and approaches a pair of 45 ~ lines as ~ --~ oo. 
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We have the following equations of motion during slip. 

241 + (1 +c~)s  I - c ~ s  2 = 0  while block 1 slides(s1 < 0 )  

(otherwise ~ = 0) 
(4) 

;i2 + (1 + C 0 S z - ~ S ~  = 0  while b lock2s l ides ( s2  < 0 )  
(otherwise s2 = 0) 

The only parameter  in our model (see Figure 2 or equations (3), (4)) is the coupling 
ratio ~. That and the initial positions fully determine all subsequent motion. Our 

fourth-order nonlinear system has been reduced to a homogeneous linear system (4). 
The nonlinear effects of friction only appear in the conditions for the onset and 

termination of slip (equation (3) and assumption (4)). 

N u m e r i c a l  Solut ion 

Although the general solution of (4) is easily obtained, finding when a block 

stops (~1 = 0 or -~2 = 0) involves solving a transcendental equation. Rather than 

solve this transcendental equation, a numerical method was used to integrate the 

equations of motion when both blocks were moving. The scheme was a second- 

order Runge-Kutta,  with a fixed step size of 1/(25 co2) where co z is the higher 
characteristic frequency of (4), to be mentioned later. The size was occasionally 

adjusted manually to check for numerical convergence. Values of the coupling ratio 

between 0.1 and 100.0 were investigated, with emphasis placed on values of ~ less 
than 10.0. For every value of c~, at least 200 initial conditions were used. 

Because this model contains static/dynamic friction, the program had to check 

to see if the blocks were stopped so the correct friction force could be applied. To 

prevent reverse slip, the program looked for a sign change in velocity. As soon as 

one was observed, the block was considered stopped, and was not allowed to resume 
sliding until it again satisfied its failure criterion (3). 

Block  M o t i o n  

The system is started from rest in some initial configuration (sl ,  s2), with slip not 

yet impending and s 1 r s 2. (The case where s l -  s 2 is special, leading to 
both blocks starting at once.. This will be mentioned later.) The driver slowly 
moves, and the springs become more stretched. After sufficient stretch, one block 

starts to move and the driver is considered motionless. The moving block will 

eventually come to rest, but while it slides it increases the load on the other block, 

and it may trigger the other block to start sliding. One or both blocks move, and 
finally both come to rest. This motion could also include multiple slips, in which 
each block starts and stops several times before the system comes to rest. For  future 
reference, we define an event  to be the cycle from the system starting at rest until it next 
comes to rest. After the event, loading is resumed by means of slow driver motion. 
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Characterization of  System Configuration by the Stretch Difference 

The mot ion  of this fourth order  system may  be characterized for some 

purposes  by the sequence of values of  a single scalar variable, the stretch differ- 

ence (s t - s 2 ) .  When  the system loads (without slip), s t and s 2 increase at the 

same rate until the failure locus is reached, as shown in line A-B in Figures 5 
and 6. Thus  (s 1 - s2) does not  change until a block (in this case block 1) starts 

to slip (point  B in Figures 5 and 6). At point  B, the state of the system is com- 

pletely known: the t rajectory is at the failure locus, and the stretch difference 

(sz - Sz) is the same as it was at the beginning of loading (this is the end of the 

preceding event, at which time the difference (sl - sz) was known from previous 

dynamics).  Together ,  the failure locus and (s I - s2) determine (Sl, s2). Since both  
blocks '  slip velocities are zero, the full state of the system is determined by 

(s~ - s2) at impending slip. 
In some sense, (s~ - s2) at impending slip represents a Poincar6 section (a cross 

section of the phase space - -  see GUCKENHEIMER and HOLMES (1984), for example).  

Though  a trajectory of the system state, 

(sl(t), SE(t), ~l(t), A2(t)), 

lies in a four-dimensional  phase space, the Poincar6 section is not  three-dimensional  

but one-dimensional  since the trajectory at this section is known to lie on the 

plane 

sl = s2 = V. 

The evolut ion of the system from event to event can be described by the sequence 

of values taken by the stretch difference. This sequence is characterized by a one- 
dimensional  map,  the nature  of which is discussed in a later section. 

The  stretch difference (s 1 - s2) is a useful variable to follow since it is a measure  
of locked-in stress (self-stress, or the par t  of the frictional stress which does not  

change during loading) and fault stress inhomogenei ty.  The  quant i ty  (s t - s2) 2 is 

p ropor t iona l  to the 'self energy '  discussed in ANDREWS (1978). 

Types of  Events 

Several types of events have been observed. One-block events are simplest, 

involving only a single block moving  before the system comes to rest. Two-block 
events have both  blocks sliding, perhaps  several times each. If bo th  blocks undergo 
identical s imul taneous mot ion,  the event is called homogeneous. 
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O n e - b l o c k  E v e n t s  

Figure 5 shows a trajectory plotted on the (sl, s2) plane for a one-block event 
(B-C). The system loads slowly along a 45 ~ line (A-B and C-D), with both springs 
stretching at equal rates. When one of the two failure loci is reached, the respective 
block starts to slip. Suppose the system starts out with s~ > s 2 as shown in Figure 5 
at A. Then it is clear that the block-1 locus will be reached before the block-2 locus, 
and block 1 will slip first, starting at point B. 

S I 

s 
(-1,-1) 

Block 1 Failure . . , , ~ O ( 1 , 1 )  
, ocus  

�9 B D 

~ ~  ~ ~ D B l o c k  2 Failure 7 ..J / - - /  ,oc,, 

Figure 5 
Trajectory in Configuration Space  for a One-block  event. The system loads until the trajectory reaches the 
failure locus. Dashed lines parallel to the failure loci represents stop lines. The trajectory for a one-block 

event ends at a stop line_ Loading is shown as (A-B) and (C-D). Slip is shown as (B-C). 

If only one block moves during an event, it slides a fixed distance (COHEN (1977)) 
independent of its starting point. This follows say, from the first of the failure con- 
ditions (3) (neither block is moving, block 1 will slip first) being applied as an 
initial condition to the first equation (4) (block 1 slips, s2 is held constant) and then 
finding s 1 when block 1 stops moving. The net change in sl is independent of (s~ - 
s2). The calculation is carried out in equations (6) and (7) below. The result can also 
be physically reasoned as follows: A single block will slide when the total spring 
force it feels reaches Fs (which has been scaled to unity here). Because the springs 
are linear, the net force the block feels at initiation of slip (and during slip) is 
independent of locked-in stress. Thus the block motion and sliding distance are also 
independent of locked-in stress in any one-block event. Such an event results in a 
friction force drop of 2 ( F  s - Fa). 

Using this fixed sliding distance result, two stop lines can be defined (the dotted 
lines in Figure 5), parallel to each failure locus. In configuration space, a lone sliding 
block will move in a straight horizontal or vertical line (B-C in Figure 5) until its 
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trajectory reaches the proper stop line. The stop lines have meaning only for Single- 

block events. If only block 1 moves, the only s~ changes, and slip is a vertical line 
downward from the failure locus (s2 is constant). Similarly, if only block 2 moves, 
the trajectory is a horizontal (leftward) line. Slip cycles that do not involve 
simultaneous motion of both blocks appear as horizontal and vertical slip lines, and 
45 ~ loading lines in configuration space. The systems loads, a block slips, then the 
system loads again (A-B-C-D in Figure 5). The location of the failure locus and stop 
lines entirely define the sequence of one-block slip events. 

In general, the slip distance in a one-block event is independent of the initial 
stretch difference (sl - s2) when using any friction law with the following functional 

form: 

friction = f ( f i ,  3)  

where 6 is the slip distance in the current event and 6 is the slip rate. This 
implies a straight stop line parallel to the failure locus. Static/dynamic friction is a 
special case of such a friction law. Also included are linear viscous damping and 

simple slip weakening (friction is a decreasing function of 6). 
The preceding argument (for a straight stop line parallel to the failure locus) is 

carried out in detail for the friction law used in our simulations, as follows. In a one- 
block event, the motion is simple harmonic during slip. With a mass of unity and an 
effective spring constant of (1 + ~), this motion has a frequency of: 

~o = , j i  + ~ (5) 

The equations of motion (4), with initial conditions of zero velocity, (s  1 - s z ) i , ,  

given, and s 1 and s2 on the block 1 failure locus, have solution: 

1 EcosE.~f + ~ t 3  + o:3 - c~(sl - s z ) i . .  
$ 1 - -  1 .k_ Cr 

s2 = constant = 1 - (1 + e)(sl - s2)i.it  
(6) 

Here (s l  - S 2 ) i n i t  refers to the stretch difference during loading. 
To find Sls~op (the equation of the stop line), equation (6) is used to set the 

velocity of block 1 to zero. We obtain: 

- -  - -  ~(SI -- SZ)i,, (7) Slst~ 1 -~- O~ 

The slip distance in a one-block event is [sli, ,  . - sls,  op] = 2/(1 + 7) (from (3), (6) 
and (7), say). Here S l i , ,  is the value of sl at impending slip. The force drop is 2 
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units, obtained from an energy balance, or by using this slip distance and the effective 

spring constant  of (1 + e). 

Two-block Events 

If a second block should start to slip while the first was moving, a different 

mot ion  would result, an example of which is shown as B-B ' -C ' -C  in Figure 6. This is 

the case if the system configurat ion reaches the other failure locus (at B') before 

hitting the first stop line. The trajectory is initially straight (B-B'), but then the 

second block starts to move  when its failure locus is reached at B'. The ensuing 

mot ion  is a combinat ion  of  both  normal  modes, and appears as a curved path on 

the (Sl, s2) plane. The characteristic frequencies for the normal  modes are: 

1 . 0 0  

0.50 

S~ o.oo 

ot = 3.0 

-0.50 

Block 1 
Failure Locus 

i 

Block 2 )" " /r  
S " # / /  

/ t C ,  / / /  . / / ~ B l o c k 2  
C / / , y ~ 1 r  Failure Locus 

/ / 
/ / ~ Block 1 

/ / / "/ / Stlp Line, , , 

. . / t"  
f - 1 . 0 0  ~" 

- 1.00 -0.50 0.00 0.50 1.00 

8 2 

Figure 6 
A Two-Block Event in Configuration Space. The loading part of the trajectory has unit slope (A-B). Only 
a single block slips (B-B') until the second failure locus is reached at B'. Both blocks slide until C' is 
reached, when block 2 stops. Block 1 stops at C. The trajectory A-B-B'-C'-C constitutes a type of two- 
block event. The stop lines (which are not relevant in this event) are also shown. The event shown is not a 

part of a periodic orbit. 
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o~ 2 = x/1 + 2a. (8) 

(In general, the system completes only about half a (slower) cycle of oscillation.) 
Note that co 2 gets large for large e. Thus we have multiple time scales, and the 
system of differential equations is 'stiff' if the coupling spring is much stiffer than the 
drive springs (a >> 1). 

Two-block events occur if s~ and s2 are sufficiently close together at failure. In 
other words, the event starts close to the apex of the failure locus, as in B-B' in 
Figure 6 (but not as in B-C in Figure 5). A geometric construction shows the 

following condition for two-block events. 

2 ~  

Is1 - s2lz.it < (1 + ~)(1 + 2~)" (9) 

When the trajectory hits the second failure locus (at B' in Figure 6) and s2 begins 
to change, the velocity of block 1 (from (3) and (6)) is: 

$ 1 - -  l ~ t  -- ~ [ ( 1 - -  ('02(S1-- S2)init)6O2 -- O)2] 2" (10) 

Now both blocks will be moving, and we have a superposition of the four normal 

mode solutions to equation (4): 

sl = C1 cos (t) + C2 sin (t) + C3 cos (c02t) + C4 sin (fOzt) (1 1) 
s2 = C1 cos (t) + C2 sin (t) - C3 cos (o~2t) - 6"4 sin (0920. 

The four constants C~ are determined by applying (11) to the following: 

sl, s2 are on the failure locus (as given in (7) and the second of equations (6)) 

and 

S1 - -  m 
1 + ~  

S 2 ~ S2ini t 

~ ( s l  - s 2 ) i . .  

sl is given by (10) 
"~2 = 0. 

Of course, the Ci's determined in this way are valid only during the first part of 
motion when both blocks are moving. After one block stops (at C' in Figure 6, say), 
the equations of motion (4) must be solved again, using the current system state as 

initial conditions. 



H o m o g e n e o u s  Even t s  

Fina l ly  there is the case of (s I - s2)i,it - O. Such an initial  condi t ion  starts  on 

the 45 ~ line y = x of  the failure locus and hits the intersect ion (apex) of the two 

failure loci. Both b locks  s tar t  to slide at  the same time. Their  mot ions  will be ident ical  

and  (sl - s2) will remain  zero t h roughou t  the slip and all subsequent  events. Thus  

the event is called homogeneous .  This  co r responds  to rigid body  mo t ion  of the fault, 

and  is the m o t i o n  tha t  would  be seen in a one-b lock  system or  a comple te ly  smoo thed  

system. However ,  any small  devia t ion  from (s 1 - s2)i~t - 0 results in a qual i ta t ively  

different mot ion ,  as will be discussed. 

Mul t ip l e  Events  

F o r  high values of c~, the failure loci are qui te  nar row,  and two-b lock  events can 

involve more  than  one s tar t  and  s top  m o t i o n  for each block.  Such a mul t is l ip  event  

is shown in a conf igura t ion  space plot  (F igure  7) for c~ = 10.0. Possible  impl ica t ions  

of this more  compl i ca t ed  m o t i o n  and high c~ are ment ioned  later.  

1.00 

0.50 

S 1 o.oo 

-0.50 

- 1 .00 

-1.00 

. . . / .  " 

�9 f l i i ! ~ i i i 

-0.50 0.00 0.50 1.00 

Vol. 125, 1987 Two Degree of Freedom Earthquake Model with Static/Dynamic Friction 641 

$2 

Figure 7 
Multiple-slip Event in Configuration Space. This trajectory shows blocks 1 and 2 each slipping twice in one 
event. This is not a periodic orbit. Multiple slips can occur for certain initial conditions if the coupling ratio 

is relatively high. Figure 14 shows a different representation of a high e simulation. 
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Sequences of Events 

After an event, the system slowly reloads, one of the blocks reaches its failure 

locus, and another  event begins. In this model,  a sequence of events crudely rep- 

resents long- term seismicity patterns.  
All of our  simulations settle to one of several well-defined sequences of events: 

Either identical events occur  repeatedly, or two different events repeat  alternately. In 

the language defined below, all of these eventual  sequences correspond to orbits 

with periods of either 1 or 2. 
The sequence of events is described by the sequence of values of the stretch 

difference (Sl - s 2 )  as discussed previously. The sequences for all possible initial 
condit ions are characterized by the function relating (sl - s2) before one event to 

(sl - s2) before the previous event. This function is an i teration map.  

A Review of Iteration Mappings 

The brief discussion of i teration mappings  given here will help in the inter- 
pre ta t ion of plots that  appea r  later. A more  thorough t rea tment  can be found in 

DEVANEY (1986). 
An i teration mapp ing  is a function of one variable f (x)  used to determine a 

sequence of values x,. Thus  xo leads to xl  = f(xo) which leads to xz = f ( x  0 = 
f(f(xo) ) and so forth. More  compact ly ,  xn, the nth iterate o f f ( x )  is written as f"(x) 
or f ,(x). I tera t ion maps  are typically graphed in the form f (x)  versus x, equivalent 
to a plot  o f f " + l ( x )  versus f " (x )  or X,+l versus x,. For  our  study, x,  is the stretch 

difference just  before event n, (sl - s2)n. 
Fo r  a given m a p  f :  A fixed point is defined to be any x such that  f (x)  = x. It  

appears  on the i teration m a p  graph as an intersection of the curve f (x)  with the 45 ~ 

line y = x. A point  x and its iterates comprise  a periodic orbit of period n if f "(x) = 
x. A fixed point  can correspond to a limit cycle, which is a periodic orbit  of period 1 

that  is unique in its own neighborhood.  
The slope of a (smooth)  function f (the i teration map)  determines the stability of 

its fixed points. A fixed point  repels (is unstable) if the slope at that  point  has 
magni tude  greater  than 1, and attracts (is stable) if the slope magni tude  is less than 1. 
If the slope equals _+ l, higher derivatives are necessary to determine stability at that  
point. An at t ract ing fixed point  x o has the p roper ty  that  for x sufficiently close to Xo 

(inside the region of attraction),f "+ l(x) is closer to Xo than f"(x) .  A repelling point  
has an analogous  property .  A fixed point  with slope of _+ 1 is called nonhyperbolie; 
otherwise it is called hyperbolic. Nonhyperbo l ic  fixed points  have the proper ty  of  
being structurally unstable, meaning  a small change in the model  can result in a 

qualitative change in the sequence of events. 
Figures 8 show sample numerical ly-generated i teration maps  (sl - s2),+ 1 versus 

(sl - s2),, for a = 1.0, :~ = 1.35 and ~ = 2.0. The  compute r  s imulat ion generates 
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many points by solving the equations of motion for 200 or more initial conditions. 

These points have been connected by smooth curves. 

A function f can be iterated graphically as follows: from any point on the curve, 
find the next iterate by moving horizontally to the 45 ~ line, then vertically to the 

curve. (This does not yield an actual trajectory, but only the next point on the 

graph.) In all three figures, the origin (0, 0) is seen to have a slope of magnitude 
greater than 1, so it is unstable (a repelling point), and iterations diverge (as shown 
by graphical iteration in Figures 8a and 8c). However, Figure 8b shows convergence 

to one of two stable (attracting) fixed points (points A). 

In general, an nth-i terat ion mapping is necessary to detect period-n orbits and 
classify their stability. However, the antisymmetry of the maps presented here (which 

follows from the symmetry of our model) makes some period-2 orbits easy to 

detect. Any intersection of the curve with the - 4 5  ~ line y = - x  will represent a 

period-2 orbit. The approach to this orbit is also shown as a spiral out from near 

the origin in Figure 8c. Another period-2 orbit is shown as the larger square in 

Figure 8c. The approach to this orbit is not shown. It is not a limit cycle, since all 

points on the map curve in the bracketed part  of Region I also represent period-2 
orbits. A limit cycle of period 2 is represented as the inner square in Figure 8c, 
where iteration maps a point A to the corresponding point in the diagonally opposite 
quadrant,  and then back to the starting point, and so on. 

For  purposes of discussion, we label three regions on the iteration map curve. 

For larger values of e, new discontinuities (which are not shown in Figures 8, but do 

appear  in Figure 14) appear  on the map between Regions I and III. They are due to 
changes between different types of events. 

Period-1 Orbits: Homogeneous  Events  

A period-I orbit is found at the origin (0, 0) of all of the iteration maps. It is 

clear that if the system starts out with s 1 - s 2, then it will end up that way. However, 
the iteration maps show that this fixed point is usually not stable, because except for 

special cases, the magnitude of the slope at the origin is greater than 1. Thus 

regardless of how small (sl - sz) starts, it will diverge from the origin. A sequence of 
simulations started at various points near (s~ - s2) = 0 yielded the iteration map 
near the origin. Each numerically-obtained iteration map plotted on log-log axes 
showed a power low relationship near the origin: 

(sl - s2),+1 = A(s l  - s2)~. (12) 

Here A and b are constant for given c~. The exponent b was observed to always lie be- 
tween zero and one, equaling unity only or the cases of a = e,, with c~, defined 
a s :  

n 2 - 1 

~, - (n = 2, 3 . . . ) .  (13)  
2 
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Figures 8a,b,c 
Iteration Map Graphs. System configuration (sl - s2) after an event versus configuration before the event. 
These curves describe the evolution of the system. Regions on the curve are labeled for discussion. Inter- 
sections of the solid curve with the 45 ~ line y = x represent period-1 orbits. Intersections of the solid 
curve with the - 4 5  ~ line y = - x  represent period-2 orbits, due to symmetry. A fixed point (period-1 
orbit) attracts if its slope has magnitude less than 1, repels if the magnitude is greater than 1, and is 
neutrally stable if the slope equals _+_1. Given ( s l -  s2), find ( s l -  s2)n+l graphically by moving 

horizontally to the 45 ~ line, then vertically to the solid curve as indicated. 

8A. Iteration Map Graph for a = 1.0. Graphical iteration shows a point near the origin diverging from the 
fixed point and approaching the periodic part of Region I. The brackets in Region.I bound its periodic 

portion. (This periodic oribit is not shown in the figure, but a smiliar orbit is shown in Figure 8c). 

8B. Iteration Map Graph for a = 1.35. This close up of the center of the iteration map shows two fixed 
points, where the curve intersects the 45 ~ line at points A. Graphical iteration shows the approach to a 
fixed point, which is similar to the trajectories shown in Figure 10. All maps follow a power law close to 

the origin. 

8C. Iteration Map Graph for ~ = 2.0. The iteration map graph intersects the --45 ~ line at points A, 
resulting in a two-block period 2 orbit. This orbit is shown in configuration space in Figure 12. Graphical 
iteration is shown starting near the origin and entering this limit cycle. One-block period-2 orbits are 
also found for all points in the bracketed part of region I. The square indicates one such orbit period-2 

orbit. (A similar orbit is shown in configuration space in Figure 11). 
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Figure 9 
Change in the Iteration Map as a Passes Through a n. The slope of the iteration map graph changes sign, 
starting near the origin and gradually spreading to all of Region III (defined in Figure 8) as c~ gets further 
from ~,,. In (a), c~ = 1.45 and the map is continuous, with a weak singularity at the origin. In (b), cz = 1.5 
and the map is linear near the origin. When e = 1.55 (c), the iteration map has changed sign close to the 
origin (see insert), where the slope has magnitude greater than one (still infinite at  the origin). Further 

from the origin, the map has not changed much from the ~, case shown in Figure 9b. 

= ~, co r re sponds  to the ra t io  of  na tu ra l  frequencies c01/e) 2 in (8) having integer 

values. Except  for these special values of  ~, the power  law exponen t  b is less than  

one, mean ing  the m a p  is s ingular  at  the origin, and  the s lope there is posi t ive or  

negat ive infinity. Since the degree of ins tabi l i ty  of  a fixed po in t  is governed  by the 

magn i tude  of  its slope, the or igin is infinitely unstable.  However ,  as ~ approaches  c~,, 

the s t rength  of  this s ingular i ty  decreases,  until  finally when ~ = c~n, the s ingular i ty  

d i sappea r s  and  the or igin is bare ly  stable. These a sympto t i c  results could  poss ib ly  be 

der ived by analy t ic  means  but  we have not  done  so. 

W h e n  the na tu ra l  frequencies have integer ra t ios  and the power  law exponen t  is 

unity, the i te ra t ion  m a p p i n g  is l inear  near  the origin. As the coupl ing  ra t io  passes 

t h rough  any e,, an interes t ing change  appea r s  in the g raph  of  the i te ra t ion  map.  In 

add i t i on  to the s t rength of the s ingular i ty  changing,  the s lope of  Region  I I I  changes 

sign near  the origin. An example  is given in Figures  9 for c~, = 1.5. The  region  near  
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the origin is shown in detail. Figure 9a (~ = 1.45) shows the positive slope and the 
effects of the weak singularity (the region of infinite slope is too small to be clearly 
seen.). The intersections with the line y = x represent period-1 oribits. When e is 
increased to 1.5 (Figure 9b), the origin is no longer singular. Finally as ~ passes e, 
(Figure 9c, c~ = 1.55), the central-most region has slope opposite in sign to the maps 
for e slightly smaller than cq. As ~ gets larger, this central-most region grows in size. 
The iteration map shown in Figure 9c has intersections with the line y = - x ,  rep- 
resenting period-2 orbits. Each time ~ passes through e,, the iteration map changes 
between intersecting the y = x line and the y = - x  line, meaning the type of oribit 
switches between period-1 and period-2. 

Another interesting phenomena is associated with e passing through c~,. For c~ 
slightly greater than e,, the iteration map graph has x-axis intersections in addition 
to the usual crossing at (0, 0). These values of (sl - s2) map into the fixed point at 
the origin, resulting in homogeneous slip. However, as previously stated, the origin 
is singular and therefore unstable. 

When ~ --- ~,, (Figure 9b) the map is asymptotically linear at the origin. The 
origin is a weakly attracting fixed point, leading to homogeneous slip (for some 
initial configurations). These are the only observed instances of complete stress 

smoothing. 

Period-1 Orbits: Asymmetric Global Events 

Another type of fixed point is shown on the iteration map graph of Figure 8b as 
points A. Here the slope of the mapping has magnitude less than unity at the fixed 
points, so the period-1 orbit is stable for this value of e. The orbits are nonalternating 
asymmetric global events: global in that both blocks move during the event; asym- 
metric in that the two blocks do not start or stop at the same times; nonalternating 
in that they are period-l, with the same block starting first in each event, The 
block that starts moving first will stop moving last. However, both blocks slip the 
same distance during the event. Such an event occurs only when e is in certain 
ranges. Figure 8b shows graphical iteration of the approach to the fixed point. A 
trajectory corresponding to this convergence is plotted in configuration space in 

Figure 10. 

Period-2 Orbits: One-block Events 

Several types of period-2 oribits have been discovered. The first is a family of one- 
block period-2 orbits, which is found in the bracketed part of Region I, shown in 
Figures 8a and 8c. The periodic sequence involves one-block events that alternate 
between blocks (loading, block t slips then stops; loading; block 2 slips then stops, 
etc.). The nonperiodic events in Region I start outside the range marked with 
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Figure 10 
Period-I Limit Cycle. This trajectory is approaching a nonalternating asymmetric period-1 limit cycle, 
shown in configuration space. An initial configuration with (s 1 - sa) small is diverging from that state 
(through subsequent events) and converging to a period-1 limit cycle. The iteration map corresponding to 

this coupling ratio is shown in Figure 8b. 

brackets,  thus representing initial states of extreme heterogeneity,  which is part ly 
smoothed  in subsequent  events. (These nonper iodic  mot ions  are still one-block 

events.) F o r  the periodic par t  of  Region I, a point  with coordinates  (x, y) maps  to its 

reflected mi r ror  image ( - x ,  - y )  after one event, and back to itself (x, y) after two 

events. This limit cycle appears  as a closed ' bow tie' in configurat ion space, which is 

shown in Figure 11 (D-E-F-G) .  Fo r  the point  in Region I on the - 4 5  ~ line, the pair  
of one-block events would appea r  as a symmetr ic  ' bow tie' in configurat ion space. 

The time between events differs for different points  in the periodic par t  of Region I. 
In part icular,  this t ime is equal  for a symmetr ic  ' bow tie', and asymptot ica l ly  

approaches  zero where Region I is closest to Region I I  (and the ' bow tie' distorts to 
a triangle). The existence of this family of period-2 oribits can be justified graphically 
in the configurat ion plane, by not ing that  the failure locus is symmetr ic  with respect 
to the 45 ~ line (meaning the failure loci and  the s top lines form a rhombus ,  as shown 
in Figure 5). 

The  periodic par t  of Region I is stable in some sense, in that  all points  that  enter 
remain. Region I has unit slope due to the cons tant  stress d rop  F~ -- Fe (or cons tant  
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Figure 11 
One-block Orbit of Period 2. The initial configuration (point A) has led to a two-block event (B-B'-C), 

then to a one-block 'bow tie' orbit of period 2 (D-E-F-G). (See the outer square of Figure 8c.) 

slip distance) for a one-block event. That and the antisymmetry of the mapping 
imply that the second iterate f2  of the periodic part of Region I has a family of unit- 
slope fixed points. Thus the periodic part of Region I is not structually stable (since 
all points are nonhyperbolic when twice iterated). 

Some changes in the friction law might change the shape of Region I, and thus 
eliminate the presence of the family of period-2 orbits in Region I. But, as previously 
mentioned, the stress drop will also be constant if the model uses rate and/or slip 
displacement dependent friction. For such friction laws, period-2 orbits, unit slope 
and the structural instability of Region I are maintained. 

Period-2 Orbits: Asymmetric Global Events 

The second class of period-2 orbits are represented by points A in Figure 8c. 
They are alternating asymmetric global events: alternating in that they are period-2; 
asymmetric in that the blocks do not start at the same time; global in that both 
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blocks move in the event. The block that starts moving first will stop moving last, 

and slips a greater distance than the other block. The configuration space tra- 

jectory of this limit cycle is shown in Figure 12. For  ~ = 2.0, the region of at- 

traction is all of Region III. In particular, a point arbitrarily close to the origin 
diverges and is attracted into this limit cycle. Like the period-1 motion being 

approached in Figure 10, these period-2 limit cycles can exist only if ~ is in certain 

ranges. 

1 . 0 0  

0.50 

= 2 . 0  

Trajectory 

\ 

S1 o.00 t J / /  

-0.50 

-1.00 
-1.00 -0.50 0.00 0.50 1.00 

$2 
Figure 12 

Period-2 Limit Cycle. An alternating asymmetric global event. An initial configuration arbitrarily close to 
the origin will converge to this period-2 limit cycle (B-B'-C-D-D'-E). The iteration map corresponding to 

this coupling ratio is shown in the inner square of Figure 8c. 

Summary of Model Results 

All motions settle to period orbits. The following kinds of periodic motion 
cycles have been observed, and are illustrated schematically in Figure 13, where the 
horizontal lines indicate slip, and shading indicates the loading separating events. 

All periodic motions (one-block and two-block events) were found to involve only 
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single slips of each block. Multislip events were never periodic, but were part of 
trajectories that settled to periodic orbits. 

l Loading I ii(~ i~i i~iiiii i~ii!! 

Block 1 Block l - -  
+ 

Block 2 Block 2 
/ / _ / /  # _~ _ - - . / / - - - / / - - -# .  

Ttme Time 

Block I 

Block 2 

( a )  (b) 

# /,' 
Time 

Block I I -- 

{ 
Block 2 { 

/ ff Time # ~ 

(c) (d) 

Figure 13 
Schematic Figure of Periodic Event Cycles. Horizontal lines indicate times when the given block moves, 
and shading indicates the loading period between events. As indicated by the breaks in the time axis, the 
loading period is not shown to scale. In fact, it is much longer than the length of any event, a) Hom- 
ogeneous event, b) One-block event, c) Nonalternating asymmetric global events, d) Alternating asym- 

metric global events. 

a) Homogeneous events - -  Only for special values of the spring coupling ratio, 
= (n 2 - 1)/2 (n = 2, 3 . . . )  and a sufficiently homogeneous initial con- 

figuration does the system asymptotically approach homogeneous slip. This 
is stress smoothing (in the sense of Andrews). In the exceptional cases when it 
occurs, the approach to homogeneous slip is very slow. 

b) One-block events - -  For  any value of the coupling ratio ~, certain ranges of 
initial configurations result in period-2 orbits. Each event "involves slip of a 
single block. No smoothing is observed. Because of the structural instability 
of this solution, it is possible that this type of event could drastically change 
or vanish if the model was slightly changed. However, we have shown that 
several other friction laws (including one that contained a radiation- 
simulating linear viscous term) would yield such solutions. 

c) Nonalternating asymmetric global events - -  Some coupling ratios (~) 
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Figure 14 
Iteration Map for High Block Coupling. The iteration mapping is more complicated for higher block 
coupling. Due to the singular nature of static/dynamic friction, high block coupling does not approach a 

single-block system. 

above about 1.3 permit nonalternating asymmetric global-event limit cycles 
with period 1. The block that slipped first will slip first on the next 
even t .  

d) Alternating asymmetric global events - -  For  other values of the coupling ratio 
above about 1.3, there are stable limit cycles of period 2. The first block to 
start in one event is the second to start on the following event. 

The approach to the limit cycles in (c) or (d) represents event smoothing (in the sense 
of Cao and Aki), but not stress smoothing, because the limit cycle configuration is not 
homogeneous. When these limit cycles exist, certain initial conditions are attracted 
into them, and others to the period-2 orbits in (b). 

Some of these effects depend on the particular choice of friction law. However, 
the always-observed family of period-2 orbits of (b) will still exist in any model using 
a slip-displacement or rate dependent friction law. Any friction law with explicit 
time, absolute position, or state dependence will likely change the shape of Region I, 
eliminating the family of period-2 one-block orbits. More complex orbits are con- 
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ceivable, since an appropriate infinitesimal change of the shape of the iteration 
map graph in Region I (which generates these orbits) can yield arbitrarily complex 
orbits. 

One might expect that for the limit of high coupling, c~ ---, ~ ,  the motion of this 
two block system should approach that of a single block system. However, such is 
not observed because of the singular nature of the static/dynamic friction law being 
used. The iteration map graph for e -- 10.0 is shown in Figure 14. As is apparent 
(say from the scales of the iteration map graphs in this paper), the stretch difference 
(S 1 - -  $2)  does in fact go to zero for e---. c~. However, the friction force difference 
during loading, (1 + ~)(sl - s2), which is perhaps a more appropriate measure of 
heterogeneity, remains of order one. It seems clear then that the continuum limit, 
when the number of blocks is unbounded and ~ approaches infinity, is not trivial 

when using the static/dynamic friction law. 

Conclusions 

In this simple model, perhaps the simplest possible mechanical model for 
seismicity patterns, we find spatial structure in the 'earthquake' event patterns that 
is not connected with any spatial structure in the model. Further, all stable solutions 
break the Symmetry of the model (unless special values of the coupling parameters c~ 

are chosen). Homogeneous fault stress is generally unstable. 
The ultimate slip pattern depends on e, and also on the initial conditions for 

some values of ~. In all cases, one of the following inhomogeneous slip patterns 

repeats indefinitely: 

a) One-block event motions from above which roughly correspond to earth- 
quakes occurring in alternate locations. There is a family of this type of 
motion% so the relative time between events is indeterminate, and can be 

close to zero. 
b) Nonalternating asymmetric global events which correspond to a repeated 

earthquake. The location of the epicenter (the first'block to move) could be at either 

block, but remains at that block for all cycles. 
c) Alternating asymmetric global events which correspond to earthquakes where 

the location of the epicenter alternates (between blocks). 

Seismicity patterns are generated in this model through dynamics, not through 
any spatial structure in the model. For  any coupling ratio c~, there exist initial con- 
ditions for which neither stress smoothing nor event smoothing-occur. For most 
values of e, stress smoothing does not occur. That is, the slip difference (or pre- 
stress, or self energy) does not go to zero with successive events. The structural 
instability of some of our solutions implies a great sensitivity to details of the system 
properties and external loads, and may be related to the complexity of seismic 



Vol. 125, 1987 Two Degree of Freedom Earthquake Model with Static/Dynamic Friction 655 

patterns. It remains tO be seen how the results will generalize to more complex 
and/or asymmetric models. 
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