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Abstract--An attempt is made to interpret the gravity anomalies over an inclined fault with variable 
density contrast. The decrease of density contrast with depth in sedimentary rocks is approximated by a 
quadratic function. The anomaly equation of an inclined fault is derived with the quadratic density function. 
The constants ao, al and a2 of the quadratic density function can be found from the known density-depth 
values. A synthetic anomaly profile of the fault model is interpreted by the non-linear optimisation 
technique using the Marquardt algorithm. The distances are measured from an arbitrary reference point 
and thus the origin of the fault model is also treated as an unknown parameter. For the assumed values 
of the constants ao, al and a2, the various parameters of the fault model are found by the non-linear 
optimisation technique. The convergence of the method is shown by plotting the values of the objective 
function, lamda, and the parameters of the fault model with respect to iteration number. The two parameters 
inclination and origin are found to be correlated. The same program is used to interpret the gravity 
anomalies with different density contrasts. Finally, the use of modelling with the quadratic density function 
is discussed. 
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Introduction 

Many methods are available to interpret the gravity anomalies over a fault with 
constant density contrast (SHARMA and GELDART, 1968; RADHAr, gISI-IYA MURTnY and 
BIJASKARA RAO, 1980). There is ample evidence to show that the density of the 
sedimentary rocks increases with depth. ATI-IY (1930) observed that the density of 
sediments increases with depth exponentially. CORDELL (1973) has reviewed three 
cases where the decrease of density contrast in sedimentary basins could be 
approximated by an exponential function. However, the representation of density 
contrast by an exponential function is not convenient in the analysis of gravity 
anomalies, as the anomaly equations are not obtained in closed form. The exponential 
decrease of density over a small interval of depth is approximated by a 
linear function by MURTHY and RAO (1979). They have divided the side of a polygon 
body into several segments and calculated the contribution of each segment with 
linear decrease of density contrast. AGARWAL (1971) has considered the decrease 
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of density contrast linearly with depth. BHATTACHARYA and CHAN (1977) and 
GENDZWILL (1970) have also developed methods with variable density contrast. 

Here, an attempt is made to approximate the decrease of density contrast with 
depth in sedimentary rocks by a quadratic function. This facilitates deriving the 
anomaly equation for an inclined fault in closed form. A method has been developed 
to interpret the parameters of this model by a non-linear optimisation technique 
using the Marquardt algorthm. The origin is also treated as an unknown parameter 
and is found by the Marquardt algorithm. A synthetic anomaly profile is interpreted 
to test the proposed method. 

Anomaly Equation 
The decrease of density contrast in sedimentary rocks could be approximated by 

a quadratic function (Bhaskara Rao, 1985), as 

Ap(Z) = ao + aaZ + a2Z 2 (1) 

where Z represents the depth measured positive in downward direction, ao represents 
the extrapolated value of density contrast at the surface, and al and a2 are the 
constants of the quadratic function. 

The equation for a gravity anomaly of an inclined fault, with inclination i and 
depths to top and bottom Z1 and Z2 respectively, is derived by integrating the gravity 
effect of an elementary mass (Fig. 1). Thus, 

f z :2  f A p ( Z ) Z d Z d u  Ag(x) = 27 (2) 
=zl (u - x) z + Z 2 

u =  - ( z - z O c o t i  

is the gravitational constant. 
Substituting the value of Ap(Z) in equation (2), we have 

fz;2 f ZdZdu Ag(x) = 27a~ =z, (u - x) 2 + Z z 
u =  - ( z - z D e o t i  

f z;2 f Z2dZdu + 27al =z~ (u - x) z + Z 2 
u =  - - ( z - - z l ) c o t i  

i z ; Z3dZd. + 2ya2jz=z~ (u - x) 2 + Z 2 
u =  - ( z - z D c o t i  

After evaluating these integrals, the anomaly equation might be written incorporating 
the origin (D) also. D is measured from an arbitrary reference to the point 0 (Fig. 1). 
This is achieved by putting x = x-D. This means that the distances are measured 
from an arbitrary reference point instead of from the origin. The origin is at a distance 



252 D. Bhaskara Rao PAGEOPH, 

o (x,o) 

~ " ~ (z) rm(u,z) l 

Figure 1 
Fault Model. 

of  D from the reference point.  Thus,  the relevant equat ion for the gravity anomaly  

of an inclined fault is given by, 

Ag(x)  27ao[F~{siniln r2 } ] = - -  + cos i (~2 - -  (~1) "~- Z2q)2 - -  Z l { ~ l  
rl 

27al [ Z  2 { + - 7 - ,  2 r  Z~ r + r l ( z 2 -  ZOsin i -  r21 sin 2i In r2 
Z L r l  

+ cos2i(ff2 - r  

27a2 [ Z  3 2 sin i _ F2(Z 2 _ Zl) sin 2 i + - 3 - - L  2 r  o, + F I ( Z ~ - Z , ) - - ~  

where r 2 = (x - D) 2 + Z 2 

r22 = [(Z2 - Z , ) c o t  i + x -  0 ]  2 + Z 2 

(3) 

rc x -- D 
r = ~- + arc tan  . , - -  

I L  

x -  D + ( Z 2 - Z 1 ) c o t  i 
q~2 = ~- -{- arc tan  Z2 

and F1 = ( X  - -  D) sin i - Z1 cos i. 

I t  may  be noted that  the p r o g r a m m i n g  of equat ion (3) is not  difficult, as it involves 

the same arc tan  and logar i thmic terms, and the t ime taken will not  be much longer 
than  for the case of  constant  density contrast .  Also, equat ion (3) is conveniently given 
in three parts  representing the constant  density contrast  and t he f i r s t  and second 
order  decrease of density contras t  with depth. Thus,  the same p r o g r a m m e  can be 
used for any of the three cases by assigning proper  values to ao, al  and a2. 
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Method of interpretation 

In the interpretation of real anomalies, the values of the constants ao, as and a2 
are deduced by the least squares fitting of the density-depth values to the quadratic 

function. The density-depth values are taken from the measured density values in 
bore-holes, or densities deduced by seismic methods, or densities deduced otherwise. 
Thus for given values of ao, al, and az, the parameters to be interpreted are the 

origin, i, Z1, and Z2. 
The anomaly equation is too lengthy to develop any simple method of interpreta- 

tion. However, this could be easily programmed to a digital computer. Here, the 
non-linear optimisation technique using the Marquardt  algorithm is adopted to find 
the unknown parameters. The basis of the method is that an initial model is assumed 
and the various parameters are successively improved so as to minimize the objective 
function defined by 

Nobs 

F = ~ [Agobs (xl) -- Agcal (Xi)] 2 (4) 
i = 1  

where 

Agobs = observed anomaly 

Ageal = calculated anomaly 

a n d  Nobs ----- total number of observations. 

The method of the Marquardt  algorithm is discussed by many authors such as COLES 
(1976), RADHAKRISHNA MURTHY and BHASKARA RAO (1982), etc. The necessary system 
of simultaneous equations is given by 

,,o~s OAg(i) aAg(i) ,, 
K=I i~=1 - ~ i  ~ k  ~1 + 6jk2)dPk 

Nobs 
= ~ [Ago~s (i) - Agcal(i)] gAg(i) (5) 

i = 1 ~ ] ~ j  

for j = 1 to 4 

where 

6jk = 1 f o r j  = k  

= 0 f o r j C k  

and Pa represents one of the parameters Z1, Zz, i, and D. 2 is a constant to be selected, 
by trial and error, so that the objective function decreases. Using the notation, 

F2 -= (22 - Zl)  cot i + x - D 
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F3 - -  sin i In r~ + cos i(~b2 - 4~i) 
r l  

F 4  ---- sin 2i In r ~ +  cos 2 i (~b2 - ~b l )  
gl 

F5 sin 3i In r2 = - -  + cos 3 i t,ht,r2 _ ,h~,el, 
/'1 

F 6  - Z l  cot  i --  (x --  D) 

F 7  ~ -  - Z 2 ( Z 2  - Z1)  c o s e c  2 i 

F 2  cot  i Z l  
F8 = - -  + 

d /'1 ~ 

Z 2 c o t i  x - -  D 

F 9  = r22 r2 

F l o  = F 2  cot  i + Z2 

F l l  = (x--D) cos i+Z1 sin i 

F 2 ( Z 2  - Z1)  c o s e c  2 i 
F12 ~--- F22 

F2  X - D 
F13 = --  ~r~-+ r ~  

Z 2  2 1  
F14  - r 2 r 2 

/'2 
F15 = cos i In - -  - s in i (q~2 - q~l) 

/'1 

/'2 
F16 = 2 cos 2 i In - - -  2 s i n  2i(~b2 - ~ b l )  

l'1 

a n d  F17 = 3 cos 3i In --r--" _ 3 sin 3i (q~2 - q51) 
/'1 

the  pa r t i a l  der iva t ives  in  e q u a t i o n  (5) are  g iven by  

t?Ag(x) = 2 y a o ~ - F 3  cos i - F i ( F 8  sin i + F9 cos i) --  q~t 
/ 

221 [ z~coti+z~(x-o)  
+ -  r2 r2 2 Z l t k l  - F 1  sin i 

Z 2 cot  i 

d 

Zl (x - D) ] - -  + ;2; J 
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- ( Z 2  - Z i )  sin i cos i+2FIF4 cos i+FZ(F8 sin 2 i + F9 cos2i) l  

232  [ Z4cot i  Z3(x - D )  3Z~ 01 sin i cos i (z  2 _ Z 2  ) 
+ - -  r~ -~ rx z 2 

- ZiF1 sin i + 2F1 (Z2 - Zx) cos i sin 2 i 

+ F~ sin 2i - 3F~ F5 cos i -- F3(F8 sin 3i + F9 COS 30] 

0Ag(x) - 2yao[{Fi(Flo sin i +  F6 cos i) + F6Zz}/r 2 4- q~2] 
aZ2 

2"yal ~2Z a-  +--~-I_ 2q,~ + F1 sin i+ { F 6 Z ~ -  F2(Flo sin 2i + F6 cos 2i)}/r~] 

27az ~3Z2a 
-1- T [  - 2q/)2 + Z2Fi sin i -- F~ sin 2 i 

+ {Z 3 F6 + F3(FIo sin 3i + F6 COS 3i)}/r~3 

~ - 2 y a o  F3Fl i+F1  F l s + F 1 2 s i n i +  r - - - T ~  + r~ J 

27al [-FTZ~ 
+ ~ - L - ~ - 2 2  + (Z2 - Z1)(F1 cos i + F l i  sin i ) -  2FiF,~Fli 

- FI z F16 -t- F12 sin 2i -t r2 

2~a~ [-F~Z~ (Z~ - Zl ~) 
+ T [ _ - - r  2 -~ 2 (F~ cos i + F11 sin i) 

- 2Fi(Z2 - Z1)(Fi cos 2i + Fl1 sin 20 

F7 COS 3 i ) ]  
+ 3F~F5F~ + F~(fl7 + F12 sin 3 i+  r2 

t?D 2yao - F a s i n i + F ~ ( F 1 3 s i n i - F 1 4 c o s i )  Z2 Z2 
r 2 r 2 

1 

2~a~F z~ Zl~ - ( z ~ -  Zx) 
+ 7 - 1 -  + 7 

-F~(F13 sin 2 i - F 1 4  cos 203 

27a2F Z ~ Z 4 s in2, (Z ~ _ Z 1  z) 
+ 3 L  r ~ + r - T -  2 

sin z i + 2FaF4 sin i 
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+ F~ sin i {2 (Z2  - Z 0 sin 2i - 3F1Fs}  

F~(F13 sin 3i - F14 cos  3 i ) ]  + 
A 

(6) 

These equations are not further simplified, as the above representation is also 
convenient for interpretation with constant density contrast and first or second order 
decrease of density contrast with depth. 

The initial values of Z1, Z2, and i are deduced by characteristic curves (RAO and 
RADHAKRISHNA MURTHY, 1978) for ax = a2 = 0. The origin is assumed in the vicinity 
of the inflection point. The gravity anomaly is calculated for the initial model and 
the objective function F(1), as defined by equation (4), is found. 2 is initially given a 
value of 0.5. The derivatives in equation (5) are calculated with the help of equations 
(6). Equations (5) are solved for the increments dZ1, dZ2, di and dD. If Z'I, Z~, i', 

and D' are the initial values of ZI, Z2, i, and D, then the improved values Z*, Z~, 

i* and D* are given by 

Z~ = Z'~ + dZt  

Z* = Z'2 + dZ2 

i* = i' + di 

and D* = D' + dD. 

The objective function F(2) is calculated again using these values. If F(2) ~< F(1), then 
the step is a success and the value of 2 is decreased by a factor of 1/2 and the value 
of F(2) is assigned to F(1). The method is iterated until some convergence criteria 
are met. If F(2) > F(1) at any stage, the value of ~. is doubled and the equations (5) 
are solved for dZ~, dZz, di and dD. These increments are added to the values of Z1, 
Z2, i and D at the previous successful step and the objective function F(2) is calculated. 
This procedure is repeated until F(2) ~< F(1). The usual convergence criteria are that 
the value of the objective function is below a certain tolerance limit, or that the 

increments of various parameters are negligible. 

Example 

A synthetic anomaly of 30 Km length at an interval of 1 Km for ZI = 1 Km, 
Z2 = 5 Km, i = 60 ~ D = 15 Km, ao = - 0.4, ax = 0.08 and a2 = - 0.005 is interpreted 
by this method. The gravity anomaly for this model is shown in Fig. 2a. The exact 
values of ao, al and a2 are assumed. Initially, the origin is assumed in the vicinity of 
the inflection point. The initial values for Z1, Z2, and i are obtained from the 
characteristic curves method (RAo and RADHAKRISHNA MURTHY, 1978) for al = az = 
0. The initial model and the corresponding gravity anomaly are also shown by a 
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Figure 2 
Interpretation of gravity anomalies over an inclined fault with quadratic density function. 

dotted line in Fig. 2a. The convergence of the method is illustrated in Fig. 2b by 
plotting the values of the objective function, lamda, and the parameters Z1, Zz, i, 
and D with respect to iteration number. The values of various parameters at the 10th 
iteration are as follows: Za = 0.99 Kin, Z2 = 4.96 Kin, i = 57.9 ~ and D = I5.06 Kin. 

The program is terminated at 10th iteration since the residuals are well below 
0.01 mgals and the value of the objective function is 0.01. To study the correlation 
that exists between various parameters, the gravity anomalies are interpreted for 
different initial models. Though the interpreted values of Z1 and Zz are nearly equal 
to the actual values in all the cases, the values of i and D are quite different from 
their actual values (Table 1). This shows that there is a strong correlation between 
the parameters i and D. This means that many values of i and D could satisfy the 



258 PAGEOPH, D. Bhaskara Rao 

Table 1 

Interpreted models for different initial values of the parameters 

S.No. Model Z1 Z2 i D Function 2 

1 Initial model 1.5 4.5 45.0 14.0 934.3 - -  
Interpreted model 0.9506 4.835 51.25 15.26 0.15 0.0625 

2 Initial model 1.5 4.5 45.0 16.0  1293.0 - -  
Interpreted model 0.9160 4.727 47.36 1 5 . 3 9  0.3726 0.0078 

3 Initial model 0.5 4.5 50.0 15.5 324.7 - -  
Interpreted model 0.9652 4.881 53.95 15.17 0.08 0.0009 

4 Initial model 0.5 4.5 55.0 15.5 301.9 - -  
Interpreted model 0.9887 4.960 57.87 15.06 0.01 0.0009 

5 Initial model 1.5 4.5 75.0 14.0 1044.0 - -  
Interpreted model 1.050 5.207 78.67 14.54 0.55 0.0312 

6 Initial model 1.5 4.5 75.0 16.0 1592.0 - -  
Interpreted model 1.000 5.190 75.70 14.62 0.52 0.0039 

7 Initial model 1.5 4.5 55.0 15.5 1254.0 - -  
Interpreted model 0.9886 4.960 57.72 15.06 0.01 0.0313 

Table 2 

Interpreted models for different density contrasts 

S.No. Density function Z1 Z2 i D Function 2 

1 Ap(Z) = - 0.4 + 0.08Z 0.9886 4.960 57.72 1 5 . 0 6  0.0104 0.03125 
_ 0.005Z 2 

2 Apo = - 0.325 1.309 3.916 51.90 1 5 . 1 0  0.3369 0.0009 

3 Apo = 0.225 0.8088 4.574 62.09 15.04 0.0028 0.0009 

interpretation within a given tolerance of error. Thus there is a trade-off between 
the errors and the interpreted values of the parameters i and D. Therefore, in the 

interpretation of a real anomaly, it is necessary to fix one of these parameters in 

order to deduce the other accurately. 
The anomaly is again interpreted for different constant density contrast, and the 

values of the interpreted parameters are shown in Table 2. The same program is used 
to interpret the gravity anomaly with constant density contrast by assigning al = a2 = 
0. Thus we can see from Table 2 that the interpretation of the anomaly profile with 
the density contrast at the top ( -0 .325 gm/cc) or with the average density contrast 
( -0 .225  gm/cc) can not represent the true model, although the residuals are below 

0.1 mgal in both the cases. 
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Discussion 

A synthetic gravity anomaly profile over an inclined fault wherein the density 
contrast decreases with depth is interpreted. The decrease of density contrast in many 
sedimentary rocks could be satisfactorily approximated by a quadratic function. The 
anomaly equation could easily be programmed as it contains simple arctan and 
logarithmic terms. The method converges rapidly and gives accurate values for Z1 
and Z2 as all the anomaly points are taken into account. Any reasonable values of 
Z1 and Z2 could be taken for the initial model as these are ultimately modified. 
However, the parameters i and D are correlated. Different interpretations could be 
arrived at for these parameters within a given tolerance of error. Thus, in the 
interpretation of real anomalies, it is necessary to fix one of these parameters in order 
to deduce the other accurately. We have also seen that different models could be 
deduced for different density contrasts. However, it is more advantageous to interpret 
the anomalies using the density function rather than using different densities. The 
density values known from bore wells or by seismic methods might be used to 
construct a quadratic density function. The decrease of density contrast in many 
sedimentary rocks could be approximated by a quadratic function, and the anomaly 
equation could be derived in closed form. The method proposed here is very useful 
to interpret the gravity anomalies over faulted sedimentary rocks where the densities 
of the sediments at different depths are reasonably known. Although it is not 
considered here, this method could be used even in the presence of first or second 
order regional components, as these can also be solved by the Marquardt algorithm. 
This program could also be used without any modification to interpret the gravity 
anomaly over outcropping faults by giving very small values to Z~. 
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