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Effect o f  Basal Gu ided  Waves  on  Landsl ides  

YOSHIMASA KOBAYASHI 1 

Abstract--A landslide model riding on basal guided waves is investigated to explain lower net 
frictions at high slide velocities from the wave-theoretical point of view. It is shown that there is a wave 
propagated along the basal layer at the phase velocity equal to the slide velocity, as well as a guided 
wave with considerably higher phase velocities propagated likewise along the basal layer as a leaking 
mode at low slide velocities. With increasing slide velocity the phase velocity of the guided wave 
decreases until it is equal to that of the slide mass. Over this threshold slide velocity, a "sonic boom" 
is generated around the basal layer, and the shock contributes to a loosening of the slide mass into a 
fluidized state. Landshdes on long slide-ways are more liable to exceed this threshold velocity since their 
slide velocities tend to be higher than those on short slide-ways of a similar shape. Hence, the reduction 
of net friction of landslides can possibly be better correlated with the lengths of slide-ways than with the 
volumes of landslides as is widely maintained. 

Key words: Landslide, wave theory, guided wave, threshold slide velocity, sonic boom, mechanical 
fluidization. 

Introduction 

SCHEIDEGGER (1973) pointed out an  observat ion that  the net friction (the 

tangent  of a slope connect ing  the top of the slide scarp and  the toe of the stopped 

slide mass) is lower in larger landslides than in smaller ones (Fig. 1). This 

p h e n o m e n o n  suggests that  there is some mechanism that reduces slide resistance 

more  strongly in larger landslides than  in smaller ones. M a n y  hypotheses have been 

proposed to explain the mechanism for this reduced net friction in large-scale 

landslides. The hypotheses are either those which assume some lubr icat ion media 

such as air (KENT, 1966; SHREVE, 1968), pore-water  (ASHIDA and  EGASHIRA, 

1986; SASSA, 1988), etc. (HAmB, 1975), or those which assume effects of  some 

dynamic  phenomena  such as acoustic fluidization (MELOSH, 1979), or basal pres- 

sure waves (FODA, 1993). 

In view of  long runou t  landslides observed in various condi t ions  which span dry 

to wet envi ronments ,  including those on the earth as well as on planets where no 
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Correlation between the volume of landslide and the net friction angle (height dropped/horizontal 
distance travelled). (Modified from SCHEtDEGGER, 1973.) 

sufficient quantity of  lubricant such as air or water can be expected (MELOSH, 
1986), it is possible to assume a mechanism that needs no lubricating materials to 
reduce slide resistance. The hypothesis of  acoustic fluidization by MELOSH (1979) is 
one of  such mechanisms and that of  basal pressure waves by FODA (1993) is 
another. The former is interesting, since it assumes a mechanism that facilitates a 
flow of granular material through temporal as well as spatial stress relieving by 
acoustic waves in the sliding mass, however it has not explained how the acoustic 
energy is generated in landslide masses: The latter has a desirable feature since it 
concentrates on the mechanism for generating basal waves which are related to the 
decrease of energy dissipation during sliding. FODA (1993) has shown the existence 
range of  such waves theoretically, but the characteristics of  the waves are not yet 
fully understood, and hence this hypothesis deserves further examination. 

In the present study, therefore, I will examine Foda's hypothesis from a 
wave-theoretical point of view and examine in detail the characteristics of  the waves 
predicted by the model. After the examination I will discuss briefly the effect of  the 
basal waves on the behavior of landslides of  various sizes. 

Formulation and Solution of the Basal Waves 

FODA (1993) examined whether a Kelvin-Helmholtz type instability can occur on 
the boundary between a thin basal layer underlain by the rigid basement and the 
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overlying elastic solid half-space corresponding to landslide mass (Fig. 2). He 
demonstrated theoretically that unstable waves can arise at the boundary when the 
slide velocity of  the overlying mass exceeds a threshold value. 

According to FODA (1993), we employ the two-dimensional Euler system (fixed 
to the space) and taking the x axis in the direction of sliding the equations of 
motion of the elastic solid are 

pt,~+ u~h7-~) =~ V:u+,_2~ ~j 

p(~+ u~S~)=G V:w+,-2v ~z j 
(1) 

where u and w are particle velocities in x and z directions, the z axis being taken 
perpendicular to the x axis upward, p the density, G the rigidity, v the Poisson's 
ratio, O the dilatation rate, and U the slide velocity of the landslide mass, 
respectively (see Fig. 2). The relations between stress rates and strain rates are 

G(2a~ 2v ) 
6-x= \ Ox+l~-T~v 0 
�9 8 u  

(ow ) 

FODA MODEL VELOCITY 

" U 
z h _ ,  u [ 

QROUNB 

Figure 2 
A model after FODA (1993). A horizontally sliding elastic half-space is underlain by a thin boundary 
layer sitting on the rigid basement. The boundary layer behaves as a granular material. An instability is 

expected to occur between the elastic body and the boundary layer. 
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In the basal layer it is assumed that the medium behaves as a mass of granular 
material, and that the following relations hold for horizontal velocity fluctuation Uo 
and vertical pressure in the basal layer p_. (both in a very thin basal layer do not 
depend on z), as well as the vertical displacement r/ on the boundary between the 
elastic solid and the basal layer, 

p ~?Uo/C3t = -Y~ Op~/Ox 

& l / ~ t  + h C3Uo/C3x = 0, (3) 

where ~ is the reduced coefficient of  lateral earth pressure, k = x - K 2, x and K 
being the coefficients of  lateral earth pressure and of friction in the basal layer 

respectively, and h the thickness of  the basal layer (FoDA, 1993) (Appendix 1). 
I f  no disturbance is given on the boundary between the basal layer and the 

overlying slide mass, the above relations are solved under the following boundary 

conditions at z = 0: 

and for infinitely large z 

w = & l / &  + U & I / c 3 x  

az = --p~ (4) 

~xz = K p ~ ,  

u, w -+O. 

We introduce two-dimensional velocity potentials ~ and ~ as follows: 

u = ~ 4 ~ / &  - ~ / &  

w = a4~/az  + a ~ / & .  (s) 

I f  we assume ~b and ~ in the forms 

~b = A exp( - a z  + i k x  - i~ot) 
(6) 

= B exp( - b z  + i k x  - iogt), 

and substitute them into (5) and (1), a and b should satisfy 

a 2 = k 2 - (~0 2 - k o ~ U ) / c ~  

(7) 
b 2 = k 2 - (r 2 - k o o U ) / c ~ ,  

2 2 = ()~ + 2 # ) / p  and c~ = # / p .  where Cp 
To be consistent with q5 and if, all variables are assumed to be proportional  to 

e x p ( i k x  - loot), i.e., 

tl = C e x p ( i k x  - iogt) 

Pz = Po e x p ( i k x  - ia~t). (8) 
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By using (3) we obtain 

C = (kh~)kpo/(pco2).  (9) 

The physical meaning of the assumed functions in (6) and (8) is a wave propagating 

along the boundary between the elastic half-space and the basal layer at a wave 

number  k and a frequency co. 

Substituting u, co, r/ and p~ into the boundary conditions (4), we have the 

simultaneous equations in terms of P0, A and B, 

( --ico + ikU)(kh~)kpo/ (p~o 2) + aA -- i kB  = 0 

icopo + 2 G ( v k  2 + ( 1 - v)a2)A /( I - 2v) + 2 i G k b B  = 0 (10) 

- i c o K p o  + 2 iakGA + (k 2 + b2)GB = O. 

I f  a disturbance is given on the boundary, the right-hand side of  (10) is a 

nonzero vector corresponding to the disturbance given, and the solutions for p:, 49 

or ~ have the form such as 

p~, 49 or ~k = F(k ,  co~ exp i ( k x  - cot) dk  do) ( I 1) 
o o  oO  

where F(k ,  co) is the determinant made of the coefficients of  (10): 

( - ico + i kU) (kh~)k / (pco  2) 

F(k ,  co) = ico 

- i~oK 

a - ik 

2 G ( v k  e - (1 - v)a:) / (1  - 2v) 2iGkb  , 

2 iakG (k 2 + b2)G 

(12) 

and G(k,  co) is the determinant made from F(k ,  co) by replacing the first, second or 

third column for Pz, 49 or O respectively by the vector in the right-hand side of  (10). 

So as to examine the solution for (1 1), we consider the integration in terms of 

co while k is kept fixed, e.g., 

f_ ~ G(k ,  co) exp( - a z  + ikx  - io~t) do ,  
~ (k ,  t) = ~ F(k ,  co~ (13) 

where @k, t) is the Fourier transform of 49(x, t) in t e rms  of  space x. 

Major contributions of  an integral of  the form ( 1 3) will be given by the poles of  
the integrand, and we examine the zeros of  the denominator,  

F(k ,  co) = O. (14) 
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In the case o f  v = 0.25 this yields the characteristic equat ion in a nondimensional  

form, 

F(k ,  co)/cob ~ = - i( 1 - k U /co)(khK)(G b/co) 2(k/b) 

�9 [{(k/b)  2 - 3 (a /b)2}{(k /b)  2 + 1} + 4(k/b)e(a/b)]  

+ i[(k/b) 2 - 1](a/b) + K[(k /b )  2 - 3(a/b)2](k/b) 

+ 2K(k /b ) (a /b )  = 0. (15) 

The problem to be examined pertains to the kind of  roots  the characteristic 

equation may  have, and if it has real roots  o f  co for a fixed k, it implies that  the as- 

sumed wave can exist as a sustaining (normal)  mode.  Considering that  the time 

dependence o f  the assumed functions is exp( - ico t ) ,  the contour  integral should be 

conducted in the lower half  plane, and hence the complex roots o f  ( l  5) in the nega- 

t ive-imaginary co area will contribute the integral as decaying waves (Appendix  2). 

Waves Predicted by the Basal -wave  M o d e l  

In the previous section we have derived the characteristic equat ion for the basal 

wave proposed by Foda.  Here, we will examine the waves predicted by the model. 

First, we will simply touch upon  the body  waves with the wave number  k that  

can be excited in the elastic half-space. In integral representation o f  waves (13), body  

waves are evaluated by branch line integrals encircling the branch points given by 

the zeros o f  (7). They will yield the phase velocities o f  c = co/k ~_ U/2  + cp and 

c = co/k ~- U/2 + cs for U << Cs, which show a kind of  Doppler  effect, depending on 

the direction of  propagat ion.  They are P and S waves (homogeneous  waves) along 

the boundary  in the elastic body. 

Next, we examine the absolute value o f  the characteristic equat ion (the denom- 
inator o f  the integrand) IFI. When the denomina tor  o f  a function has a min imum 

at a point  while the numera tor  remains stable, the function will pose a peak that  must  

be either a smooth  mound,  saddle point  or pole. On the other  hand, an analytic 

complex function can never have smooth  mounds ,  and therefore if there is no such 

indication o f  a saddle point, the min imum of  the denomina tor  must  give a pole. 

We can see that IF] has a minimum (zero) in the negative-imaginary co area for 
slide velocity U = 0 (Fig. 3). In calculating the characteristic equation,  parameters  

Figure 3 
Diagrams showing the zero of the characteristic equation F = 0 for the guided wave along the basal layer 
when the slide velocity is zero for the cases of the basal layer thicknesses; a) h = 0.1 m, b) h = 0.2 m and 
c) h = 0.5 m. S-wave velocity is 150 m/s and Poisson's ratio is 0.25. The wave number k is fixed at 1.0 m - i 

Contour lines are for IF[ in arbitrary scale. Minima are indicated by L. 
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for the elastic body and the basal layer are assumed as follows: S-wave veloc- 
ity = 150m/s and v =0.25,  and for the basal layer k = 1.0m -~ (wavelength of 
2n/k = 6.28 m) and h = 0.1, 0.2 and 0.5 m. The reduced coefficient of lateral earth 
pressure ff and the coefficient of friction K are assumed to be 0.3 and 0.6 
(corresponding to x = 0.66), respectively. The parameters in the following calcula- 
tions are always the same if not stated otherwise. The minimum in the contour map 
corresponds to a guided wave in the basal layer. It resembles a leaking mode, 
because the pole of (13) with a small imaginary part of co represents a normal-mode 
wave plus body waves that are propagated away from the basal layer into the upper 
elastic half-space (see Appendix 2). It may be interpreted that the energy of the 
guided wave leaks in the elastic half-space and it would decay if additional energy 
was not supplied during sliding successively. The values for the real part of co are 
about 29, 40 to 55 s -  1 for k = 1.0 m -  1, i.e., the phase velocities are about 29, 40 to 
55 m/s depending on the thicknesses h =0.1,  0.2 and 0.5m, respectively. This 
dependency of the velocity on the thickness is analogous to that of long waves in 
shallow water whose velocities are higher in deeper water. 

Now, let's turn to the cases for nonzero slide velocities. So far, in the analysis 
using the function exp(ikx - icot), we have intuitively assumed that k and co as well 
as U are positive. We will examine here the waves propagated in and against the 
direction of sliding. A comparison of the cases for two equal U's, but with the 
opposite sign, is shown in Figure 4. The thickness of the basal layer is 0.1 m. It is 
interesting to note that both contour maps give similar poles in the negative co area 
but slightly different angular frequencies. This difference is caused partly by the 
Doppler effect on propagation of the guided waves toward + U, respectively and 
partly by an effect of the slide velocity U on the characteristic equation F of (15). 

The above discussion demonstrates that the waves predicted by the Foda model 
are physically reasonable, and we will see the effect of slide velocity on the basal 
waves in the next section. 

Effects of  Slide Velocity on the Basal Waves 

The loci of the poles for various slide velocities are shown in Figure 5. In the 
low U range (U up to about 10 m/s), it is noted that there are in general two poles: 
one on the real ~o axis and the other in the negative-imaginary co area. The 
imaginary part of the latter is not large and the dissipation is presumed to be small. 
As the slide velocity is increased, the former pole is shifted to the right on the real 
09 axis to the angular frequency corresponding to the phase velocity equal to the 
slide velocity U, i.e., c = co/k = U. It is easy to see from (15) and (7) that as far as 
co remains real, co = kU always gives a root of F = 0. This corresponds to the wave 
that is propagated at the velocity equal to that of the landslide mass. The latter pole 
is shifted to the left, i.e., to a lower frequency with increasing slide velocity. 
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Figure 4 

Diagrams showing the zeros of the characteristic equation F = 0 for positive and negative slide velocities, 
U = + 4 . 0  m/s. The wave number k is 1.0 m - I  and the layer thickness is 0.1 m. Other parameters are the 
same as in Fig. 3. Contour lines are for IFI in arbitrary scale. Minima are indicated by L and maxima 

by H. 

Thus, both poles approach each other first with the increase in the slide velocity, 
but at a certain slide velocity, at about 11 to 12 m/s in the present case, the second 
(complex) pole begins to deflect downward, while the first (real) pole continues to 
move to the right on the real co axis. The guided waves after this downward 
deflection are more dissipative than in lower slide velocities. At this velocity the 
third pole appears in the positive-imaginary co area: this does not contribute to the 
integral as is shown in Appendix 2. It is difficult to determine exactly at which 
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Figure 5 
Loci of zeros of the characteristic equation F = 0 for various slide velocities, U. Numbers attached to 
dots on the loci are the velocity of the slide that gave the zeros. There are three loci connecting the zeros 
with a negative-imaginary part of 09 and those on the real 09 axis for low slide velocities as well as those 
with a positive-imaginary part of 09 that appear only for high slide velocities. Parameters except the slide 

velocity are the same as in Figure 3. 

frequency the phenomenon  described above occurs, however  a round  this sliding 
velocity, the guided wave with a negative-imaginary e~ part  is caught  up with the 
wave at the velocity U which is being propagated  with the sliding mass. 

In  the elastic wave theory it is known that  the stresses caused by a moving 
surface load increase drastically as the velocity o f  the load approaches  that  o f  the 

Rayleigh wave (EASON, 1965). I f  this principle can be applied to the present model 
even though the guided waves in high slide velocities are rather dissipative com- 

pared to Rayleigh waves, a "sonic b o o m "  is expected to be generated in the basal 

zone o f  the slide; this occurs because over this slide velocity the effect o f  the 

disturbance given to the base o f  a landslide at a location fixed to the reference 
cannot  be propagated  away in the forward direction in the form o f  the guided wave 
any more  and the energy must  be accumulated near the wave front  with lapse o f  
time. 

Thus, there is a threshold velocity to generate a "sonic b o o m "  corresponding to 
an assumed wave number  k. For  higher positive slide velocities, a shock front  will 
be propagated  in the forward direction (which is beyond the scope o f  the present 
analysis), while in the opposite direction there is still a normal  guided wave 
correponding to the pole located in the negative-imaginary ~o area; see Figure 6 for 

U = • 16 m/s. 
The fact that  the pole located on the real ~o axis is found only in the map  for 

positive U is natural,  since it corresponds to the wave proceeding in pace with the 
landslide mass. 
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Diagrams showing the zeros of the characteristic equation F = 0 for positive and negative slide velocities, 
U = + 16 m/s, exceeding the threshold value. The zero on the real oJ axis for positive U corresponds to 
the wave propagated at the velocity equal to that of the landslide mass. This pole is not found for 
negative U. Parameters are the same as in Figure 4. Contour lines are for IFI in arbitrary scale. Minima 

are indicated by L and maxima by H. 

Discussion on Effects o f  Basal Waves on Landslides 

T h e  analys is  in the  last  sec t ion  shows  a va r i ab l e  effect  o f  the  gu ided  w a v e  in the  

basa l  pa r t  o f  l ands l ides  d e p e n d i n g  on  the  sl ide veloci ty .  I t  was  f o u n d  tha t  a shock  

s imi la r  to  " s o n i c  b o o m "  can  ar ise  in the  basa l  z o n e  i f  the  slide ve loc i ty  exceeds  a 

th resho ld .  Th i s  m a y  poss ib ly  be  r e spons ib l e  fo r  r educ ing  the  res i s tance  in lands l ides .  
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Although FODA (1993) made an energy calculation accompanying the basal 
pressure waves to show a smaller energy dissipation being realized at high slide 
velocities, we will not do this since quantitative evaluation of energy in the 
supersonic state is in general difficult. Thus, we will discuss the problem here only 
qualitatively. 

Initially we consider two landslides on two long and short geometrically similar 
slide-ways that have equal coefficients of friction. Denoting the quantities for the 
slide on the long slide-way by upper-case characters and those on the short one by 
lower-case characters, the accelerations they acquire under the effect of gravity will 
be equal to each other, i.e., A = a. Under geometrically similar conditions, the 
attained distances, after sliding up to the corresponding locations on the two similar 
slide-ways, will be L > l. Accordingly, the times needed by the slides on the long 
and short slide-ways to travel the above distances are respectively T = x/72L/A 
oc x / ~  and t = 2 x / ~  oc ,,/l. The velocities that the two slide masses will acquire in 
the time spans above would be U = ~ oc x / ~  and u = x / / ~  oc x/~, and there- 
fore U > u. Hence, even on geometrically similar slopes, a slide on a longer 
slide-way will have a higher chance to exceed the threshold velocity, since it can 
acquire higher velocity than that on a shorter slide-way. 

If the above reasoning is correct, only the landslide on longer slide-ways will 
take a different time-distance process after the threshold has been exceeded (Fig. 7), 
i.e., landslides on small-scale slopes remain normal, while those on large-scale 
slopes behave abnormally, since a shock wave is excited which in turn contributes 
to the loosening of  rock masses during sliding. As a result, the coefficient of friction 
only for landslides on originally long slopes is reduced, and the masses travel 
considerably longer distances than those proportional to the initial coefficients of 
friction. 

It is normally difficult to give direct evidence for the present postulate because 
of  difficulty in data acquisition in real landslides, however there is useful supporting 

0 l L L~ 

Figure 7 
Comparison between slides on long and short geometrically similar slopes. U, L, l are slide speeds, the 
traveled distances of slides on long and short slide-ways, respectively. Only the slide on long slide-way 
can exceed a threshold speed U~, and may travel a larger distance than that anticipated from the usual 

coefficient of friction. 



Vol. 142, 1994 Effect of Basal Guided Waves on Landslides 341 

information: first, this sequence is consistent with DAVIES (1982), who ascribes 
Scheidegger's finding to the spreading of debris mass caused by "mechanical 
fluidization." He maintains that high rates of shear in the basal region of a slide are 
responsible for causing mechanical fluidization with locally high dilation and 
reduction of internal friction. He maintains this mechanism as a high-velocity 
extension of BAGNOLD'S (1954) results; second, it was observed in the deposits of 
a debris avalanche that rigid plugs 5 to 7 m thick were underlain by laminar 
boundary layers 10 to 15 cm thick which seemingly had been under strong shear 
(TAKARADA, 1991); and third, there are many reports of  a great roar or noise 
having accompanied large debris avalanches or rapid landslides, e.g., Mt. Huas- 
caran in Peru in 1970 (CLUFF, 1971 and PLAFKER et al., 1971), and Mt. Ontake in 
Japan in 1984 (OKUDA et al., 1985). These noises strongly suggest a self-exciting 
mechanism for shocks or oscillations in the basal zone of landslides. 

Conclusions 

The possibility of basal pressure waves proposed by FODA (1993) has been 
investigated from the wave-theoretical point of view. 

Characteristics of the waves predicted by the Foda model are investigated and it 
is found that there are two types of waves excited along the basal layer: the first is 
a normal-mode wave that is propagated at the velocity equal to that of the landslide; 
and the second is a decaying wave guided along the basal layer. The latter is caught 
up with the slide mass in high slide velocities exceeding a threshold. This causes a 
"sonic boom"  phenomenon that may contribute to the loosening of sliding masses. 

The slide velocities of landslides on long slopes tend to be higher than those on 
short slopes of  geometrically similar shape, and the velocities on long slopes are 
more likely to exceed the threshold value which causes the sonic boom than those 
on short slopes. Long-runout landslides on a gentle slope thus may be explained by 
the loosening of  material caused by a shock wave and reduction of the coefficient 
of friction of the slide mass as a result of "mechanical fluidization." 

Experiences in past landslides such as observed basal layers under plug flows in 
debris-avalanche deposits as well as a great roar or noise accompanying large debris 
avalanches support the present postulate. 

Appendix 1 

We will derive the reduced coefficient of  lateral earth pressure g only briefly (for 
details see FODA, 1993). In the basal zone we assume a shear flow Ub in the x 
direction superposed by perturbation velocities ul and u2 in the x and z directions, 
respectively, i.e., 

u = U s ( z )  + Ul 
(AI.1) 

W ~ U 2 . 
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We assume further a basal material to be incompressible, 

~u/~x + Ow/~z = 0. (A1.2) 

The conservation of  momentum in the horizontal and vertical directions is ex- 
pressed by 

p(~u/Ot + u ~u/Ox + w ~u/~z) = - ~ p x / ~ x  + Opxz/Oz 

p(Ow /~t + u Ow /Ox + w Ow /~z) = Op~z /Ox - ~p~ /Oz, (A1.3) 

where p is the bulk density, and p~, Pxz and Pz are the components of  perturbation 
pressure tensor. If  we substitute u and w of (A1.1) in (A1.3), we have as a first 
approximation 

p(Oul/Ot + Ub ~ul/Ox + uz OUb/OZ) = --Op~/~X + Opxz/OZ 

P(Ou2/Ot + Ub Ouz/OX + u2 Ou2/Oz) = Opxz/OX -- tgpz/OZ. (A1.4) 

If  we assume a very thin basal zone relative to wavelengths (2re/k), i.e., hk << 1, then 
the left-hand side of the second equation of (A1.4) may be neglected, since 

u2 = O(ul ) * hk. Thus, 

a p ~ / ~ x  = ~pz/OZ. (A 1.5) 

Now we try to gain an averaged expression for the basal layer, and to this end 
we integrate the first expression of  (A1.4) in terms fo z. According to FODA (1993) 
we assume for Ub and u2 the following relations, 

Ub = U(z/h) + ~ a, sin(2nrc(z/h)) 
n = l  

(A1.6) 

u2 = Orl/Ot �9 (z/h) + ~ sin(2nrffz/h)). 
n ~ l  

Then, it is easy to show 

fi ~(Ub OUl/aX + OUb/Oz) dz = 0. (A1.7) U2 

Therefore, the first of  (A1.4) is 

p(Ouo/dt) = - Opx/Ox + ~3px ~/Oz, (A1.8) 

where uo is the average of  u~ over the height h. 
The right-hand side of  (A 1.8), - d p x / ~ x  + OPxz/Oz, can be rewritten by using the 

relations in the granular material in the basal layer, p~ = ~cpz and Px~ = Kp~, (or  

Opx/Ox = x ~p~/Ox and Opxz/Oz = K ~p~/Oz as well as ~p~ #gx = K Op~/3x) and 
(A1.5). Thus, the first term of  the right-hand side of  (A1.8), 

-aPxlOx = - x  ~p~lOx 
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and the second term of the right-hand side of  (A1.8), 

~Px~/?z = K O p : / O z =  K OPx:/Ox = K z Op:/Ox, 

and finally, 

p(Ouo/dt) = - (K - K 2) c~p:/Ox. 

This leads to the first expression of  (3). 

343 

(AI.9) 

A p p e n d i x  2 

Integration of the type of (13) is normally difficult, since the integrand is 
not single-valued because of the radicals a = + _ x / k 2 - ( 0 9 2 - k 0 9 U ) / c 2 p  and 
b = + _ x / k 2 - ( 0 9 2 - k 0 9 U ) / c ~  included. We avoid the difficulty by replacing the 

variable 09 by a complex variable f~ = 09r + i09i and introducing branch cuts to make 
the integrand single-valued. On the permissible sheet 91(a) > 0 and 9t(b) > 0, where 

the factors e ~ and e -b~ do not diverge for large z. 

The branch cuts should be given therefore by 9 t (a )=  0 and 9~(b)= 0. For 

simplicity we examine the branch cuts for the case U = 0. For complex ~ = 09r + i09~ 
and k = k~ + ik~, 

a 2 = (k~ - k2 + 2 ikrk i )  - (09~ - 09 2 + 2i09r09i)/c~ 

(kr ~ k2 )  (09~ 2 2 . . . .  09, )/Cp + 2i (krk i  - ( f lrO)i/C 2 )  (A2.1) 

should be real and negative on the branch line (because a is pure-imaginary on 

~(a) = 0). Therefore, 

Likewise, from ~R(b) = O, 

k r k  i = (Dr(Di/C 2 

09~ - 0 9 2  

Cp 

(A2.2) 

k r k ,  = 09r09,/c~ 

09~ -092 
k~ - k2 < - -  2 

e s 

(A2.3) 

The branch points are located in the second and fourth quadrants as required 
from the condition that the contributions of the branch-line integrals corresponding 
to positive co's should be obtained by contour-line integrals in the lower half plane 
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*: ) ~ r  

a(b) = 0 

% 

o ~(b) = o 

/ = O~ 

I / i  / ,/" 
/ /  ," 
I I ~(~) = 0 ,, 
I~ / /  
I! , ' /  

- -  Od i 

Figure A2.1 
Illustration to explain the contour  line for integration (! 3) in the text. A pole corresponding to the wave 
propagated with the landslide (~u) and two branch points (~% and COb) should be encircled by the 

contour in the negative-imaginary ~o area. U is assumed to be zero. 

(Fig. A2.1). From this condition ki must be small negative for k~ > 0. Thus, by the 

two conditions, the branch points ~a = cpk and r~ b = csk are located in the fourth 

quadrant for positive k. 

When the branch cuts in the fourth quadrant degenerate into a part of  the real 

r~ axis (Fig. A2.2), the net contributions from the branch line integrals are given 
only from the lower sides of branch cuts, since the contribution from the upper 

side of a contour toward the left is canceled out by that from the upper contour 
toward the right in contact with the former contour. The contributions from the 

branch-line integrals are proportional to exp( - a z  + ikx) = exp( - a r z  - iaiz + ikx). 
In the lower sides of the~branch cuts ai < O, and the waves proportional to 
e x p ( -  iaiz + ikx) correspond to waves propagating away to the right and slightly 

upward from the basal layer. 

0 
C ~ ~ Cdr b, 

I 

k)u  W b 6da 

ax---O-2=-'~_ _ 
| -I 
wg ] 

i t 

Figure A2.2 
Contour  line for integration (13) in the text when o9 and k are taken as real. The pole corresponding to 
the guided wave along the basal zone (egg) is still complex and encircled by the contour.  U is assumed 

to be zero. 
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The pole contribution by the guided wave is also obtained from that in the 
fourth quadrant, and the integral of the type, 

~_ ~ df~, (A2.4) 
o o  

is conducted along the contour shown in Figures A2.1 or 2. The negative-imaginary 
co part of the pole also implies body waves propagating away from the basal zone 
as explained for branch contributions. 
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