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Abstract 

The paper investigates the incentives for polluting firms to adopt new technologies under pollution-control policies 
such as effluent taxes and auctioned permits. We pay explicit attention to the output market. Firms can choose 
among two types of technologies, a conventional one with high marginal abatement costs and a new one with 
low margainl abatement costs but higher fixed costs. We find that taxes almost always induce complete adoption 
or no adoption at all. Permits, in contrast, allow for partial adoption. Moreover, ex post, permits can always 
induce first best, whereas taxes cannot if partial adoption is socially optimal. 
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Environmental policies based on prices and decentralized decision making, such as emis- 
sion taxes or tradeable permits, have been proved to be powerful and efficient instruments 
of  pollution control. It is well known that these policy tools are equivalent if the regulator 
is well informed and markets are perfectly competitive. This equivalence result has been 
derived, for the most part, under static conditions--that is, the firms' technologies have 
been assumed to be exogenously given. Spulber (1985) has demonstrated that if firms are 
identical, emission taxes as well as auctioned permits are optimal also in the long run. 
This means that they induce the optimal number of  finns to enter the market. But Kneese 
and C. Schultze (1975, p. 38) have stressed that "over the long haul, perhaps the most 
important single criterion on which to judge environmental policies is the extent to which 
they spur new technology toward the efficient conservation of  environmental quality" (see 
also Orr, 1978). 

In this paper we investigate the two most prominent policies of pollution control--namely, 
taxes and auctioned permits--with respect to the incentives for fracas to adopt new technol- 
ogies. Similar to Spulber (1985) but in contrast to the bulk of  literature in environmental 
economics, we pay explicit attention to an output market where firms engage in perfect 
competition. We assume that there are two possible technologies, a conventional one that 
causes high marginal abatement costs and an innovative one that leads to low marginal 
abatement costs but that incurs an additional fixed cost due to installation and maintenance 
of  abatement equipment. We do not endogenize technology itself. We rather endogenize 
the choice o f  technology and study how many firms will keep the conventional technology 
and how many fLrrns will invest in the new technology under either of the two policies. 
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In order to examine the efficiency of the policy tools, we start to examine socially op- 
timal allocations when two types of technologies are available. As usual in partial analysis, 
we assume that pollution is valued by a social damage function, and we find that the op- 
timal level of adoption depends heavily on the slope of that function. In particular, the 
new technology should not be adopted if the social damage function is relatively flat. Com- 
plete adoption is optimal if the damage function is relatively steep, whereas for intermediately 
steep damage functions partial adoption is optimal--that is, both types of technologies should 
be employed. 

The question arises, whether Spulber's optimality result does still hold if firms can choose 
among different technologies. Or to put it another way, whether permits and taxes can be 
used to induce the socially optimal degree of adoption. The answer is yes and no. For we 
will discover a remarkable asymmetry between permits and taxes here. It turns out that 
for almost all tax levels only conventional firms or only innovators can stay in the market 
at the same time. On the other hand, there is a tax level that causes a whole set of com- 
petitive equilibria such that the number of conventional firms and the number of innovators 
are not uniquely determined. Permits, in contrast, always lead to a unique competitive 
equilibrium, and both types of firms can stay together in the market for different quotas 
of permits. This means that, ex post, permits can always implement the socially optimal 
allocation, whereas with taxes one can achieve this only if complete adoption of the new 
technology is socially optimal. If partial adoption is optimal, taxes fail to implement first 
best in general. Among the multiplicity of free-entry market equilibria only one equilibrium 
is efficient, and decentralization of first best could happen only by chance. 

If a polluting industry has been regulated optimally before innovation, the original tax 
or permit policy is clearly not optimal any longer as soon as a new technology is available. 
In practice, however, adjustment of environmental policy happens with large time delays, 
if at all. Hence it is important to know how efficient those policy tools are if the regulator 
cannot anticipate a new technology and if the institutional framework does not allow for 
fast and efficient policy adjustment. It turns out that, especially if the conventional industry 
is optimally regulated before the innovative technology has been available, both policy in- 
struments can cause too much but also too little adoption of new technology if the original 
policy levels are still valid. In particular, we find that for a considerable range of parameters 
where partial adoption is optimal, taxes lead to overinvestment, whereas permits cause 
underinvestment in new technology. Even more striking, welfare may decrease through 
innovation under taxes, whereas this can never happen under permits. These results ap- 
parently provide strong arguments in favor of auctioned permits. If, on the other hand, 
the social damage function is sufficiently steep such that complete adoption of the new 
technology is optimal, the pattern can be reversed: there may be overinvestment in the 
new technology under permits but underinvestment under taxes! 

Recently, other authors, such as Downing and White (1986), Milliman and Prince (1989), 
and Malueg (1989), have alluded to this topic. In particular, Milliman and Prince provide 
a detailed comparison of the incentives to adopt new technologies under different policies 
such as command and control, effluent taxes, auctioned permits, free permits, and sub- 
sidies on abatement. Under different scenarios they rank those policies with respect to 
the firms' incentives to adopt less polluting technologies. In most of the cases, auctioned 
permits turn out to be the winner. However, as fashionable in the environmental economics 
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literature, those authors pursue partial-partial analysis--that is, they focus on the pollution 
sector only and do not pay attention to an output market. In contrast to their findings, our 
more general model does not allow for the conclusion that one of the two policies is superior 
in general. 

Laffont and Tirole (1994a, 1994b) analyze permit markets where firms can bypass the 
cost of buying permits by investing into emission-free technology (1994a) or by engaging 
in R&D in order to develop a technology that does not cause pollution (1994b). In the 
first model permits lead to overinvestment, 1 whereas in the second model permits lead 
to underinvestment. 2 Those models differ from ours in several points. First, these authors 
also do not pay explicit attention to the output market. Second, the number of firms is 
not endogenous. And finally it is assumed that innovation always leads to emission-free 
production. 

The paper is organized as follows. The following section contains the basic assumptions. 
Section 2 investigates the socially optimal allocation if both types of technologies are 
available. In Section 3 we characterize free-entry equilibria under any tax or permit policy, 
and we draw conclusions with respect to welfare. The final section concludes. Technical 
proofs are relegated to the appendix. 

1. The model  

Throughout this paper we consider a partial model where an endogenous number of n firms 
causes pollution while producing a homogeneous consumption good. Let qi and ei, i = 
1 . . . . .  n, denote firm i's output and emission level, respectively. Industry output is writ- 
ten as Q := Eni=l qi, total emissions as E := r~n= 1 e i. Welfare, as typical for partial models, 
is the sum of consumer welfare derived from consumption of the homogeneous good, minus 
the damage from pollution, minus production costs--that is, 

n 

W(ql . . . . .  q,, el, . . . ,  en;s) := fQP(z )dz  - S(E, s) - ~_a Ci(qi, ei), (1) 
i=1 

where P(') is a downward sloping inverse demand function for the consumption good with 
a finite choke-off price/5. Moreover, P satisfies 3 

P"(Q) < - 2 P ' ( Q ) / Q  (2) 

for all Q > 0. S(', ") is the social damage function depending on a damage parameter s. 
Damage is increasing and convex in total pollution E--that is, $1 > 0, Sn > 0,4 and mar- 
ginal damage increases in s--that is, $12 > 0. The damage function is supposed to repre- 
sent the disufility that consumers suffer from pollution plus the economic damage incurred 
by other industries. The damage parameter s is an exogenous parameter of the model and 
can be interpreted as an indicator of how hazardous the pollutant is. It also determines 
the slope of the social-marginal rate of substitution between consumption and pollution 
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(or abatement). Parameterizing S via s allows us to completely characterize the social opti- 
mum and also regulatory policies as a function of the damage function's steepness, s 

A firm's cost function slits up into a fixed cost F > 0 and the variable cost v, which 
depends on output q and emissions e: 

C(q, e) = ( ~  + v(q, e) 

if (q, e) = (0, 0), 

else. 
(3) 

Since the derivatives of v and C coincide, we write all assumptions about v in terms of 
the total cost function C. Assuming sufficient smoothness of C we define 

Y ~ c ( C )  ~- ( (q ,  e) > 0 C(q, e) = 1-~ (4) 
(VC(q, e), (q, e)) J 

as the set of all quantities and emission levels (q, e) for which average costs are minimized. 
Note that if C depended on output only, the set defined in (4) would be a singleton satisfy- 
ing C(q)/q = C '(q)--that is, average cost equals marginal cost, which determines a firm's 
optimal scale. In a multiproduct case we get a whole set of production plans for which 
we have (generalized) minimized average costs (hence the index MAC).6 In order to com- 
pare different technologies, it is necessary to normalize those production plans by their 
total costs. Hence we define 

q e I ) C(q, e) ' C(q, e) with (q, e) E Yl~ac(C) �9 (5) 

If the cost function is sufficiently regular, to be defined in Assumption 1, (5) defines an 
implicit function h such that V(Yl, Y2) E YI~c(C) we have Yl = h(y2). See Figure 1 for 
the shape of two different sets YMac and corresponding functions h. The next assumption 
guarantees that the variable cost is sufficiently convex: 

Assumption 1. For all i = 1, . . . ,  n the firms' cost functions C i : IR2+ ~ IR are twice 
continuously differentiable and satisfy (we omit the superscript i) the following: 

1. C 1 > O, Cll > O, C22 > O, C12 < O. 
2. For all q there is e(q) such that Cz(q, e(q)) = O, and C2(q, e) < 0 if  e < e(q), and 

C2(q, e) >- 0 if  e > e(q). 
3. CNC22 - [Cl2l 2 > 0. (6) 
4. For all (q, e) in an open stripe containing YMac(C) we have 

(VC1, (q, e)) = Cllq + C12 e > O, (7) 

(V  C2, (q, e)) - C12q + C22e > 0. (8) 

5. Moreover h is concave. 7 
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Figure 1. The sets YMac(C ~ and YMac(C t) represented by the functions h o and h 1. In order to not burst the labels 
of the points on the axes we wrote for short qi/C i instead of  qi/Ci(qi, el). The arrows give the directions of 
the gradients of the cost function along the h i curves. Note that they are perpendicular to those curves. 

Items 1 through 3 imply that the variable cost function is convex. In particular we have 
increasing marginal costs for fixed emission levels, abatement costs are convex for each 
fixed output, and output and emissions are cost complements (Clz < 0). Item 2 says that 
each output level has a cost-minimizing emission level that the firms would choose in the 
absence of regulation. Item 4 guarantees that f'MAc(C) is a one-to-one relation--that is, 
that the function h is well def'med. 8 

To make the analysis interesting we assume that in the absence of regulation there exists 
a market for the homogeneous commodity. For that case we can define a reduced cost func- 
tion by C(q) := C(q, e(q)), and define 0 by 

C(q) - C ' ( ~ )  (9) 
0 

as the output level that minimizes the average cost in the absence of regulation. By Assump- 
tion 1 such an 0 exists. A market exists if (7i(~)/?1 </5. By continuity this implies that 
there is also a market under moderate regulation--that is, if the government sets a lax emis- 
sion standard ~ slightly smaller than e(~) (or charges a sufficiently low emission tax). Finally, 
to exclude corner solutions, we assume that production is not possible without any pollu- 
tion, which is certainly realistic. Formally this means that for any output q > 0 there is 
a sufficiently low emission level e* such that for all e < e* the average cost exceeds the 
choke-off price--that is, C(q, e)/q > ~.9 
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1.1. Two different types of  firms 

Assume now that there are two types of technologies, a conventional one of type 0 with high 
pollution--that is, eo(q) is large--and an innovative technology with relatively low poilu- 
tion--that is, el(q) < co(q). The technologies are represented by their cost functions C O 
and C I, respectively. The corresponding quantities and emission levels are denoted by q0, 
ql, e0, and el. The innovator's fixed cost F I include fixed costs for buying and installing the 
new technology, such that F t > F ~ Since we allow for free entry (up to the fixed costs), 
we assume for simplicity that new entry and switching of technology cause the same size 
of fixed costs. Our crucial assumption on the relationship among the two technologies says 
that the conventional technology provides a cost advantage in the absence of regulation-- 
that is, C~ < CI(~I)@. For a sufficiently small emission level ~, however, the new 
technology has the lower minimal average costs--that is, C~ e)/qo > Ct(qt, ~)/ql for 
(qo, e) E Y ~ c ( C  ~ and (ql, e) E Ymac(Cl). For simplicity we assume that there is no back 
switching of the cost advantages. These properties are depicted in Figure 1 and are formal- 
ized more technically and more generally in Assumption 2 in the appendix. 

2. The social optimum 

Since we are interested in the efficiency of policy tools like taxes and permits, it is useful 
to first study socially optimal allocations if both types of technologies--the conventional 
and the innovative one--are available. The social planner would maximize welfare with 
respect to quantities, emissions levels, and the numbers of firms. Let no and nl denote the 
numbers of firms with the conventional cost function C O and with the new cost function 
C 1, respectively. Since the variable-cost functions are convex, the conventional finns must 
have the same production plan (q0, e0), and the innovative firms must have the same plan 
(ql, el). Hence the social planner's program is 

max W(q0,  ql, e0, el, no, nl; s) 
qo,eo,qi, el,no,ni 

max ( I" n ~ 1 7 6  + n x q l  . . . .  
qo,eo,qi,el, no,nl~ J o F(Z)aZ -- S(noeo + nzel, s) - 

- noC~ eo) - nlC1(ql, eD) (10) 

Denote by q~(s), q~(s), e~(s), e~'(s), n~(s), n~'(s) the solution, and by Q~'(s) = n~(s)q~(s) 
+ n~'(s)q~'(s), and E~'(s) = n~(s)e~ (s) + n~'(s)e~'(s) the aggregate output and emission 
levels, respectively. Then the solution of(lO) is characterized by the following properties: 

Theorem 1. There is an interval of  damage parameters [s_, ~] such that 

1. For all s E [ s, g] we have that 
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q~(s) - ~to, e~(s) - eo, Q~'(s) -- Q_., 

q~(s) =- ~tI,  e~(s) -- el, SI(E~(s), s) - 

are constant in s. E~'(s) is decreasing, n~ (s) is decreasing, n]'(s) is increasing in s, 
and these variables satisfy 

C~ ~o) = C/(ql, ~I) = P(Q) (11) 

-CO(qo ,  eo) = - C I ( q l ,  el) = SI(E~(s),  s) = g (12) 

e ( t ~ )  �9 ~0 - c~  ~0) - s "  ~0 = 0 (13) 

P(O.)" ~tl - CI(ql,  el) - g "  el  = 0 (14) 

2. For all s < s the new technology shouM not be employed--that is, n~(s) = O. For 
all s > ~ the conventional technology should not be employed--that is, n~ (s) = O. 
In either case, aggregate emissions E~ (s) and output Qff (s) are decreasing in s, thus 
P(Q~(s)) is increasing in s. Moreover, marginal damage SI(E~(s), s), as well as the 
social marginal rate of substitution between pollution and consumption denoted by 

MRS(s) = SI(E~'(s), s) (15) 
P (Q~' (s)) 

are increasing in s. 
n* (s) and e* (s) are decreasing whereas q* ( s) is increasing in s (without Assumption 

1.4 this is not necessarily so). 
3. There is ~ > ~ such that for all s ~ ~, ~) we have more aggregate output--that is, 

Q~ (s) > Q~ (s)--and less aggregatepollution--that is, E~ (s) < E~ (s)--where Q~ (s) 
and E~ (s) denote the optimal output and pollution levels before the new technology 
was available. 

Proof See the appendix. 

Theorem 1 says the following: if the damage parameter is low (the first part of part 
2), only the conventional type of firms should produce. This is quite intuitive since by 
assumption those firms have the lower average cost if they do not reduce pollution. If 
the damage parameter is zero, or close to zero, there is no or only little need for regula- 
tion. Hence it is efficient to employ the conventional firms only. If the damage parameter 
is very high (the second part of part 2), only innovative firms should be active since those 
have the lower average cost for low emission levels. For intermediate values of damage 
parameters (part 1) it is optimal to employ both types of technologies. Production is shifted 
continuously from the conventional to the innovative firms, as s increases. In that case 
only the number of firms varies. Each type of firms keeps its efficient production plan 
(qi, el) for i = 0, L Total output as well as marginal damage remain constant on the whole 
interval [s_, ~] whereas emissions go down. 
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Outside that interval, Q~'(s) and E~'(s) are decreasing. Note, however, that for s suffi- 
ciently high, emissions may go up through innovation--that is, E~' (s) > E~0 (s) (part 3). 
The intuition is that if the damage function is sufficiently steep, output must be close to 
zero--that is, marginal utility of consumption is close to its maximum. If the new technology 
is much cleaner--that is, ei(q) "~ e0(q)--one can produce much more output with one unit 
of pollution. If q is close to zero before innovation, a raise of output after innovation may 
more than outweigh a small increase of pollution.I~ 

The shape of the aggregate quantity of output is depicted in Figure 2, the shape of aggre- 
gate emissions in Figure 3. For marginal social damage and the optimal numbers of firms 
see Figures 5 and 6. 

Note that in the one-dimensional models of Weitzman (1974), Adar and Griffin (1976), 
and Fishelson (1976), the relative slopes of the damage functions and the marginal abate- 
ment curve turned out to be crucial. In our more general model with two commodities 
(the consumption good and pollution), the relative slopes of the social marginal rate of 
substitution between consumption and pollution versus the slope of the marginal rate of 
transformation between output and abatement are crucial. This can be seen at best from 
Figure 4, which combines Figure 1 with different social indifference curves, which become 
steeper with higher s.ll 

3. Free-entry market equilibrium under taxes and permits with both types of 
technologies 

The main goal of this paper is to investigate how environmental policy tools like taxes and 
tradeable permits spur the adoption of new technologies. Hence in this core section we 

Q*z(s), 

Q~(S) = Q*i(s) = n~(s)q~(s)  

n~(5)qI  ,.~,,. ,, n . i$~ , /  q\ [ ~7I( s ) =  I~ )qr( ) 

8_ N s 

Figure 2. Optimal aggregate output as a function of the damage parameter s before and after the new technology 
is available. Q~(s) and Q~(s) denote optimal aggregate outputs before and after innovation, respectively. 
n~ (s)q~ (s) and n~(s)q~ (s) are the optimal aggregate outputs after innovation produced by the conventional in- 
dustry and the innovators, respectively. Note that Q~(s) = Q~(s) for s ___ s. 
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Figure 3. The optimal aggregate emissions (= optimal permit policy) before and after innovation. 

examine competitive market equilibria under any tax or under any number of permits if 
both types of firms potentially may enter the market. We also look at the welfare implica- 
tions. In particular we are interested in the question of whether the appearing of a new 
technology always raises welfare under those policy tools, as one should expect, and whether 
those policy tools induce too little or possibly too much adoption of the new technology. 
Too much and too little is, of course, to be taken relative to the social optimum. 

From textbook partial analysis we know that different types of firms cannot survive under 
free entry, unless the minimum average costs happen to be equal. In our model, the firms' 
minimum average costs depend heavily on the level of regulation--that is, on the size of 
the emission tax or the number of permits issued by the government, respectively. Thus 
we investigate how many and which types of firms will operate in a competitive free-entry 
equilibrium if an arbitrary tax is charged on emissions or an arbitrary number of permits 
is issued. We treat taxes first. 

3.L Free-entry marke t  equi l ibrium under  taxes 

Suppose that any tax r is given. For a given output price p, the competitive firms' first- 
order conditions are p = C~ (qi, el) and - C ~  (qi, el) = 7". Free entry leads to zero profits. 
Thus in equilibrium we have 

P ( Q )  = p = C~(qi, el) i = O, I, (16) 

7" = - c i 2 ( q i ,  el) i = O, I, (17) 
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Figure 4. The bold line can be considered as the social marginal rate of transformation. The social indifference 
curves I i have the slope SI(E, s)/P(Q). For I l only conventional firms produce (point A), for 12 both types of 
firms produce (point B), and for 13 only innovators produce (point C). The social indifference curves get steeper 
with s. 

0 = P(Q(~ ' ) )  - t e l ( r )  - Ci(qi(~ ') ,  e i ( r ) )  i = O, I,  (18) 

if both types of firms are active, otherwise only for i = 0 or i = L Moreover, 

Q = noqo + n l q i .  (19) 

The following result characterizes the different types of equilibria contingent on the tax 
level. Recall from the last section that Sdenotes the marginal social damage, in social op- 
timum if both types of  firms produce--that is, for s ~ (s, ~). It is important to note that 
this is also the marginal abatement cost if both types of finns have the same marginal costs, 
the same marginal abatement costs, and the same minimum average costs. This fact will 
drive the following theorem. Recall also that Q is the corresponding aggregate output (which 
is independent of the number of  f inns of  each type). 
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T h e o r e m  2. Let z be any emission tax. 

1. I f  r < if, there is a unique free-entry competitive equilibrium with only the conven- 
tional firms being active. 

2. I f  z > S, there is a unique free-entry competitive equilibrium with only the innovative 
firms being active, or there is no market at all. 

3. For r = S, there is a whole set of equilibria with no E [0, (~/q0] and n / =  (Q - no~to)/~i, 
and qo(r) = qo, qt(z) = qt ,  e0(r) = e0, er(z) = eI. 

Aggregate output equals Q, independent of  (n o, ni). Aggregate emissions are the 
greater, the larger no. 

Proof. We will only sketch the proof here. A more  detailed one can be found in Requate 
(1994). Assume first z = S. Theorem 1 implies that for z = S the  average cost of  the two 
firms break even. Hence there exists a competitive equilibrium with q0 = q0, qt = ql, 
e0 = e0, el = e/, and Q = Q. However, the numbers of firms are not uniquely determined. 
All no ~ 0 and n / ~  0 satisfying (19) yield a competitive free-entry equilibrium. On the 
other hand, no further equilibrium with n o > ~)/qo or nt > O./qi can exist. This means 
that for z = S there exists a whole set of competitive free-entry equilibria with different 
pollution levels. 

Following the lines of proof  of  Theorem 1 one can easily show that for r < S there 
is a unique equilibrium with only conventional f irms operating, and for ~" > S there is 
a unique equilibrium with only innovative firms operating. [] 

Up to now we have treated both types of  firms symmetrically and the notions of conven- 
tional and innovative firms seemed to be somewhat arbitrary. I f  we take the interpretation 
seriously and assume that the type 0 firms are incumbent, and that after the new technology 
is available, innovators consider to enter the market,  or some incumbents consider to adopt 
the new technology, the multiplicity of equilibria vanishes for z = S. For i f  r has been 
set equal to S before the new technology has been available, the number of  conventional 
firms must be no = Q/q0- But this is still an equilibrium after the new technology is 
available! The innovative firms do not have a comparative advantage to crowd out the con- 
ventional firms. Under this story we would have 

ni(r) = 0 i f r  < S, 

n0(r) = 0 i f z  > S. 

We see that in a situation where firms with a conventional technology are incumbent and 
a new technology becomes available, in the long run a Pigouvian tax does not allow con- 
ventional and new technologies to live together. Moreover, the market equilibrium may 
behavevery  discontinuously as the tax rises. In particular, a small tax increase from, say, 
zl = S - e to r2 = S + e'  leads to an industrial revolution in the long run. Under free 
entry, or free choice of technology, the conventional technology will be completely 
substituted by the new one. A small tax increase from zl = S - e to r2 = S + E' also 
induces the pollution level to discontinuously jump downward, whereas aggregate output 
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varies continuously. On the other hand, a variation of taxes within (0, S), or for r > S, 
leads to continuous changes of all endogenous variables. 

3.1s Welfare implications. Clearly, after the new technology has been adopted, the resulting 
allocation is not optimal if the regulator cannot adjust the tax immediately. Two questions 
arise. First, does, nevertheless, welfare rise through innovation? And second, do taxes cause 
too much or eventually too little adoption of the new technology? The answer, of course, 
depends on the prevailing tax level before innovation. Although not quite realistic (see Marin's 
1989 criticism), but as a useful benchmark, we follow Milliman and Prince (1989) by assum- 
ing that the conventional industry is regulated optimally and the new technology becomes 
available suddenly. The regulator is assumed to neither be able to forecast the new technology, 
nor to adjust his policy immediately. This leads us to the following result: 

Corollary 1. I f  the conventional industry is optimally regulated by taxes--that is, 

to(S) = Sl(E~(s) ,  s), (20) 

and the new technology becomes available to any firm, then 

1. if  s <- s, no firm will run the new technology. 
2. I f  s > s, all firms will run the new technology. 

Proof. Theorem 1 implies that r0(s) = SI(E*(s), s) < S i fs  _ s, and z0(s) = SI(E*(s), s) 
= S i f s  = s. Since SI(E*(s), s) is strictly increasing in s if only conventional firms are 
around (this follows from Theorem 1.2), z0(s _) is strictly increasing in s if only conven- 
tional firms are around. This implies 70(s) > S if and only if s _ s. By virtue of Theorem 
2 only conventional firms produce for s < s__, and only innovative firms for s > s_. For 
s = s we employ the fact that the conventional firms are already incumbent, and (no, 
n/) = ((~/q0, 0) is an equilibrium pair of numbers of firms, leaving no place for new 
technologies. [] 

Corollary 1 implies that there is no adoption of the new technology whenever this is 
socially optimal--that is, i fs  < s_. This is fine. On the other hand, for s E (s, 7) the original 
tax always induces complete adoption although only partial adoption is socially optimal. 
As a consequence we obtain that decentralized adoption of new technologies under taxes 
may even result in a decrease in welfare compared to the situation before the new technology 
has been available: 

Corollary 2. For s > s but sufficiently close to s, innovation under the original optimal 
tax leads to a decrease in welfare. 

Proof. The proof is based on a continuity argument. The socialoptimum requires the number 
of innovators to be small for s close to s. But since z0(s) > S for s > s_, we get complete 
innovation by Theorem 2. Hence welfare must decrease. [] 
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Where does the welfare loss come from? Since output changes continuously if the tax 
rises from ~'1 = S to r2 = S + e but pollution falls discontinuously, the net loss in welfare 
must result from a dissipation of production costs for the sake of too clean an environment. 
Too much money will be spent on new abatement equipment. 

If s is greater than g, complete adoption is optimal. However, since the original tax ex- 
ceeds the socially optimal marginal damage, unless s is extremely high, the original tax 
induces too little a number of firms to be in the market. This can be considered as 
underinvestment or too little adoption of the new technology. 

Finally, if the damage parameter is extremely high, the optimal emission level after inno- 
vation may exceed the optimal emission level before innovation (see Theorem 1.3 and Fig- 
ure 5). Thus the original tax may fall short of the socially optimal marginal damage after 
innovation. Hence also the number of firms induced by the original tax policy exceeds the 
optimal number of firms after innovation. By continuity of z0(s) and the socially optimal 
marginal damage in s, we immediately obtain the following characterization of the regions 
where taxes cause too much or too little adoption of the new technology. 

Corollary 3. Suppose the originally optimal tax to(S) is still valid and the new technology 
is available. Then there is an interval (s~, Sb), with Sa ~ (s, ~) and Sb > ~, such that 
there is 

1. excessive adoption of the new technology, or overinvestment, for all s E (_s, Sa) , and 
possibly for s > Sb i f  there is still a market for those s; 

2. too little adoption, or underinvestment, for all s ~ (sa, Sb). 

The result is illustrated in Figure 5. Note that for s = Sa, To(S ) induces the optimal number 
of new technology firms but too little a number (zero) of conventional firms. Only if by 
chance s = Sb, r0(s) leads to first best. 

3.2. Free-entry market equilibrium under permits 

Consider now regulation by permits and assume that any number of permits L has been 
set to be auctioned off to the firms. Define 

Z - -=-~ 0 and L - - - = -  . 
qo - ql 

Note that L and L are equal to the socially optimal emission levels for s = s and s = ~, 
respectively. Denote by qi(L), el(L) the quantifies and emission levels of firm i = 0, I 
under a permit regime with L permits. Then we can state the following result: 

Theorem 3. For each number of permits L being issued, there is a unique competitive free 
entry equilibrium characterized by the following properties. 
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Figure 5. The upper diagram depicts socially optimal marginal damage after innovation, denoted by MDI, and 
the originally optimal tax ~0(s), which is equal to optimal marginal damage before innovation, denoted by MD o. 
The lower diagram depicts the socially optimal number of firms of type 0, denoted by n~ (s), and of type I, denoted 
by n~ (s), and the number of innovators nl(ro(S)) under the original tax ro(S ). Note that at point s the number 
nA~0(s)) can also be less than n~(s). 

1. I f  L >_ I_,, only the conventional firms are in the market, and the market price for per- 
mits a(L)  does not exceed S. 

2. For all L E (L_, L,), both types of firms are active, the market price is a(L) = 73, and 
there is a unique allocation of permits between the conventional and new technology 
firms. There will be 

no = ( L -  L )  ~ ~ q~  ~ ~ ( 2 1 )  

qleo - qoeI 
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conventional firms homing eo many permits each, and 

nl = (L - L) qo (22) 
qleo -- qoql 

new technology firms homing et many permits each. Moreover, qi(L) = qi is indepen- 
dent of  L for i = O, L 

3. I f  L < L, all firms run the new technology, or there is no market at all. The latter 
happens if the number of  permits is so small that the firms' average cost exceeds the 
choke-off price. The market price tr(L) does not fall short of  TS. 

Proof See the appendix. 

So we always get a unique equilibrium under permits. From (21) and (22) we see that 
no and nt vary continuously in L, even for L E (L_, L). Thus, in contrast to the tax regime, 
both types of firms can be active at the same time for different permit policies. Note that 
for L E (L, L,) the market price for permits equals S, which is equal to the tax where both 
types of firms produce. This should not be surprising after all since for tr less than S the 
new technology firms could not compete, and for permit prices exceeding S the conven- 
tional firms would make losses. Thus the market price alone cannot enforce uniqueness 
of equilibrium. However, the fixed supply of permits can match demand for permits only 
for a unique allocation. In other words, market clearing on the permit market leads to the 
unique equilibrium. 

3.2.L Welfare implications. Clearly, also under permits, the optimal policy level before 
innovation is not optimal any longer as soon as the new technology has been adopted. Thus, 
if the number of permits cannot be adjusted immediately, the allocation that arises through 
adoption of the new technology is not socially optimal in general. However, permits have 
a crucial advantage over taxes: 

Corollary 4. Under any number of permits L, adoption of a new technology never leads 
to a decrease in welfare. 

Proof Total pollution is the same before and after the new technology has been available. 
I fL  >_ L, no adoption happens. For L < L, there will be either partial or complete adop- 
tion. But since the firms minimize costs, emissions as a scarce resource are used less inef- 
ficiently by the firms. This leads to lower abatement costs and to a higher output as before 
the new technology has been available. [] 

On the other hand, similar to the tax regime, permits also can cause too little but also 
too much adoption of the new technology. To see this, let us assume again that the conven- 
tional industry is regulated optimally--that is, the number of permits is given by L0(s ) = 
E~(s). Then the new technology becomes available, and the incumbents can decide to 
adopt it, or other firms with the new technology may enter the market. The following cor- 
ollary describes what happens under the originally optimal permit policy: 
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Corollary 5. I f  the conventional industry is optimally regulated by issuing Lo(s) permits 
and if  the new technology is available to any firm, then 

1. For all s <- s, there will be no adoption o f  the new technology. 
2. There is a parameter ~ > ~ such that for all s E (s, ~) there is a unique equilibrium 

where both types o f  technologies will be employed. The price for permits is equal to 
~S. For L = Lo(s) the number of conventional firms, holding eo many permits each, is 
given by (21), and the number of  innovators, homing el many permits each, is given 
by (22). 

3. For s >- ~, there will be complete adoption of the new technology. 

Proof. By Theorem 1, L0(s) exceeds E~(s) for s s (s, ~] and is strictly decreasing. Define 
~by L0(~) = L. Since L0(~) > E~'(~) = L, we get ~ > ~. Thus L0(s) E (L, L) for all 
s E (s, g). By Theorem 3 both firms are active for L E (L, L), leading to numbers of 
firms given by (21) and (22). Everything else follows from Theorem 3. [] 

The following result yields a pattern of under- and overinvestment that is reversed to 
the pattern under taxes described in Corollary 3. 

Corollary 6. There is an interval (so, Sd), with Sc E (~, s') and Sd > S, such that there is 

1. Too little adoption of the new technology, or underinvestment, for all s E (s, Sc) and 
possibly for all s > Sd if there is still a market for those s, 

2. Excessive adoptio n, or overinvestment, for all s E (Sc, St). 

The result is illustrated in Figure 6. Note again, that for s = so, Lo(s) induces the optimal 
number of innovators but too large a number of conventional firms. Only if s = Sd by 
chance, L0(s) induces the optimal number of innovators and conventional firms (= 0). 

Proof. Under policy L0(s), partial adoption happens for s E (s, ~). For this interval part 3 
of Theorem 1 implies that Lo(s) = E~" (s) > E~' (s) (see Figure 6). Since the number of 
permits is too high, too many conventional firms stay in the market whenever partial adop- 
tion is optimal but also for a range of parameters (~, s') for which complete adoption is 
optimal. This in turn implies that too few firms invest in the new technology for s greater 
but sufficiently close to s. By continuity L0(s) > E~" (s) for s greater but sufficiently close 
to ~. Hence the price for permits falls short of the optimal marginal damage and too many 
firms invest in the new technology if s is close to g. Finally, if there is a region where 
E~ (s) > E~' (s) = L0(s) and the market does not break down, we have again underinvest- 
ment for sufficiently large values of s. [] 

4. Concluding remarks 

We have investigated a model where polluting firms compete in an output market and are 
regulated by either emission taxes or auctioned permits. We assumed that there are two 
types of potential technologies, a conventional one with relatively high marginal abatement 
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Figure 6 The upper diagram depicts the socially optimal marginal damage after innovation, denoted by MDI, 
the originally permit price before innovation, denoted by %(L0(s)) (which is equal to optimal marginal damage 
before innovation), and the new permit price ai(Lo(s)) after innovation but under the original quota of permits 
L0(s). The lower diagram depicts the socially optimal numbers of type 0 firms n~ (s) and of type I firms n~ (s), 
and the number of conventional firms n o (o I (L 0 (s))) and innovators n l(a I (Lo(s) )), respectively, after innovation 
under the original permit policy L0(s ). 

costs and a new one with low marginal abatement costs but higher fixed costs. We were 
interested whether taxes and permits provide the correct incentives for firms to adopt the 
new, less polluting technology. The impact of the two policy tools turned out to be quite 
different. Permits allow for partial adoption, whereas taxes do not. Under the hypothesis 
that the conventional industry is regulated optimally before innovation and that the environ- 
mental policy cannot be adjusted immediately, both types of policies may lead to overinvest- 
ment but also to underinvestment in new technology. Taxes cause too much adoption for 
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parameters where partial adoption is optimal but also too little adoption for parameters 
where complete adoption is optimal. For permits the pattern is reversed. They induce too 
many conventional firms to stay in the market whenever partial adoption is optimal. However, 
they lead to excess entry of innovators for parameters where complete adoption is optimal. 

Yet permits have two crucial advantages over taxes. They never lead to a decrease in wel- 
fare whereas taxes sometimes do. Moreover, once the new technology is available, one can 
always implement first best ex post by adjusting the number of permits, which does not 
work under taxes whenever partial adoption is optimal. In other words, overinvestment under 
permits--if it occurs--can be considered as less severe than overinvestment under taxes. 

However, even the permit system could possibly be improved by reviving a mixed system 
of permits, taxes, and subsidies, as has been proposed by Roberts and Spence (1976) or 
by a system of different permits proposed by Collinge and Oates (1982), or Henry (1989, 
ch. 2). Unfortunately, very little attention has been paid to those systems. The joint idea 
of all these systems is to make the inelastic supply of permits more elastic by approx- 
imating the marginal social damage function by different types of permits. To examine 
such a system under free entry is beyond the scope of this paper and is left to further 
research. My conjecture, however, is that such a system may lead to (almost) first best 
even if the regulator does not have any prior information about future technologies. 

Appendix 

First we state more formally the assumption on the relationship between the two cost 
functions. 

Assumption 2. The two cost functions C ~ and C 1 satisfy the following conditions: 

1. qo > ql 
~o@) ~ ' (0  

(23) 

2. There are (qo, eo) E YMAc(C~ (ql, e.l) E YMac(CI), and X > 0 such that 

vc~  ~o) = xvc~(~J, O, (24) 

~o < ~ 
c~ 0 ct(O~, ~) 

(25) 

and 

~o ~, 
c~ ~o) ct(,b, O < _ c~(~, ~) 

~o ~; c~(~, ~;) 
c~ ~o) c'(;7,, ~,) 

i = O , L  (26) 

3. The functions ho and hi intersect only once. 
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Here ho and h I are the corresponding functions from Assumption 1.4 with respect to 
the cost function C O and C I, respectively. Part 1 says that in the absence of regulation-- 
that is, if the firms pick e such that C2(q, e) = 0--the conventional firms of type 0 have 
the lower average costs than the innovators, who face the higher fixed costs due to installa- 
tion of new technology. Or equivalently, the output-cost ratio is larger for the conventional 
firms. Note that the point (~o/C~ eo(qo)), eo(qo)/C~ eo(qo))) lies above the hFcurve. 
Part 2 says that there is a region of output and emission levels where the innovative firms 
of type I have a cost advantage. This means that if we have two production plans for which 
the gradients of marginal cost of both firms point in the same direction, then the point 
(q0/C~ eo), qo/C~ eo)) lies below the hFcurve. Note that if (25) holds, (26) is equiv- 
alent to 

C I ^ l (ql '  O q o  + C19(qI, Oeo 

c~ ~o) cl@, 0 
< 1 < C~176 eo)ql + C~ eo)el, (27) 

which will be needed in the proof of Theorem 1. Part 3 is made for convenience and guar- 
antees that the cost advantages do not switch back. Note further that Parts 1 and 2 imply 
that h0 and hi intersect at least once. 

Proof  o f  Theorem 1. The Lagrange function of the maximization problem is 

L ( . . . )  = W(qo, ql, eo, el, no, nl, s) + )~oqo + )~lql + txoeo + #lei  + vono + vlni, 

where ~o, XI, #o, #,, Vo, and vt are the Kuhn Tucker multipliers of the nonnegativity con- 
straints. The first-order conditions are 

P ( Q )  - C~ eo) + ~o = O, 

P ( Q )  - C[(ql ,  el) + XI = O, 

- S I ( E ,  s) - C~ eo) + tZo = O, 

- S I ( E ,  s) - C~(qi, et) + #I = O, 

P(Q)qo - C~ eo) - SI(E, s)eo + 1'o = O, 

P (Q)q l  - Cl(qi,  el) - SI(E, s)el + Vl = O. 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

Suppose that there is an interior solution, i.e., all the multipliers are zero. Differentiating 
(32) and (33) w.r. to s and employing (28) through (31) yields 

P' (Q)Q' ( s )qo( s )  - [Sll(E(s), s)E'(s) + S12(E(s), s)]eo(s ) = 0, (34) 

P ' ( Q ) Q ' ( s ) q l ( s )  - [Sll(E(s),  s )E ' (s )  + S12(E(s), s)]ei(s) = 0. (35) 
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Now suppose Q'(s) # 0. This implies by (32) and (33) that [Sll(E($), s)E'(s) + S12(E(s), 
s)] # 0 and hence by (32) through (35) we' get 

qo _ eo _ C~ eo) 
ql et Cl(qt, el) ' 

or 

(- qo eo(s)_ -) = )~ ~- ql(s) el(s)_ -] 
C~ eo(s)) ' C~ eo(s)).) ~ Cl(ql(s), et(s)) ' Cl(q1(s), el(s)).J 

for some ~ > 0. But this contradicts Assumption 2, since if-the two h i curves intersect, 
the gradients cannot have the same direction. Hence, Q(s) = Q., and Q'(s) = 0. But then 
(34) or (35) imply 

~sSI(E(s) ,  s) = Sll(E(s), s)E '(s) + S12(E(s), s) = O. (36) 

Thus: E '  = -Sl2/Sll < 0. Differentiating (28) through (31) w.r. to s, and using (36) we 
get a homogeneous linear system in q~(s), q[ (s), e6(s), and ej (s). Hence q~(s) = q;(s)  = 
e~(s) = e~(s) -- 0. Next we have Q = no(s)~ o + nl(s)ql and E(s) -- no(s)~ o + ni(s)el, 
giving E'(s) = n~(s)[~ o - el" (qo/ql)]. This implies that no(s) is decreasing and Hi(S) is 
increasing, or vice versa. We will exclude below that no(s) is increasing. 

Now let s be close to zero. Then SI(E, s) is close to zero. Since C~ e0) > 0 and 
C1(~tI, el) > 0, (30) and (31) cannot be satisfied for ~ = #1 = 0, and s sufficiently close 
to zero. On the other hand, for s close to zero we have 

P(Q(s)) = C~ eo(s)) ~- 
C~ eo(s)) C'~ 

qo(s) ;to 

o r  

P(Q(s)) = C~(qi(s), el(s)) = 
Cl(qi(s), et(s)) C1(;1D 

ql(s) ;11 

Since we have ~o/C'~ > ;1t/Ct(~/), by Assumption 2 we conclude 1,1 > 0, Vo = 0, and 
hence no > 0 and nt = O. 

Next observe that since Qt(s) = Q., qo(s) = qo, and qz(s) = q / a r e  constant for those 
s for which there is an interior solution, no(s) and nl(s) must be bounded. Since also eo(s) 
= eo, and et(s) = el are constant and greater than zero, E(s) must  be greater than 0 for 
those s. But this implies that for s sufficiently high SI(E(s), s) must exceed -C~ eo), 
and -C1(;11, et). Thus (30) and (31) cannot be satisfied for/z o = #t = 0 and s sufficiently 
high. This means that only one type of firm can be active, hence Vo > 0 or v / >  0. Since 
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MRS(s) =- SI(E(s), s)/P(Q(s)) is increasing (we omit a proof here, see Requate, 1994), 
and since it becomes greater than R = S/P(Q)  = -cig(~ti, ~i)/C~(gti, ei) for i = 0, I, the 
inequalities (27) must hold. Now assume there is a solution with P(Q) = C{(qt, el) and 
SI(E, s) = -CI (q i ,  et). Then (32) and (33) become 

Cll(qI, el)qo - C~2(ql, el)eo - C~ eo) + 1'o = O, (37) 

C{(ql, el)ql - Cl(ql, el)el - Cl(qt, el) + Vl = O. (38) 

This implies 1,1 = 0, and % > 0 by the first inequality of (27). Assuming P(Q)  = C~ 
Co) and SI(E, s) = -C~ e0), this would lead to p~ < 0 by the second part of (27), 
which is impossible. 

One can show that our Assumptions on P(.), S(', ") and on the cost functions imply 
that the objective function of the social planner is strictly concave. Thus the solution is 
unique. Since all involved functions are continuous in s, the solution must be continuous 
in s. Hence there must exist parameters s and ~ such that no(s) > 0 and ni(s) = 0 for 
s < s__ and no(s) = 0 and n1(s) > 0 for s > ~. 

A proof for the comparative statics results from Part 2 can be obtained by the author 
on request (see Requate, 1994). [] 

Proof o f  Theorem 3. We proceed indirectly again. One can easily show that the aggregate 
factor demand for permits is strictly decreasing if the price for permits rises, if the output 
market clears, and if only one type of firm is around. This implies that the price for per- 
mits is unique and rises if the supply of  permits goes down. Hence, if only conventional 
firms are around and L = L, then ~(L) = S. I f  only new technology firms are around, 
and L = L, then also o(___) = S. 

Now suppose o > S. Then by the same arguments as for the emission tax (in Section 3), 
only type I firms can be active, and L > L. Similarly, sup_pose o < S. Then only type 0 
firms can be active, and L > L. Now suppose L E ~ ,  L ) . T h e n  o(L) = S, otherwise 
L would be smaller than L or greater than T,. But if a(L) = S, both types of firms can be 
active with qi(Z) = qi, and ei(Z ) = ei for i = 0, L Contrary to the tax solution, however, 
there are unique numbers of firms n0(L), and hi(L), determined by the two (linearly inde- 
pendent) equations: Q = no(L)~ 0 + ni(L)~li and L = no(L)~ o + ni(L ) et. Solving for no(L ), 
and n1(L) yields (21) and (22). [] 
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Notes 

1. Laffont and Tirole (1994a, p. 2): "Stand alone spot markets (in which the government sets at the beginning 
of each period the number of permits for that period) create excessive incentives for investment . . . .  This 
incentive can be reduced by the introduction of a futures market"  

2. Laffont and Tirole (1994b, p. 2): "While spot markets destroy incentives for innovations, futures markets 
bring limited improvement?' 

3. This is a standard assumption. It guarantees that the second-order conditions are satisfied. 
4. On the border we assume S(0, s) = $1(0, s) = 0 for all s > 0. 
5. Note that the steepness of the damage function matters also in related models--for example, for the choice 

between price versus quantity regulation in Weitzman's (1974) seminal paper on regulation under imperfect 
information. See also Adar and Griffin (1976) and Fishelson (1976). 

6. We can consider our firms as multiproduct firms producing the consumption good and emissions (or abate- 
ment). In the language of Baumol, Panzar, Willig (1982), all production plans in (4) have scale elasticity 1. 

7. One can show that h is concave if the third derivatives of the cost function are sufficiently bounded. To write 
down explicit conditions, however, is tedious and does not yield further insight. 

8. A cost function with the properties of Assumption 1 can be derived from a Cobb-Douglas production func- 
tion where one input is energy, which has a nonzero factor price, and pollution is proportional to the use 
of energy. (I am grateful to Cees Withagen for asking about underlying production functions.) 

9. This implies that complete bypass as assumed in Laffont and Tirole (1994a, 1994b) is not possible. 
10. We cannot, however, show that emissions go up in general if s is sufficiently high. Due to the fixed costs 

it may happen that output is too low for a single firm to survive--that is, the market may break down. For 
a polynomial cost function of type C(q, e) = �89 + c~ - e) 2 + 7q 2] + F, one can show for suitable 
parameters c~,/~, 7, F,, and s sufficiently high that both can happen: E~ (s) exceeds ~00 (s) and the number 
of firms is greater than 1, but also that E/* (s) exceeds E0* (s) in a region where the number of firms falls 
short of 1 (if we treat it as a continuous variable)--that is, there is no market. 

11. I am grateful to Lans Bovenberg, whose comment inspired this figure. 
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