# Frequency Analysis of Upper Cauvery Flood Data by L-Moments

# A. RAMACHANDRA RAO and KHALED H. HAMED

School of Civil Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.

(Received: 12 November 1993)

**Abstract.** The objectives of the present study are to investigate the hydrological homogeneity of Upper Cauvery annual maximum flow data and to select a suitable distribution for the frequency analysis. The L-moments method is used in this analysis. The Upper Cauvery river basin is shown to be hydrologically heterogeneous. The 3 parameter log normal and the generalized extreme value distributions are recommended for the frequency analysis of data in this region.

Key words: hydrological homogeneity, flood data, L-moments methods

## 1. Introduction

The concept of probability weighted moments (PWM) was introduced by Greenwood *et al.* (1979). Since then it has received considerable attention from Landwehr *et al.* (1979a, b), Hosking *et al.* (1985), Hosking (1986), Hosking and Wallis (1987) and others. PWM estimates are robust in the presence of outliers. Parameter estimates from small samples computed by using the PWM method are sometimes more accurate than even the maximum likelihood (ML) estimates. The PWM method is less complicated than the ML method. With some distributions, such as the symmetrical Lambda and Weibull distributions, explicit expressions for the parameters are obtained by the PWM method, which cannot be done with either the ML or the method of moments (MOM).

Hosking (1986, 1990) has defined the L-moments which are analogous to the conventional moments and are estimated by linear combinations of order statistics. They can also be expressed by linear combinations of PWM. Thus, procedures based on PWM and L-moments are equivalent. However, L-moments are more convenient because they are directly interpretable as measures of the scale and of the shape of probability distributions. Hosking (1990) has used L-moment ratio diagrams to identify underlying parent distributions and L-moment ratios for testing hypotheses about forms of probability distributions. Hosking and Wallis (1991) extended the use of L-moments and developed statistics that can be used in regional frequency analysis to measure discordancy, regional homogeneity and goodness-of-fit.

The objective of the present work is to analyze the annual maximum flow data from the Cauvery River basin in south India by using the L-moment method. Both regional and at-site parameter and quantile estimates are used and the differences between them are studied. The L-moment ratios are used to identify candidate distributions and to evaluate the effectiveness of regional analysis.

# 2. Theoretical Background

Probability weighted moments  $M_{1,r,s}$  are defined by Greenwood *et al.* (1979) as in Equations (1) and (2), where F is the cumulative probability.

$$M_{1,r,0} = \beta_r = \int_0^1 x(F) F^r dF , \qquad (1)$$

$$M_{1,o,s} = \alpha_s = \int_0^1 x(F)(1-F)^s \mathrm{d}F \;. \tag{2}$$

Both  $\alpha_s$  and  $\beta_r$  are linear in x and are of sufficient generality for parameter estimation. Also,  $\alpha_s$  and  $\beta_r$  are related as in Equations (3) and (4).

$$\alpha_s = \sum_{k=0}^s \binom{s}{k} (-1)^k \beta_k , \qquad (3)$$

$$\beta_r = \sum_{k=0}^r \binom{r}{k} (-1)^k \alpha_k .$$
(4)

L-moments  $\lambda_{r+1}$  are defined by Hosking (1986, 1990) in terms of PWMs  $\alpha_s$  and  $\beta_r$  as in Equation (5),

$$\lambda_{r+1} = (-1)^r \sum_{k=0}^r p_{r,k} \alpha_k = \sum_{k=0}^r p_{r,k} \beta_k,$$
(5)

where

$$p_{r,k} = (-1)^{r-k} \begin{pmatrix} r \\ k \end{pmatrix} \begin{pmatrix} r+k \\ k \end{pmatrix} .$$
(6)

In particular,

$$\lambda_1 = \alpha_0 = \beta_0 , \tag{7}$$

$$\lambda_2 = \alpha_0 - 2\alpha_1 = 2\beta_1 - \beta_0 , \qquad (8)$$

$$\lambda_3 = \alpha_0 - 6\alpha_1 + 6\alpha_2 = 6\beta_2 - 6\beta_1 + \beta_0 , \qquad (9)$$

$$\lambda_4 = \alpha_0 - 12\alpha_1 + 30\alpha_2 - 20\alpha_3 = 20\beta_3 - 30\beta_2 - 12\beta_1 + \beta_0.$$
 (10)

For a given ordered sample  $x_1 \leq \cdots \leq x_n$ , n > r and n > s, the sample PWMs are calculated (Hosking, 1986) by Equations (11) and (12),

$$a_s = \hat{\alpha}_s = \frac{1}{n} \sum_{i=1}^n (1 - P_{i:n})^s x_i , \qquad (11)$$

$$b_r = \hat{\beta}_r = \frac{1}{n} \sum_{i=1}^n P_{i:n}^r x_i , \qquad (12)$$

where  $P_{i:n}$  is a plotting position. The use of  $P_{i:n} = (i - 0.35)/n$  usually gives good results for the generalized extreme value distribution (GEV) (Hosking *et al.*, 1985) and is recommended in general for analysis of hydrologic data (Cunnane, 1989). Sample L-moments  $(l_r)$  can be calculated by using Equations (7)–(10) by replacing  $\alpha_s$  or  $\beta_r$  by their sample estimates  $a_r$  and  $b_r$ . L-moment ratios, which are analogous to the conventional moment ratios are defined by Hosking (1986, 1990) in Equations (13) and (14).

$$\tau = \lambda_2 / \lambda_1 \,, \tag{13}$$

$$\tau_r = \lambda_r / \lambda_2 \,, \quad r \ge 3 \,, \tag{14}$$

where  $\lambda_1$  is a measure of location,  $\tau$  is a measure of scale and dispersion (LC<sub>v</sub>),  $\tau_3$  is a measure of skewness (LC<sub>s</sub>),  $\tau_4$  is a measure of kurtosis (LC<sub>k</sub>). Sample L-moment ratios t and  $t_r$  are calculated by using Equations (13) and (14) and substituting  $l_r$ for their population values  $\lambda_r$ . The L-moment ratios (Hosking, 1990) offer an easy way to identify underlying distributions, particularly the skewed distributions. The sample L-moment ratios plot as well separated groups for different distributions. Therefore, different distributions are easily discriminated by using them. A distribution is considered to be suitable if the data spread consistently around it. Hosking (1990) also suggests a test for normality against the skew alternative based on the statistic

$$N_n = v_n^{-1/2} t_3, (15)$$

where  $v_n$  is the variance of  $t_3$  and is given by  $0.1866n^{-1} + 0.8 n^{-2}$ .

The critical limits of  $N_n$  are obtained from the standard Normal tables at the required significance level. Hosking and Wallis (1991) have derived statistics to measure discordancy (D), regional heterogeneity (H) and goodness of fit (Z). A full description of these statistics is found in Hosking and Wallis (1991). A site *i* is considered to be unusual if  $D_i$  is large. A suitable criterion for defining largeness is that  $D_i$  should be greater than 3. A region is declared heterogeneous if H is sufficiently large. Hosking and Wallis suggest the region be regarded as *acceptably homogeneous* if H is less than 1, *possibly heterogeneous* if H is between 1 and 2, and *definitely heterogeneous* if H is sufficiently close to zero. An acceptable criterion being that  $|Z^{\text{DIST}}|$  is less than or equal to 1.64.

As in the method of moments (MOM), parameter estimates are obtained by equating sample PWM or L-moments to the corresponding population values. Depending on data availability, parameter and quantile estimates are obtained by using either data at a site or regional data or both (Cunnane, 1989). Flood estimates

| Station | Name of the      | Stream           | Drainage           | Annual | Data      | $Q_{\max}$     |
|---------|------------------|------------------|--------------------|--------|-----------|----------------|
|         | station          |                  | (km <sup>2</sup> ) | (mm)   | available | $(m^3 s^{-1})$ |
| 1       | Chunchanakatte   | Cauvery          | 2968               | 680    | 1918–1980 | 2879           |
| 2       | Akkihebbal       | Hemavathy        | 5198               | 742    | 1918–1980 | 2979           |
| 3       | Unduwadi         | Lakshmanathirtha | 1502               | 763    | 1918–1980 | 1825           |
| 4       | Nugu Dam         | Nugu             | 984                | 920    | 1918–1980 | 877            |
| 5       | Hullahalli       | Kabini           | 4850               | 920    | 1918–1974 | 4129           |
| 6       | Markonahalli Dam | Shimsha          | 4131               | 764    | 1918–1980 | 1952           |
| 7       | Mangala Dam      | Nagini           | 748                | 764    | 1918–1980 | 707            |
| 8       | Kanva Dam        | Kanva            | 344                | 839    | 1918–1980 | 998            |
| 9       | Suvarnavathi Dam | Suvarnavathi     | 1437               | 676    | 1918–1980 | 2084           |

TABLE I. Details of Cauvery river and tributaries (source Ramesh et al., 1987)

may be based on data at a site if the record is exceptionally long, or when regional data are not available, or when a region is very heterogeneous. The advantage of joint use of at-site and regional data is that, in general, there is sufficient information in the combined set of data so that a multi-parameter distribution can be reliably used. A method of combining regional data, which is used here, is the index flood method (Cunnane, 1989). The variate Q normalized by its mean is assumed to have the same distribution at each site. The quantile  $Q_T$  at a site is estimated by Equation (16).

$$\ddot{Q}_T = \mu_i q_T , \qquad (16)$$

where  $q_T$  is the quantile estimate from the regional distribution and  $\mu_i$  is the mean at the site. The regional distribution parameters are obtained by using regional weighted averages of dimensionless L-moments computed by dividing the moments by the mean  $\mu_i$  of each station.

#### 3. Analysis of the Cauvery River Data

The annual maximum flow data from nine gauging stations on the tributaries to the Cauvery River in the state of Karnataka, India are used in this study. The locations of the gauging stations are shown in Figure 1. Details of the rivers and stations included in this study are given in Table I.

The record length of each station is 63 years except for station 5 which has a record length of 57 years. Probability weighted moments as well as L-moments are calculated for data from each of the nine stations by using equations given in Section 2. Table II gives the standardized moments, which are the original moments computed by using the data divided by the mean at each station, as well as their weighted regional averages for these stations. The values of L-moment ratios  $LC_v$ ,  $LC_s$  and  $LC_k$  are given in Table III, as well as their weighted regional averages.

| $L_4$       | 0.0296 | 0.0534 | 0.1122 | 0.1133 | 0.0757 | 0.0935 | 0.1205 | 0.0736 | 0.1093 | 0.0869  |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| <i>l</i> 3  | 0.0422 | 0.0595 | 0.1566 | 0.2206 | 0.0907 | 0.2507 | 0.2083 | 0.1382 | 0.1378 | 0.1455  |
| $l_2$       | 0.1904 | 0.2288 | 0.3852 | 0.4686 | 0.2454 | 0.6084 | 0.4794 | 0.4828 | 0.4129 | 0.3906  |
| $l_1$       | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000  |
| $a_4$       | 0.1330 | 0.1204 | 0.0806 | 0.0654 | 0.1208 | 0.0195 | 0.0569 | 0.0398 | 0.0643 | 0.0774  |
| <i>a</i> 3  | 0.1734 | 0.1592 | 0.1102 | 0.0886 | 0.1585 | 0.0342 | 0.0803 | 0.0636 | 0.0932 | 0.1062  |
| $a_2$       | 0.2452 | 0.2288 | 0.1668 | 0.1358 | 0.2258 | 0.0709 | 0.1283 | 0.1150 | 0.1498 | 0.1623  |
| $a_1$       | 0.4048 | 0.3856 | 0.3074 | 0.2657 | 0.3773 | 0.1958 | 0.2603 | 0.2586 | 0.2935 | 0.3047  |
| $a_0$       | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000  |
| $b_4$       | 0.2913 | 0.3141 | 0.4112 | 0.4630 | 0.3322 | 0.5249 | 0.4645 | 0.4408 | 0.4165 | 0.4073  |
| $b_3$       | 0.3477 | 0.3705 | 0.4681 | 0.5217 | 0.3869 | 0.5911 | 0.5238 | 0.5055 | 0.4757 | 0.4665  |
| $b_2$       | 0.4356 | 0.4576 | 0.5520 | 0.6044 | 0.4711 | 0.6793 | 0.6078 | 0.5978 | 0.5628 | 0.5529  |
| $b_1$       | 0.5952 | 0.6144 | 0.6926 | 0.7343 | 0.6227 | 0.8042 | 0.7397 | 0.7414 | 0.7065 | 0.6953  |
| $p_0$       | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000  |
| Station No. | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 6      | Average |

TABLE II. Standardized probability weighted moments (PWMs) and L-moments



Fig. 1. The Upper Cauvery Basin (Source: Ramesh et al. 1987).

| Site  | N        | Name   | $LC_v$ | LC <sub>s</sub> | $LC_k$ | $D_i$ |
|-------|----------|--------|--------|-----------------|--------|-------|
| 1     | 63       | Site 1 | 0.1904 | 0.2217          | 0.1556 | 1.93  |
| 2     | 63       | Site 2 | 0.2288 | 0.2599          | 0.2332 | 0.62  |
| 3     | 63       | Site 3 | 0.3852 | 0.4065          | 0.2913 | 0.44  |
| 4     | 63       | Site 4 | 0.4686 | 0.4707          | 0.2417 | 1.18  |
| 5     | 57       | Site 5 | 0.2454 | 0.3696          | 0.3085 | 0.89  |
| 6     | 63       | Site 6 | 0.6084 | 0.4121          | 0.1537 | 1.25  |
| 7     | 63       | Site 7 | 0.4794 | 0.4345          | 0.2513 | 0.33  |
| 8     | 63       | Site 8 | 0.4828 | 0.2862          | 0.1524 | 1.17  |
| 9     | 63       | Site 9 | 0.4129 | 0.3338          | 0.2646 | 1.19  |
| Weigh | ited mea | ans    | 0.3906 | 0.3548          | 0.2272 |       |

TABLE III. L-moment ratios and discordancy measures D<sub>i</sub>

The discordancy measures  $D_i$  for each of the nine sites are given in Table III. The largest value of  $D_i$  is 1.93 for site 1, which is less than 3 recommended by Hosking and Wallis (1991). Consequently, none of the nine sites may be considered to be unusual. The  $LC_v - LC_s$  moment ratio diagram for different rivers in shown in Figure 2.

The  $LC_s$  versus  $LC_k$  diagram for the data used in this study as well as for some of the common three parameter distributions is shown in Figure 3. The heterogeneity



Fig. 3. The  $LC_s$  vs  $LC_k$  moment ratio diagram.

| Measure | Item                                              | Value  |
|---------|---------------------------------------------------|--------|
| $H_1$   | Observed S.D. of group $LC_v$                     | 0.1323 |
|         | Sim. mean of S.D. of group $LC_v$                 | 0.0357 |
|         | Sim. S.D. of S.D. of group $LC_{v}$               | 0.0095 |
|         | Standardized test value                           | 10.21  |
| $H_2$   | Observed ave. of LC <sub>v</sub> /LC <sub>s</sub> | 0.1394 |
|         | Sim. mean of ave. $LC_v/LC_s$                     | 0.0689 |
|         | Sim. S.D. of ave. $LC_v/LC_s$                     | 0.0162 |
|         | Standardized test value                           | 4.37   |
| $H_3$   | Observed ave. of LC <sub>s</sub> /LC <sub>s</sub> | 0.0944 |
|         | Sim. mean of ave. $LC_s/LC_k$                     | 0.0866 |
|         | Sim. S.D. of ave. $LC_s/LC_k$                     | 0.0206 |
|         | Standardized test value                           | 0.38   |

TABLE IV. Heterogeneity measures H (Number of simulations = 500)

TABLE V. Goodness of fit measures  $Z^{DIST}$ 

| Distribution       | $LC_k$ | Z     |
|--------------------|--------|-------|
| Gen. logistic      | 0.272  | 1.34  |
| Gen. extreme value | 0.250  | 0.53  |
| Log-normal         | 0.222  | -0.53 |
| Pearson Type III   | 0.174  | -2.34 |
| Gen. pareto        | 0.184  | -1.97 |

measures in Table IV. The standardized test value  $H_1$  is 10.21 which is much higher than 2, which suggests that the region is definitely heterogeneous. Consequently the upper Cauvery river basin is heterogeneous, a conclusion supported by the information in Figures 2 and 3. The data in Figure 3 do not cluster around any distribution, but are scattered around all of them. The average value of the statistic  $H_2$  (4.37) is again larger than 2.  $H_2$  is shown later to represent the relationship between the at-site and regional estimates. Consequently, the relationship between the regional and at-site estimates at different sites is quite diverse. The statistic  $H_3$ (0.38), which is shown later to represent the relationship between at-site estimates and observed data.

The test of normality outlined in section 2 yields  $\nu_n = 0.00316$ . The critical values of  $N_n$  at 5% significance level are  $\pm 1.96$ . The normality assumption can be accepted if  $|t_3| < 0.11$ . Consequently, the normality hypothesis is rejected for all nine stations. Only skew distributions can be considered for these stations. In Table V the values of the goodness of fit measure  $Z^{\text{DIST}}$  for different distributions

| Site     | 1       | 2       | 3       | 4       | 5        |
|----------|---------|---------|---------|---------|----------|
| и        | 0.8319  | 0.7906  | 0.6117  | 0.5154  | 0.7573   |
| α        | 0.2539  | 0.2863  | 0.3615  | 0.3783  | 0.2494   |
| K        | -0.0794 | -0.1359 | 0.3386  | -0.4209 | -0.2897  |
|          |         |         |         |         |          |
| Site     | 6       | 7       | 8       | .9      | Regional |
| и -      | 0.3852  | 0.5108  | 0.5483  | 0.6003  | 0.6129   |
| $\alpha$ | 0.5639  | 0.4222  | 0.5768  | 0.4511  | 0.3945   |
| K        | -0.3460 | -0.3750 | -0.1740 | -0.2408 | -0.2937  |

TABLE VI. Parameter estimates for the GEV distribution

(Hosking, 1991) are given. Candidate distributions for which the  $|Z^{\text{DIST}}|$  is less than 1.96 are the Generalized Logistic distribution (GLOG), the Generalized Extreme Value distribution (GEV) and the Log-normal (LN) distribution. Consequently, they are used in further analysis. The Pearson-III (P-III) distribution is included for comparison purposes although it does not provide a good fit.

### 3.1. GEV DISTRIBUTION

Parameter estimates of the GEV distribution are obtained from Hosking (1986 and 1990) and given in Equations (17)–(20).

$$\hat{K} = 7.8590C + 2.9554C^2,\tag{17}$$

$$\hat{\alpha} = \frac{l_2 \hat{K}}{(1 - 2^{-\hat{K}}) \Gamma(1 + \hat{K})},\tag{18}$$

$$\hat{u} = l_1 + \frac{\hat{\alpha}}{\hat{K}} [\Gamma(1 + \hat{K}) - 1],$$
(19)

$$C = \frac{2}{3+t_3} - \frac{\log 2}{\log 3}.$$
 (20)

Parameter estimates at each station as well as their regional averages are given in Table VI. Quantile estimates are obtained using Equation (21).

$$\hat{q}_T = \hat{u} + (\hat{\alpha}/\hat{K})[1 - (-\log F)^K].$$
(21)

Figure 4 (a–d) shows at-site as well as regional quantile estimates along with the corresponding observed values for rivers Cauveri, Lakshmanathirtha, Kabini and Shimsha.





| Site | 1       | 2       | 3       | 4       | 5        |
|------|---------|---------|---------|---------|----------|
| и    | 0.9322  | 0.9504  | 0.7627  | 0.6748  | 0.8606   |
| α    | 0.1754  | 0.2042  | 0.2887  | 0.3156  | 0.1939   |
| K    | -0.2217 | -0.2599 | -0.4065 | -0.4707 | -0.3696  |
| Site | 6       | 7       | 8       | 9       | Regional |
| и    | 0.6208  | 0.6879  | 0.7817  | 0.7854  | 0.7857   |
| lpha | 0.4521  | 0.3438  | 0.4203  | 0.3413  | 0.3146   |
| K    | -0.4121 | -0.4345 | -0.2862 | -0.3338 | -0.3548  |

TABLE VII. Parameter estimates for the GLOG distribution

#### 3.2. GENERALIZED LOGISTIC (GLOG) DISTRIBUTION

Parameter estimates of the GLOG distribution are obtained from Equations (22)–(25) (Hosking, 1986 and 1990).

$$\hat{K} = -t_3, \tag{22}$$

$$\hat{\alpha} = \frac{l_2}{\Gamma(1+\hat{K})\Gamma(1-\hat{K})},\tag{23}$$

$$\hat{u} = l_1 + (l_2 - \hat{\alpha})/\hat{K}.$$
(24)

Parameter estimates for each station as well as their regional averages are given in Table VII. Quantile estimates are computed by using Equation (25).

$$q_T = \hat{u} + \frac{\hat{\alpha}}{\hat{K}} [1 - \{(1 - F)/F\}^{\hat{K}}]$$
(25)

The at site as well as regional quantile estimates along with the observed data for Cauveri, Lakshmanathirtha, Kabini, and Shimsha rivers are shown in Figure 5.

#### 3.3. LOG-NORMAL DISTRIBUTION

Parameter estimates of the LN distribution are obtained from Equations (26)–(29) (Hosking, 1990),

$$\hat{\sigma} = 0.999281Z - 0.006118Z^3 + 0.000127Z^5 , \qquad (26)$$

$$\hat{\mu} = \log \left[ l_2 / \operatorname{erf} \left( \hat{\sigma} / 2 \right) \right] - \frac{\hat{\sigma}^2}{2} ,$$
(27)



(a) Cauvery River.

1

(s/Em) O betramite3

500-

송이



(d) Shimsha River.

4500(s/Em) O beternite∃

| Site     | 1       | 2       | 3       | 4       | 5        |
|----------|---------|---------|---------|---------|----------|
| α        | 0.2504  | 0.2302  | 0.1624  | 0.1142  | 0.4150   |
| $\mu$    | -0.3932 | -0.4072 | -0.5524 | 0.6410  | -0.8416  |
| $\sigma$ | 0.4582  | 0.5396  | 0.8663  | 1.0195  | 0.7815   |
|          |         |         |         |         |          |
| Site     | 6       | 7       | 8       | 9       | Regional |
| α        | -0.3056 | 0.0221  | -0.4774 | -0.0870 | 0.0312   |
| $\mu$    | -0.1201 | -0.4570 | 0.2124  | -0.1623 | -0.3116  |
| $\sigma$ | 0.8794  | 0.9323  | 0.5965  | 0.7010  | 0.7482   |

TABLE VIII. Parameter estimates for the LN distribution

$$\hat{a} = l_1 - \exp\left(\hat{\mu} + \frac{\hat{\sigma}^2}{2}\right) , \qquad (28)$$

$$Z = \sqrt{(8/3)}\Phi^{-1}\left(\frac{1+t_3}{2}\right) , \qquad (29)$$

where  $\Phi^{-1}$  is the inverse standard Normal distribution function, and erf (.) is the error function, erf  $(x) = 2 \Phi (x\sqrt{2})$  -1. Parameter estimates for each station as well as their regional averages are given in Table VIII. Quantile estimates are obtained using Equation (30).

$$q_T = \exp[\hat{\sigma} \, \Phi^{-1} \, (F) \, + \, \hat{\mu}] \, + \, \hat{a} \tag{30}$$

The at-site as well as regional quantile estimates along with the observed data for Cauveri, Lakshmanathirtha, Kabini, and Shimsha rivers are shown in Figure 6.

#### 3.4. PEARSON-III DISTRIBUTION

Parameter estimates for the P-III distribution are obtained from Equations (31)–(34) (Hosking, 1991).

For  $t_3 \ge 1/3$  then  $t = 1 - t_3$  and

$$\hat{\beta} = \frac{(0.36067t - 0.59567t^2 + 0.25361t^3)}{(1 - 2.78861t + 2.56096t^2 - 0.77045t^3)}$$
(31)

and for  $t_3 < 1/3$  then  $t = 3\pi t_3^2$ 

$$\hat{\beta} = \frac{(1+0.2906t)}{(t+0.1882t^2+0.0442t^3)},$$
(32)

Site Site Site 200 400 600 800 1000 1200 1400 1600 2000 Observed Q (m3/s) 1000 1500 2000 2500 3000 3500 4000 Observed Q (m3/s) (b) Lakshmanathirtha River. (d) Shimsha River. 20 ÷° (s/Cm) O behamite∃ 80 ĝ 2000-80 ģ 20 8 3500 3000-80 ġ ĝ Ste Regional Sile Itegrand 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Observed Q (m3/s) 800 2009 2000 3000 4000 Observed 0 (m3/s) (a) Cauvery River. (c) Kabini River. <u>6</u> 송 200 6000 5000-8 5000-4500 000 (s/Em) © bettamite∃ 1500 100 č 3500



| Site     | 1 .     | 2      | 3      | 4      | 5        |
|----------|---------|--------|--------|--------|----------|
| α        | 0.2388  | 0.3418 | 0.9970 | 1.5050 | 0.5592   |
| β        | 2.2327  | 1.6363 | 0.6661 | 0.4844 | 0.8114   |
| $\gamma$ | 0.4668  | 0.4407 | 0.3359 | 0.2709 | 0.5463   |
| Site     | 6       | 7      | 8      | 9      | Regional |
| ~        | 1 6052  | 1 3644 | 0.8053 | 0 8272 | 0 0110   |
| α        | 1.00,02 | 1.5044 | 0.0000 | 0.0212 | 0.0440   |
| β        | 0.6470  | 0.5777 | 1.3535 | 0.9974 | 0.8448   |

TABLE IX. Parameter estimates for the P-III distribution

$$\hat{\alpha} = \sqrt{\pi} l_2 \frac{\Gamma(\hat{\beta})}{\Gamma(\hat{\beta} + 1/2)},\tag{33}$$

$$\hat{\gamma} = l_1 - \hat{\alpha}\hat{\beta} . \tag{34}$$

Parameter estimates as well as their regional averages are given in Table IX. Quantile estimates can be obtained using the frequency factor formula in Equation (35), where  $K_T$  is computed using any of the formulae given by Bobée and Ashkar (1991) corresponding to a given probability F. The at-site as well as regional quantile estimates along with the observed data for Cauveri, Lakshmanathirtha, Kabini, and Shimsha rivers are shown in Figure 7.

$$q_T = \hat{\alpha}\hat{\beta} + \hat{\gamma} + K_T \sqrt{\hat{\alpha}^2 \hat{\beta}}.$$
(35)

#### 4. Discussion and Results

From the results given in Figures 4–7, in general, three parameter distributions are acceptable for fitting the observed data. According to the goodness-of-fit measure  $(Z^{DIST})$  the regional estimates obtained by the P-III distribution do not agree with the observed data as well as the other three distributions. However, it is hard to reach any conclusions by using only the graphical results. This is due to the fact that the difference in  $t_4$  between the regional value and the fitted distribution in Figure 3, which is a measure for the goodness of fit (Hosking and Wallis, 1991), is not that much larger for the P-III distribution than it is, for example, the GLOG distribution.

Examination of the results in Figure 4 shows that the difference between regional and at-site estimates, for the same distribution, depends on the site location, being maximum for station 1 and minimum for station 3. Results in Figure 3 offer no explanation for this observation. Figure 2 explains these results better because,





|         | F = 0.98 F = |      | F = 0.9 | F = 0.99 $F = 0.995$ |      | 995  | 5 	 F = 0.998 |      |
|---------|--------------|------|---------|----------------------|------|------|---------------|------|
| Station | R            | S    | R       | S                    | R    | S    | R             | S    |
| 1       | 4601         | 2651 | 5633    | 2960                 | 6780 | 3277 | 8490          | 3714 |
| 2       | 3782         | 2472 | 4630    | 2824                 | 5573 | 3194 | 6978          | 3715 |
| 3       | 1040         | 1082 | 1274    | 1357                 | 1533 | 1673 | 1920          | 2159 |
| 5       | 4395         | 3276 | 5380    | 3928                 | 6476 | 4659 | 8109          | 5759 |
| 4       | 494          | 632  | 605     | 829                  | 728  | 1064 | 912           | 1442 |
| 6       | 1383         | 2051 | 1693    | 2640                 | 2083 | 3318 | 2553          | 4366 |
| 7       | 381          | 479  | 466     | 616                  | 561  | 777  | 703           | 1029 |
| 8       | 736          | 800  | 901     | 959                  | 1085 | 1130 | 1358          | 1373 |
| 9       | 1233         | 1257 | 1510    | 1528                 | 1818 | 1826 | 2276          | 2264 |

TABLE X. Higher quantile estimates for the LN distribution.

R: Regional estimates; S: at-site estimates.

for three parameter distributions, the parameter estimates depend on  $\lambda_1$ ,  $\lambda_2$  and  $t_3$ which are included in Figure 2. Figure 3 contains  $t_3$  and  $t_4$ , but only  $t_3$  is used in parameter estimation. Therefore, the closer the statistics of a site is to the average in Figure 2, the closer is the agreement between regional and at-site estimates. In this sense, the heterogeneity measure  $H_2$  based on the LC<sub>v</sub> / LC<sub>s</sub> ratio quantifies the average difference between regional and at-site estimates. For stations with tless than the average value in Figure 2 the regional estimates of high quantiles are greater than the at-site estimates, and the opposite is true for stations with t greater than the average value of t. This conclusion is supported, in general, by the results in Table X. When at-site estimates are considered, each site is treated individually. The goodness of fit measure (Z) depends only on the difference between the regional average and fitted distribution value of  $t_4$ . The difference between at-site estimates and observed data depends on the difference between the at-site and fitted distribution value of  $t_4$ , i.e. the location of the site statistic with respect to the distribution curves on the  $LC_s$  vs  $LC_k$  diagram given in Figure 3. The data from Station 3, according to Figure 3, must fit the GEV distribution much better than the data from Station 6. The Regional heterogeneity measure  $H_3$ , based on the LC<sub>s</sub> / LC<sub>k</sub> distance, gives an estimate of the average deviation between at-site estimates and the observed data.

Both the heterogeneity measures  $H_2$  and  $H_3$  based on  $LC_v / LC_s$  and  $LC_s / LC_k$ distances respectively, are important to select a good distribution for regional analyses. The measure  $H_2$  indicates whether at-site and regional estimates are close to each other. The measure  $H_3$  indicates whether the at-site estimates and the observed data are in agreement. A large value of  $H_2$  usually indicates a large deviation between regional and at-site estimates and in turn between regional estimates and the observed data. Similarly, a large  $H_3$  value indicates, in general, a large deviation between at-site estimates and the observed data, and in turn between

| Station | Regional |       |      |       | At-sit | At-site |      |       |  |
|---------|----------|-------|------|-------|--------|---------|------|-------|--|
|         | GLOG     | GEV   | LN   | P-III | GLO    | G GEV   | LN   | P-III |  |
| 1       | 10628    | 10176 | 8490 | 6833  | 4389   | 3845    | 3714 | 3483  |  |
| 2       | 8735     | 8364  | 6978 | 5617  | 4487   | 3946    | 3715 | 3393  |  |
| 3       | 2403     | 2301  | 1920 | 1545  | 2703   | 2513    | 2159 | 1628  |  |
| 4       | 1142     | 1093  | 912  | 734   | 1797   | 1712    | 1442 | 987   |  |
| 5       | 10150    | 9719  | 8109 | 6525  | 7094   | 6526    | 5759 | 4650  |  |
| 6       | 3195     | 3059  | 2553 | 2054  | 5523   | 5131    | 4366 | 3209  |  |
| 7       | 879      | 842   | 703  | 565   | 1292   | 1214    | 1029 | 740   |  |
| 8       | 1700     | 1628  | 1358 | 1093  | 1715   | 1501    | 1373 | 1201  |  |
| 9       | 2848     | 2727  | 2276 | 1832  | 2834   | 2545    | 2264 | 1866  |  |

TABLE XI. Quantile estimates (F = 0.998) at different sites

regional estimates and the observed data, as in the case with large  $H_2$ . In the present study, the value of  $H_2$  in Table IV is large (4.37) whereas  $H_3$  is small (0.38). As a result, at-site estimates are much closer to the observed data than the regional estimates as shown in Figures 4–7. Consequently, the region may have to be further subdivided to obtain better regional estimates.

Finally, quantile estimates for a probability F = 0.998 are given in Table XI. For both regional and at-site estimates, the estimates for a certain station in descending order are given by GLOG, GEV, LN and P-III. These results conform to the relative position of these distributions in Figure 3. For a given station, the appropriate distribution is the one which is closest to that station in Figure 3. If the statistic for a station plots higher than all distributions such as station 5, then higher quantiles will tend to be underestimated. If a station plots lower than other distributions such as station 6, then the flood estimate tends to be overestimated. If the station plots within the distributions (station 1), the distributions below will tend to underestimate and the distributions above will tend to overestimate flood magnitudes.

#### 5. Conclusions

On the basis of results presented herein, the following conclusions are presented.

- (1) The Upper Cauvery basin is hydrologically heterogeneous. It will have to be subdivided into smaller regions to get hydrologically homogeneous regions.
- (2) As a result of conclusion 1 above, the at-site estimates are better than the regional estimates for the Upper Cauvery river data.
- (3) The lognormal or the generalized extreme value distributions is recommended for use in the Upper Cauvery river basin.

### Acknowledgement

Dr. J. R. M. Hosking most graciously sent us his computer program and reports for our use. We are grateful to him. We would like to thank Dr R. Prasad for sending us the data used in this study.

# References

- Bobée, B. and Ashkar, F.: 1991, *The Gamma Family and Derived Distributions Applied in Hydrology*, Water Resour. Publications, Colorado.
- Cunnane, C.: 1989, Statistical distributions for flood frequency analysis, WMO Operational Hydrology Report No. 33, WMO-No. 718.
- Greenwood, J. A., Landwehr, J. M., and Matalas, N. C.: 1979, Probability weighted moments: Definition and relation to parameters of several distributions expressible in the inverse form, *Water Resour. Res.* 15(5), 1049–1054.
- Hosking, J. R. M.: 1986, The theory of probability weighted moments, IBM Research Report RC 12210 (#54860).
- Hosking, J.R.M.: 1990, L-moments: Analysis and estimation of distributions using linear combination of order statistics, J. Royal Stat. Soc. B, 52(1), 105–124.
- Hosking J. R. M.: 1991, Fortran routines for use with the method of L-moments, version 2. IBM Research Report RC 17097.
- Hosking, J. R. M. and Wallis, J. R.: 1991, Some statistics useful in regional frequency analysis, IBM Research Report RC 17096 (#75863).
- Hosking, J. R. M. and Wallis, J. R.: 1987, Parameter and quantile estimation for the generalized Pareto distribution, *Technometrics* 29, 339–349.
- Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: 1985, Estimation of the generalized extreme value distribution by the method of probability weighted moments, *Technometrics* 27, 251–261.
- Landwehr, J. M., Matalas, N. C., and Wallis, J. R.: 1979a, Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles, *Water Resour. Res.* 15(5), 1055–1064.
- Landwehr, J. M., Matalas, N. C., and Wallis, J. R.: 1979b, Estimation of parameters and quantiles of Wakeby distribution, Parts 1 and 2, *Water Resour. Res.* 15(6), 1361–1379.
- Ramesh, M., Murthy, M. C. S., and Prasad, R.: 1987, Analysis of flood frequencies in the Cauvery Valley, in *Hydrologic Frequency Modelling*, Proc. Int. Symp. on Flood Frequency and Risk Analysis, D. Reidel, Dordrecht, pp. 505–513.