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The  D a m a g e  M e c h a n i c s  o f  Bri t t le  Sol ids  in C o m p r e s s i o n  

M. F. ASHBY ~ and C. G. SAMMIS 2 

Abstract--The development of microcrack damage in brittle solids in compression is analyzed, 
using a simple model. The model is developed from recent detailed analysis of the initiation, propagation 
and linkage of microfractures from pre-existing cracks, voids, or other inhomogeneities. It describes the 
evolution of damage with strain and from it a criteria for failure can be established. The results are used 
to construct failure surfaces in stress space which combine information about brittle failure with data 
describing the onset of plastic yielding. Such failure surfaces are constructed for a number of rocks and 
are compared with previously published experimental data. 

Key words: Damage mechanics, brittle fracture, microcracks, fracture mechanics, rock mechanics, 
fracture nucleation, crack growth. 

I. Introduction 

When a brittle solid is loaded to failure, it does so by the propagation of cracks. 
The cracks nucleate and propagate from inhomogeneities, by which we mean holes, 
inclusions, microcracks, surface scratches or other defects. The difference between 
compressive and tensile fracture is that in tension a single crack grows unstably 
(once started, it accelerates across the sample to cause failure) while in compression 
a population of small cracks extends stably, each growing longer as the stress is 
raised, until they interact in some cooperative way to give final failure (Figure 1). 
Because of this, the strength of a brittle solid in compression is usually greater, by 
a factor of ten or more, than that in tension. 

Measurements of the crushing strength of stone, brick and of cement must have 
been of interest to civil engineers since pre-Roman times. Systematic measurements 
of compressive strength really began about the middle of the last century (for its 
history, see JAEGER and COOK, 1976) but without much attempt to understand 
what determined it, or why brittle materials had useful strength in compression but 
none to speak of in tension. Elucidation of the mechanics of brittle tensile fracture 
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Figure I 
Compressive failure of a brittle solid containing a distribution of flaws. 

has its roots in the work of GRIFFITH (1924), IRWIN (1958) and others that 
followed (see KNOTT, 1973, for a review), which has led to the development of 
fracture mechanics as a branch of engineering design. 

The understanding of compressive brittle fracture is more recent, and still 
incomplete. A recent series of papers and reviews (GRIGGS and HANDIN, 1960; 
PATERSON, 1978; HALLBAUER et aL, 1973; TOPPONNIER and BRACE, 1976; WAW- 
ERSIK and FAIRHURST, 1970; WAWERSIK and BRACE, 1971; NEMAT-NASSER and 
HORII, 1982; NEWMAN, 1978; ASHBY and HALLAM, 1986; SAMMTS and ASHBY, 
1986) have established that an isolated crack in a large body grows stably until its 
length becomes comparable with the dimension of the body itself; and that when 
many cracks are present (as they always are in natural rocks, in brick, in concrete 
and most ceramics) the cracks grow stably until their length is comparable with 
their spacing, when they interact, an instability develops, and the sample fails. 

The problem can be complicated by time-dependent effects (ANDERSON and 
GREW, 1976; MARTIN, 1972; WAZA et al., 1980; SANO et al., 1981; COSTIN and 
HOLCOMB, 1981; ATKINSON and MEREDITH, 1987b), which have at least two 
origins. On the one hand crack growth can be limited by a chemical reaction, often 
with water. On the other, cracking in compression is associated with dilation; if the 
body is saturated with a fluid, then its flow into the dilating region can introduce 
a time-dependent aspect to fracture. In both cases, a static load which does not 
immediately cause failure may still do so if left in place for a sufficient length of time. 

The understanding of compressive brittle fracture is still incomplete, but the 
mechanisms involved are much clearer than a decade ago. It seems an appropriate 
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time to try to abstract from the new observations and modelling a simplified 
description of compression-cracking, basing it as far as possible on the physical 
understanding. The goal is to develop a damage mechanics of brittle solids, from 
which the stress-strain response and an operational definition of failure can be 
derived for a material with a given set of elastic properties and given defect 
population, under a given state of stress. Two attempts to achieve this can be found 
in the open literature; that of COSTIN (1983, 1985), and that of SAMMIS and ASHBY 
(1986). Central to the problem is the relationship between stress and crack 
extension. COSTIN ( 1 9 8 3 ,  1985) postulates a relationship of reasonable form, and 
develops from it expressions for the failure surface which (with some adjustable 
parameters) give a good description of the experimental data available at that time, 
but the model is not based on a physical model for crack growth. SAMMIS and 
ASHBY (1986) and ASHBY and HALLAM (1986) use methods of fracture mechanics 
to develop a physical model for crack extension, which they use to plot stress-strain 
curves for brittle solids from which failure surfaces can be constructed, but the 
complexity of their model makes the process cumbersome. In the present paper we 
attempt to develop a simpler, model-based mechanics of brittle compressive frac- 
ture, drawing heavily on the previous pieces of work. 

2. Crack Initiation & Compression 

Most brittle solids contain inhomogeneities: small holes or cracks, particles 
which are poorly bonded, or phases which have different moduli or strengths from 
those of the matrix. Any one of these can act as nuclei for new cracks when the 
solid is loaded. 

The range of possible nuclei is wide, but the spectrum of their characteristics is 
probably bracketed by two extremes: the spherical hole and the sharp inclined crack 
(Figure 2). Both have been studied experimentally and both have been modeled, the 
first by 'SAMMIS and ASHBY (1986) and the second by NEMAT-NASSER and HORII 
(1982) and ASHBY and HALLAM (1986). In both cases, the criterion for crack 
initiation, under axisymmetric loading has the form 

0-1 ~--- Cl 0"3 - -  0"0 

where Cl and 0-o are material properties, 0-1 is the axial stress, and 0-2 = 0-3 the radial 
stress (both positive when tensile, negative when compressive). 

In the later development of this paper we consider the growth of crack-damage 
from initial, inclined cracks as in Figure 2a. For this case (NEMAT-NASSEg and 
HORII, 1982; ASHBY and HALLAM, 1986) cracks initiate when 

(1 +#2)1/2+# x/~ K,c 
0"1 =(1 +g2)1/2_#0"3 (1 +/~2)1/2 # x / ~  (1) 
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Cracks can initiate at inclined flaws and at holes. In both cases there are two contributions to K z, the 
opening stress intensity at the tip of  the growing wing cracks. One is caused by the stress concentrations 

at the flaw; the other is due to the closing effect of  ~r 3. 

where # is the coefficient of friction acting across the crack faces, Klc is the fracture 
toughness of the material through which the new crack propagates, and 2a is the 
length of the original inclined crack. Rocks, typically, show a coefficient of friction 
of about 0.6, in which case Ct = 3.1 and ao = 3.1 Ki t /v /~ .  Crack initiation from 
holes (SAMMIS and ASHnY, 1986) gives similar values. 

Crack initiation can be detected in several ways: by the start of acoustic 
emission, by the first nonlinearity of the stress-strain curve, by the dilation of the 
sample, or by a sudden increase in internal friction. None give very accurate data, 
but they do allow a test of eq. (1). Figure 3 shows data for crack initiation in 
Westerly granite obtained by the first three techniques (HOLCOMB and COSTIN, 
1986; BRACE et al., 1966) plotted on axes of th and a3 to allow comparison with eq. 
(1). The linear relationship gives a good description of the data with a slope 
between 2.7 and 3.3 (corresponding to # =0.55 to 0.64) and an intercept of 
70-79MPa (corresponding to a crack length 2a close to l mm when 
Klc = 1 MPa roWE). 

The theory gives an adequate description of the data. It is used to describe the 
initiation of damage in the diagrams shown later. In each case, experimental data 
are fitted to eq. (1) to give # and a (using published data for K~). Results of this 
analysis are summarized in Table 1. In the computations, it is convenient to 
normalize the equations by the quantity KIc/q/-~, giving 

Sl = cl $3 - So (2) 
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Figure 3 
Data for crack initiation in Westerly granite. Crack initiation data for several other rocks are analyzed 
in Section 4. In all cases the data are well fitted by equation (1) with a coefficient of friction between 0.55 

and 0.65. 

with 

s3 = l K ,  c 

(1 ..~_ ~/2) 1/2 q_ ~/ 

cl (1 + 1 ~ 2 ) v 2 - #  

So- 
(1 + u2) l/z - I t. 

(3) 

3. Crack Growth and Interaction 

Once initiated, the wing cracks (as we shall call the crack-like extensions of the 
original flaw) grow longer. During growth, the stress intensity Kz at the tip of each 
wing crack is equal to, or exceeds, the fracture toughness Kzc of the solid. The 
condition for crack advance is simply 
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Table 1 

Material Properties of the Rocks and Fitted Model Parameters (Bracketted data are estimates) 

Material(*) K (GPa) E (GPa) Sy (MPa) Klc (MPa m ~/2) 2a (mm) # D O C 3 
(j) (j) (k) (1) (n) (n) (n) (n) 

ECLOGITE (a) 94 130 4000 (1.0) 0.6 0.6 0.08 2�9 
DUNITE (b) 130 150 3500 (1.0) 1.0 0.6 0 .04  2.0 
APLITE(c) 58 - -  2300 (1.0) 0.2 0.60 0.08 2�9 
GABBRO (d) 60 92 2200 (1.0) 0.8 0.55 0.12 2.0 
GRANITE (e) 58 70 2200 1.0 1.0 0.64 0.01 2.0 
SANDSTONE (f) 130 130 1000 0.7 2.0 0.60 0.15 2.0 
LIMESTONE (g) 70 77 700 0.6 0.05 0�9 0.15 2.0 
MARBLE (h) 70 70 350 0.64 0.35 0.6 0.12 2.0 
ROCKSALT (i) 37 37 65 0.23 0.5 0.55 0.20 2.0 

(a) Eclogite; SHIMADA et aL (1983). 
(b) Dunite; SHIMADA et al. (1983). 
(C) Aplite; BRACE et al. (1966). 
(d) Gabbro; SHIMADA et al. (1983). 
(e) Westerly Granite; BRACE et al. (1966), MOGI (1966) and HOLCOMB and COSTIN (1986). 
(f) Medium-grained Buntsandstone; GowD and RUMMEL (1980). 
(g) Solenhofen Limestone; HEARD (1960). 
(h) Carrara Marble; VON KARMAN (191 l) and EDMOND and PATERSON (1972). 
(i) Rocksalt; HANDIN (1953) and HUNSCHE (1981). 
(j) Bulk modulus K and Young's modulus E from BIRCH (1966). 
(k) Derived from data plotted in Figures 11 to 24. 
(1) ATKINSON and MEREDITH (1987). The lowest published value was chosen in each case. 
(n) Obtained by fitting the data of Figs. 11 to 24 to the equations of the text. 
(*) We assume ct = 0.7 and fl = 0.45 for all materials. 

The difference between tension and compression,  as already mentioned,  is that  

growth in compression is stable: each increment o f  crack advance requires an 

increment o f  load, at least until the cracks start to interact strongly. We will assume 

that  a steadily increasing load drives the cracks at a steady rate, though  in reality 

the inhomogenei ty  o f  natural  materials may  cause them to extend in little jumps�9 

The problem, then, is to calculate Kt at the tip o f  the wing cracks. 

3.1. Crack Growth f rom Starter Flaws o f  a Single Size: The 2-dimensional Case 

Figure 4 shows an array o f  through-cracks,  growing in a linear-elastic medium 

under  a triaxial stress field crl, a3, positive when tensile, negative when compressive. 

Consider first the growth of  a single isolated crack f rom an initial inclined flaw; 

interaction comes later. The upper  inset o f  Figure 4 isolates one crack: it is made  

up of  an initial crack of  length 2a lying at an angle ~O to the X~ direction with two 

wings, each o f  length l which (we will assume) lie parallel to X~. The stress intensity 
at the tips o f  the wings is obtained approximately,  but  adequately,  in the following 

way, based on the work  o f  NEMAT-NASSER and HORII (1982), ASHBY and 
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Figure 4 
A population of growing cracks. We first analyze the growth of an isolated crack (shown above) and 

then include the crack-crack interaction (illustrated on the right). 

HALLAM (1986), HORII and NEMAT-NASSER (1985, 1986), and KEMENY and 
COOK (1987). 

The remote field ~r], 0"3 creates a shear stress z and a normal stress 0" across faces 
o f  the initial crack. The crack slides (resisted by the coefficient o f  friction #), 
wedging open the mouth  of  each wing crack by 6 (Figure 4). The wedging can be 
thought o f  as caused by forces, F3, parallel to X 3, acting at the midpoint of  the 
crack. The stresses z and 0" are given by 

0"3 - -  0"1 
z - ~ sin 2@ (4a) 

0"3 -~ 0-! 0"3 - -  0-1 
" = - - T -  + - - - S - -  cos 2~.  (4b) 
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F3 is simply the component of  the sliding force acting parallel to )(3: 

F3 = (T + #o)2a sin ~k (5a) 

or 

F3 = - (A101 - A3 03)a (5b) 

where A 1 and A 3 are constants which depend on ~k, to be determined in a moment. 
The force F3, acting at the midpoint of  a crack of  length 2l, creates a stress 

intensity tending to open the crack (TADA et al., 1985, page 5.1) of  

F3 (K,)I = 

This result gives a good estimate of  the stress intensity at the tip of  a wing crack 
when I is large, but it breaks down (becoming infinite) when I is vanishingly small. 
The stress intensity at the tip of the initial inclined crack is not infinite, but can be 
calculated exactly as explained in the last section. We overcome this problem by 
introducing an "effective" crack length (l +/~a) giving 

F3 (6) (KI)I - - / ~  +/~a) 

We then choose/~ so that (Kt)I becomes equal to that for the inclined crack when 
l is zero. 

Before doing this, we note that there is another contribution to KI  at the tip of  
the wing crack. The remote confining stress 03 acts not just on the angled crack but 
on the wing cracks of  length l as well. In so doing, it produces an additional 
contribution to the stress intensity, tending to close the crack when 03 is compres- 
sive, of (,TADA et al., 1985, page 5.1): 

(K,)3 = o3xf~.  (7) 

Summing the two contributions, with F3 given by eq. (5b), gives: 

+ o34  (8a) 

A1 ~ + ~ _/~---===x "=~ ~ (8b) 
- -  Lv/T --+B + 

where L = I/a. The cracks extend until K I becomes equal to Ktc. 
The constants are found by ensuring that this equation reduces to the exact 

result for crack initiation (L = 0) and matches the known results for very long 
cracks (L >> I), given by NEMAT-NASSER and HORn (1982) and ASHBY and 
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HALLAM (1986), eqs. (3) and (6). This gives 

A1 = - ~  ((1 + p2) a/2 -- #) 

(1 + ].~2) 1/22_~" ~ 

fl=0.1. 

(9) 

Equation (8b) with these values of A~, A3, and fl (and with KI =Klc) is plotted in 
Figure 5. It shows tr~ v/-~/Kzc plotted against L with the earlier numerical results of 
NEMAT-NASSER and HORn (1982). Equations (8) are obviously a good approxima- 
tion to the earlier calculations. 

Now the interaction. The main part of Figure 4 shows an array of NA cracks per 
unit area, all of which have extended to a length 2(l + ~a.) The center-to-center 
spacing of the cracks is 

1 
S = ~ (10) 

so that an uncracked ligament of average length S - 2(l + aa) remains between the 
cracks in the 3(1 direction. (Here ~ is simply a geometric constant, and must be 
distinguished from fl; for cracks at 45 ~ to XI, ~ = l/x/2). An opening force F3 acts 
at the midpoint of each crack. Equilibrium requires that this opening force be 
balanced by a mean internal stress tr~ in the matrix, as shown in the right-hand side 
of Figure 4. The average internal stress is given by 

~ =  F3 
S - 2(1 + ~a)" (11) 

This acts on the wing cracks, so that eq. (7) now becomes 

(K/)3 = (a3 + tr~)x/~. 

We now define the initial damage Do and the current damage D by: 

(12) 

Do = rffaa) 2N A 

D = ~(1 + a a ) 2 N  4 

(13a) 

(13b) 

giving 

- (A 1 am - A3 a3)(Do/r01/2 
a ~ = ~(1 - 2(D/r 0 m) (14) 
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A comparison of the approxamate equation (8b) with the numerical calculations of NEMAT-NASSER and 
HORII (1982). The approximation is adequate for the present purposes. 
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Equations (8a) and (8b) now become 

F3 + a ~ ) x / ~  (15a) KI --- (/r(l + ]~a)) 1/2 -~ (173 

-~- _/'[D\,/2 ~)1/2 1 - - ~ / ] ,  1 

\\DooJ - 1  ---~-l \ \DooJ - 1  . (15b) 

Here the first term in the curly brackets describes the wedging plus the crack-crack 
interaction; and the second term describes the closing effect of the lateral confining 
stress. The cracks propagate until KI falls to Kic. Using this' rearranging and 
aggregating the constants (with x / ~  ~ 1) gives for proportional loading (that is, 
with 2 = tr3/tr I held constant): 

[ [ D  \1/2 ..jl_ ~ )  1/2 
_ 1  

(16) 
(1  C3D 1/2 { {  D "~1/2 [I z D \1/2 

- - c4~ . [ [~ -o )  

and for loading at constant tr 3 

S| ~ m 
C2~t-~oo)[I/O\l/2 - 1-4-fl)t/2 _ 33[C1 ( l -{'- ~f-~-O]7J']\~kD-J( C3O 1/2 "~f (D '~1/2 - l)) -.I.- C4ttSO-J[[D \1/2 - 1 ) ] ]  

J + (1  - 

where $1 and $3 are defined by equation (3). The values of the constants are 

A 3 (1 +/.t2) 1/2 +/.t 
CI ~--- Z -~" ( 1 AI- #2) 1]2 -- ]A 

C2 = rex/~ - 
d I (1 + ~2)u2_# 

C3 = x /~  

C4 -~- ~4~-~ ~ ( 1 --I-//2 2) 1/2 _ u" 

(17) 

( 1 8 )  
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The dependence of axial stress on damage as predicted by equations (16) and (17). The peak stress is 

marked. We take this as the failure stress, 

Figure 6 shows how the axial stress ax varies with damage D for various confining 
pressures. The left-hand figure shows proportional loading; the right-hand figure, 
loading at constant cr 3. The peak stress, (a~)max, rises and moves to the right as ;L 
or a a is increased. The shapes of the curves at constant 2 differ from those at 
constant o3, as expected, but the peaks are at the same stress. Figure 7 shows 
(a~)max plotted against tr3 for both conditions: the points lie on the same line. 
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3.2. Crack Growth from Starter Flaws of a Single Size: The 3-dimensional Case 

It is usually the case that flaws are completely contained within the material. 
The merit of  the 2-dimensional calculations developed in Section 3.2 is that it points 
to a way of  tackling this more difficult 3-dimensional problem. We require the stress 
intensity at the periphery of  a contained crack emanating from a starter flaw (which 
we take to be an inclined, penny-shaped crack) which we will equate, as before, to 
Kit. This we do by calculating the wedging force F3 as in the 2-dimensional case. 
The wedging force creates an average internal stress try. The stress intensity at the 
tip of  a given wing crack is calculated from the wedging force and the total lateral 
stress (~3 + a~), as shown in Figure 8. The significant difference to emerge in this 
3-D calculation, when compared with earlier 2-D results is that the dependence of  
S] and $3 on damage D involves different powers. 

The wedging force F3, as before, is calculated from the shear and normal 
stresses (eq. 4) acting on the initial plane, times the crack area, resolved into the X3 
direction: 

F 3 = ('r + #tr)na 2 sin ~b 

= (A]trl--430"3) a2. (19) 

Unlike the 2-D case, there are no exact analytical solutions for limiting cases which 
allow A~ and A 3 to be determined, so we make the assumption that they have the 
same values as before (eq. 9) but make provision to adjust them later to match 
experimental data. 

. F$ ~ 

|KI I  3 CAUSED BY-...~ I .,~-'---'- 
CLOSSNO m.RCE I 

t t . t  t 
Figure 8 

t t ,t t 

% 

Wing cracks growing from an initial, constrained, penny-shaped flaw. The geometry is more complicated 
than in the 2-dimensional case but the same method can be used to give an approximate solution for K l 

at the tips of the wing cracks. 
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The stress intensity.K, has the same three contributions as before. The wedging 
force F3 induces a stress intensity which now has the form (TADA et al., 1985, page 
24.2) 

v, 
( K , ) ,  = Qr(l + fla) 3/2 (20) 

where fl is introduced for the same reason as before: to give a limiting value of (K,)l 
when l = 0. The contribution due to a3 and a~ are (TADA et al., 1985, page 24.2). 

2 (~3 + , ,~)4~.  (KI)3 (21) 

The internal stress for the 3-D case is 

F3 
a~ = A - Ir(l + aa) 2 (22) 

where n(l + aa) 2 is the total crack area projected normal to )(3 and A is the area per 
crack 

/ 3 \2/3 
= ~Z 1 / 3 / - - |  ( 23 )  

A \aNy  J 

where Nv is the number of cracks per unit volume. 
Damage is defined in a way which parallels that in two dimensions: 

giving 

D O = ~(ota) 3N v (24a) 

D = 4rift + ota)aNv (24b) 

- -  ( A  10"1 - -  A 3  o'3)D 2/3 

a[ = r~a2(1 _ D2/3 ) (25) 

The stress intensity at the tip of the wing crack is 

r~ 2 ~,'~),/Wt 
KI = (rift + fla))3/2 + -It (a3 + 

{( A, 
= 792093/2((D/Oo) 1/3 -- 1 + fl/ot) 3/2 1 ---~1 

_ 2_22 a2n2((D/Do ) 1/3 _ 1)2~ 
A1 J 

2 ) I I  + 2(D/Do)l/3-1)2(1D2/3_ D2/3/J~l 

(26) 

As before the crack propagate until Kt falls to Kit. Rearranging and aggregating the 
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constants give, for proportional loading: 

t/t/D\U3 fl)3/2 

S1 _ l +  = (27) 
( l _ C l 2 ) { 1  + C3D~i3 ( ( D ~  1`3 -- [ ' l i D  "~1/3 

and for loading at constant a3 

c tt ) - l - - i -  ) c, tt 7 - l) 
D2/3 ((D~II3 )2 

1 + c3 (1 --~-2/3) \ \ D 0 )  1 

(28) 
where $1 and $3 are defined by equations (3). The values of the constants are 

A 3 ( 1 +/.t 2) I/2 _]_ ].,/ 
C1 = A---~ = ( 1 + #2) 1/2 _ # 

20~ 312 
(72-- A ~  -~x / :  f((1+~2)'/2-~) -L 

G=2 
20~2~ 2 / 7  

=2~2 /~ -((1 +#2)1 /2 -# )  C4= AI 
l l 

(29) 

The equations and constants have a form very like those of the 2-D model. Two 
significant differences should be noted. First, the extra dimension causes the powers 
of D which appear in the equation to differ (not surprisingly) from those of  the 2-D 
model. Second, the constants C~ to C4 are not known with the same precision as 
those of  the 2-D model because accurate limiting cases are not available to calibrate 
them. We shall assume (reasonably) that the dependence on the coefficient, #, is 
properly included, but that the constant/7 may require further adjustment to give 
a good match with experiment. 

Figures 9 and 10 illustrate some features of the results. The axial stress at first 
rises as damage grows (Figure 9), passing through a peak which shifts to higher 
values of damage as the confining pressure increases. The damage surface, shown in 
Figure 10, is almost a cone meaning that, to a first approximation, the failure 
envelope is described by 

O" 1 = Co- 3 - -  o- c 

where C is a constant and a c is the unconfined compressive strength. The value of 
the model is that it gives a physical interpretation to C and ac, and relates them to 
the initial damage, the coefficient of friction, and the crack size. 
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variable. 

4. Analysis of Data 

The strength of many different rocks has been determined under triaxial loading 
conditions (la]l > Itr2[ = 1~31), where all three principal stresses are compressive). 
For a few, the initiation of microcracking has also been determined. We now apply 



Vol. 133, 1990 D a m a g e  Mechan ics  o f  Brittle Solids 505 

the damage mechanics model developed above to nine different rock types for 
which the most complete data sets exist: granite, aplite, dunite, eclogite, gabbro, 
sandstone, limestone, marble and rock salt. These rocks represent a wide range of 
composition and initial damage. Granite, aplite, dunite and eclogite are low 
porosity, crystalline, igneous rocks in which the initial damage is mostly in the form 
of low aspect cracks. Limestone and sandstone are porous sedimentary rocks in 
which the initial damage is mostly in the form of high aspect pores. Marble is a 
metamorphic rock with initial damage of a form intermediate between the previous 
two extremes. These rocks also span a wide range of yield strength. The igneous 
rocks have yield strengths in excess of 2 GPa while the calcareous rocks (limestone 
and marble) yield at stresses below 1 GPa. Rock salt is at the low extreme with a 
yield strength below 100 MPa. 

The damage mechanics model formulated above has only one parameter fl 
which is not physically related to the fractures. We have treated fl as adjustable, 
choosing the vlaue 0.45 to give the best fit to the data. We assume 0t = 0.7 (which 
corresponds to @ = 45~ 

For those materials where crack initiation data are available, the crack length 
2a and the coefficient of friction # are determined from the initiation surface (see 
Table 1) 

0"1 = C l  0"3 + 0"0 

where C1 and ao are given by equation (1). The fracture toughness KIt and the 
initial flaw size 2a are also required. Although Klc may be estimated for most rocks 
(ATKINSON and MEREDITH, 1987a), the starter flaw size is not usually known and 
must be treated as an adjustable parameter. The derivation of the fundamental 
equations (27) and (28) from equation (26) gives (73 = 2, and this gives a good 
description of the materials we have examined. 

As the confining pressure is increased, brittle fracture is made increasingly 
difficult. A critical pressure may be reached at which true plasticity replaces crack 
extension. This transition can be illustrated by plotting a yield (or creep) surface, 
defined by: 

2 = 1[(0" 1 - -  0"2)2 _jff (0. 2 - -  0"3)2 _~ (0"3 - -  0"1)2]" (30) 0.y 

The yield surface is plotted as a pair of heavy broken lines on each figure. The yield 
strength, ay, can be derived from hardness, H, data since try = H/3. The material 
properties and constants used to generate the theoretical initiation and failure 
curves are tabulated for each solid. 

Consider, now, each material in turn. The triaxial data for damage initiation 
and failure are presented on plots of 0"z vs 0"3. The theoretical fracture initiation 
surface (eq. 1), surfaces of constant damage, and the failure surface (calculated 
from the maximum of eq. (28) for each value of 0"a) and the yield surface are 
plotted on these graphs for comparison with the data. 
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4.1. Granite 

Westerly granite is a fine-grained (0.75 ram), low porosity (0.9%), isotropic, 
two-mica calc-alkaline granite which has become a standard material in rock 
mechanics testing (see SCHOLZ, 1986, for a brief history). Mineralogical modal 
analyses are given by BIRCH (1960) and WAWERSIK and BRACE (1971). 

Figure 11 shows theoretical surfaces for initiation, constant damage, and failure 
at low values of the confining stress. The fracture initiation data from BRACE et al. 
(1966) were determined from the onset of nonlinear behavior of the volume strain. 
Only data taken at the highest loading rate are plotted here in order to minimize 
effects of subcritical crack growth (which we do not model). The three initiation 
points from HOLCOMB and COSTIN (1986) were determined from the onset of 
acoustic emission (AE) in a previously unstressed sample. Also shown is a surface 
of constant damage mapped by HOLCOMB and COSTIN (1986) using the AE Kaiser 
effect as a probe. The triaxial failure data are from BRACE et al. (1966) and MOGI 
(1966). 

Figure 12 shows the failure surface extended out to large values of the confining 
stress where it intersects the yield surface. Data at low and intermediate confining 
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Figure 1 l 
Comparison between experimental and theoretical failure surfaces for granite at low and intermediate 
confining stress. Data and theory for microfracture initiation and surfaces of constant damage are also 

compared. The yield surface (eq. 30) is also plotted as the heavy broken lines. 
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Figure 12 
Comparison between experimental and theoretical failure surfaces for granite extended to the largest 
measured confining stress. Data and theory for microfracture initiation and surfaces of constant damage 

are also compared. The yield surface (eq. 30) is also plotted as the heavy broken lines. 

pressures are from the same sources as in Figure 11. Those at high confining 
pressures are from SCHOCK and HEARD (1974) for Westerly granite and from 
SHIMADA (1981) for Man-nail granite (grain size 1-3mm, apparent porosity: 
0.7%). It is evident that the failure surface has considerable curvature and deviates 
from our theoretical model at high confining pressures. Although JANACH and 
GUEX (1980) have modeled this curvature in terms of the formation of shear 
bubbles at the grain boundaries, Figure 12 supports the possibility that the 
curvature is due to a gradual transition to ductile behavior. Analogous curvature is 
evident in subsequent figures for limestone, marble, and NaCI which are known to 
exhibit ductile behavior at moderate confining pressure, although the curvature in 
these rocks occurs over a more limited pressure range. The broader transition in 
granite may reflect its multimineralic composition for which the individual minerals 
have different brittle-ductile transition pressures. Note that the two granites show 
different transitional behavior at intermediate pressures, but that both approach the 
same ductile limit. Schock and Heard's observation that the stress-strain curve is 
linear to failure may be due to the convergence of the initiation and failure surfaces 
at very high confining pressures in Figure 12. The sudden release of energy and 
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shear localization at failure do not preclude stress concentration by ductile pro- 
cesses in the weaker minerals. 

4.2. Aplite 

BRACE et al. (1966) studied a quartz-oligoclase aplite (63% oligoclase, 27% 
quartz, and 10% biotite) which they described as fine-grained and flinty, appar- 
ently isotropic, and of high strength. The feldspar is highly altered. The grain size 
of  the ground mass is about 40 #m and of the phenocrysts, about 100 #m. The 
small grain size and high strength are consistent with the small flaw size required 
by the model (see Figures 13 and 14). The relatively high initial damage is 
consistent with the flinty texture. A high density of  small flaws may explain why 
flinty materials can be reliably fashioned into tools by flaking off small bits in a 
controllable manner. 
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Figure 13 
Comparison between experimental and theoretical failure surfaces for aplite at low and intermediate 
confining stress. The heavy solid line is the theoretical failure surface. The light solid line is the surface 
for the initiation of microfracturing while the light broken lines are surfaces of constant damage. The 

heavy broken line is the yield surface (eq. 30). 
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The heavy broken line is the yield surface (eq. 30). 

4.3. Dunite 

Dunite is an almost pure olivine rock. SHIMADA et al. (1983) measured the 
compressive strength of Horoman dunite (grain size 0.1-0.9mm) at confining 
pressures up to 450 MPa, using a conventional triaxial testing apparatus, and to 
3 GPa using a cubic press. Acoustic emissions showed a change in failure mode at 
confining pressures between 0.44 and 0.77 GPa. Below these pressures, acoustic 
activity increased rapidly between the onset of dilatancy and failure (the typical 
pattern for brittle failure). Above the transition pressure, and increase in acoustic 
activity was not observed to precede failure; rather, the level remained nearly 
constant up to failure. SHIMADA et al. (1983) correlate this change in behavior with 
the extreme curvature in the failure envelope. As is evident in Figure 15, our model 
suggests that this change in behavior is associated with the transition to plastic 
deformation. 
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Comparison between experimental and theoretical failure surfaces for dunite. The heavy solid line is the 
theoretical failure surface. The light solid line is the surface for the initiation of rnicrofracturing while the 
light broken lines are surfaces of constant damage. The heavy broken line is the yield surface (eq. 30). 

4.4. Eclogite 

Eclogite is an ultramafic pyroxene-garnet rock. The Akaishi eclogite measured 
by SHIMADA et al. (1983) was composed of 0.1-0.3 mm pyroxene grains and 
0.8-2.3 mm garnet grains. It had a density of 3.642 Mg/m 3 and a porosity of 0.4%. 
Conventional triaxial tests covered a range of confining pressures from 0 to 
450 MPa while tests in an opposed anvil cubic press extended the confining pressure 
to 3 GPa. As discussed above for dunite, the acoustic patterns indicate a change in 
failure mechanism at confining pressures between 1.02 and 1.99 GPa. The data and 
theoretical surfaces are given in Figure 16. 

4.5. Gabbro 

In addition to dunite and eclogite discussed above, SHIMADA et al. (1983) also 
studied Murotomisaki gabbro, a hypersthene-bearing-olivine-augite gabbro. The 
grain size of the olivine component is 1-2 mm, pyroxene is about 0.7 mm, and the 
plagioclase is about 0.7-3 mm. The bulk density is 2.985 Mg/m ~ and the reported 
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Figure 16 
Comparison between experimental and theoretical failure surfaces for eclogite. The heavy solid line is the 
theoretical failure surface. The light solid line is the surface for the initiation of microfracturing while the 
light broken lines are surfaces of constant damage. The heavy broken line is the yield surface (eq. 30). 

porosity is 0.4%. The acoustic pattern indicated a change in failure mechanism at 

confining pressures between 0.51 and 0.76 GPa. The data and theoretical surfaces 

are given in Figure 17. 

4.6. Sandstone 

The sandstone data in Figure 18 were obtained in triaxial compression by 
GOWD and RUMMEL (1980). The rock is described as a medium grain-sized 

Buntsandstone from SW-Germany with subangular to round quartz grains bedded 
within a clayey matrix. Its initial porosity was 15% with an initial permeability of  

50 microdarcy. The damage initiation data were defined by the onset of  dilatancy. 

At confining pressures above about  30 MPa, the stress-strain curves are nonlinear 
at lower values of  the axial stress than the observed onset of  dilatancy. This 
probably reflects the suppression of  dilatancy by pore collapse, a phenomenon 

which the authors propose to explain the total lack of observed dilatancy at the 
highest confining pressures. Such effects are beyond the scope of  our model. 

A transition from brittle failure to apparent  ductile shear deformation takes 
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Figure 17 
Comparison between experimental and theoretical failure surfaces for gabbro. The heavy solid line is 
the theoretical failure surface. The light solid line is the surface for the initiation of microfracturing 
while the light broken lines are surfaces of  constant damage. The heavy broken line is the yield surface 

(eq. 30). 

place at a pressure of about 100 MPa. However, the observed pressure dependence 
of the flow stress for confining pressures in excess of 100 MPa argues against true 
ductile flow and for a cataclastic mode of deformation probably involving pore 
collapse. Dilatancy at failure is a constant for confining pressures between 0 and 
40 MPa. From 40 to 100 MPa, dilatancy at failure decreases to zero. Above 
100 MPa, brittle failure does not occur. 

4. 7. L imes tone  

Solenhofen limestone is a fine grained (0.01 mm) mechanically isotropic lime- 
stone from Bavaria. It has a connected porosity of 5.3% and a total porosity in the 
range 6-9% (RUTTER, 1972). The strength data in Figure 19 are from HEARD 
(1960) and include both triaxial compression and tension. The fracture initiation 
points were picked as the onset of nonlinearity in his published stress-strain curves 
and are only approximate. 
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Figure 18 
Comparison between experimental and theoretical failure surfaces for sandstone. The heavy solid line is 
the theoretical failure surface. The light solid line is the surface for the initiation of microfracturing while 
the light broken lines are surfaces of constant damage. The heavy broken line is the yield surface 

(eq. 30). 

4.8. Marble  

The only marble for which fracture initiation data is available is described by 
BRACE et al. (1966) as a medium grained almost pure calcite marble of  unknown 
origin. They report it to be apparently isotropic, very ductile even at low confining 
pressures, with a grain size of  about 0.2 ram. 

The unusually tow fracture initiation stress (Figure 20) requires either large 
starter flaws ( ~ 6 r a m )  or a low fracture toughness. Since ATKINSON and 
MEREDITH (1987a) report Kit as low as 0.19 MPa m a/z for calcite, we have fitted the 
initiation data using this value which then implies a starter flaw size of  0.4 ram, 
which is comparable to the grain size. 

In a microscopic study of  nucleation in marble, OLSSON and PENG (1976) found 
that microcracks often nucleate where slip bands intersect grain boundaries. Al- 
though such slip bands are physically analogous to angle cracks, there may be a 
significantly larger number of  such nuclei since every favorably aligned grain is a 
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Figure 19 
Comparison between experimental and theoretical failure surfaces for limestone. The heavy solid line is 
the theoretical failure surface. The light solid line is the surface for the initiation of microfracturing while 
the light broken lines are surfaces of constant damage. The heavy broken line is the yield surface 

(eq. 30). 

potential source of nuclei. This may explain the large values of  initial damage Do 
required to fit the marble data. 

The data set which we fit is for Carrara marble which is the fine grained (about 
0.1 mm) isotropic marble used by Michelangelo for the Pieta and other well-known 
works. Its total porosity is about 1.1% (EDMOND and PATERSON, 1972). The 
triaxial data in Figures 21 and 22 are from VON KARMAN (1911) and EDMOND and 

PATERSON (1972). Brittle versus ductile behavior was deduced from the shape of 
the stress-strain curve and from the volume changes associated with the deforma- 
tion. 

4.9. Rock Salt 

Rock salt exhibits a room-temperature brittle-to-ductile transition at the lowest 
confining pressure of  any rock in this study. HUNSCHE (1984) tested three types of  
natural salt at low confining pressure under both the common triaxial loading and 
the less common true multiaxial loading at strain rates of about 10 - 6  S- I .  HANDIN 
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Figure 20 
Comparison between experimental and theoretical failure surfaces for marble at low and intermediate 
confining stress. The heavy solid line is the theoretical failure surface. The light solid line is the surface 
for the initiation of microfracturing while the light broken lines are surfaces of constant damage. The 

heavy broken line is the yield surface (eq. 30). 

(1953) collected conventional triaxial data to higher confining pressures at a strain 

rate of  about  10 - 4  S -1 .  These data are shown in Figures 23 and 24. 

5. C o n c l u s i o n s  

1. An approximate physical model for damage evolution in brittle solids under 
compressive stress states has been developed. The model is based on the growth of  

wing cracks from a population of  small, inclined, starter cracks; and the interaction 
between them. The important  variables of  the problem are: the size, 2a, of  the initial 
inclined cracks, and the initial damage 

O o = 41r(cza) 3N V. 

The state of  the material is measured by the current value of the damage 

D = %(1 + ~a)~Nv 

where l is the length of  the wing cracks. 
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F i g u r e  21 

Comparison between experimental and theoretical failure surfaces for marble at low and intermediate 
confining stress. The heavy solid line is the theoretical failure surface. The light solid line is the surface 
for the initiation of microfracturing while the light broken lines are surfaces of constant damage. The 

heavy broken line is the yield surface (eq. 30). 

We treat damage as a state variable. At the level of  approximation of our 
treatment, the surfaces of  constant damage in stress space are linear; this is 
primarily a consequence of  our simplifying assumption that the population of  initial 

cracks all have the same size. The surface corresponding to final macroscopic 
fracture is not one of  constant damage (as often assumed). The terminal damage 

itself depends on the stress state, but it, too, is well approximated by a linear 

relationship: 

dr 1 - -  C 2 a  3 -  (7" c 

where tr c is the simple compressive strength. 
The assumption that the initial fractures all have the same size does not affect 

the predicted (and observed) result that the combination of  stresses corresponding 

to the first increment of  new damage is linear, described by: 

O" l = C l 0" 3 - -  Go .  
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Figure 22 
Comparison between experimental and theoretical failure surfaces for marble extended to the highest 
measured confining stress. The heavy solid line is the theoretical failure surface. The light solid line is the 
surface for the initiation of microfracturing while the light broken lines are surfaexs of constant damage. 

The heavy broken line is the yield surface (eq. 30). 

Damage always initiates at the largest flaws in the distribution, independent of the 
confining stress. 

2. The model has been fitted to data for a number of rocks. The process gives 
physical insight into the damage accumulation and failure of these materials in 
compression. In particular, the fitting process leads to a value for the coefficient of 
friction across the crack faces, the size of the initial flaws, and the initial damage 
D O . The failure process depends principally on these variables. Curvature of the 
failure surface is shown to depend, at least partly, on an interaction between the 
brittle failure mechanism and plastic flow. Rocks which show clearly established 
plasticity at high pressures (marbles, and rock salt, for example) show a brittle 
regime at low pressures, a transitional regime at intermediate pressures (both 
depending strongly on pressure), and a regime of plasticity at high pressures which 
is independent of pressure itself. It is noteworthy that silicate rocks such as granite, 
gabbro, dunite and aplite show a similar behavior, with the transition to plasticity 
dominating failure at confining pressures of general order E/30. This transition, at 
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C o m p a r i s o n  between experimental  and theoretical failure surfaces for rock  salt at l o w  and intermediate  
confining stress. The heavy  solid line is the theoretical  failure surface. The light solid line is the surface 
for the init iat ion o f  microfracturing whi le  the light broken  lines are surfaces o f  constant  damage.  The 

heavy broken  line is the yield surface (eq. 30). 

first sight a surprising one, is nonetheless to be expected at such stress levels which 
are roughly the theoretical shear strength of the minerals within the rock. 

Several other noteworthy conclusions emerge. One is that, in rocks which are 
almost fully dense, the initial flaw size is roughly equal to the grain size of the rock 
itself. But the initial damage level, Do, varies widely. In low porosity crystalline 
silicates such as granite, this level is low (typically 3%); but in intrinsically-plastic 
materials like calcite and rock salt, the initial damage level is high (of  order 15%) 
perhaps because the flaws from which wing cracks grow are slip bands within 
suitably oriented grains rather than cracks. 

3. Data for rocks which are almost fully dense are well fitted by the model. We 
find, too, that porous rocks (limestone and sandstone, both with roughly 15% 
porosity) are also well fitted. This suggests that an analogous theoretical develop- 
ment may be possible for porosity induced cracking too. 
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Figure 24 
Comparison between experimental and theoretical failure surfaces for rock salt extended to the largest 
confining stress. The heavy solid line is the theoretical failure surface. The light solid line is the surface 
for the initiation of microfracturing while the light broken lines are surfaces of constant damage. The 

heavy broken line is the yield surface (eq. 30). 
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