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Fault and System Stiffnesses and Stick-Slip Phenomena 

By RICHARD E. GOODMAN ~) and P. N. SUNDARAM 2) 

S u m m a r y  - This paper discusses the influence of  system stiffness on the dynamic instability of fault 
surfaces under laboratory conditions for a number  of test modes. In conjunction with shear load stiffness, 
the normal  load stiffness, often neglected, is shown to have a considerable effect on the stick-slip process - 
its presence or absence and its characteristics. Also appropriate stiffnesses are suggested for an earthquake 
sequence modeled as a growing dislocation. 
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1. Introduction 

The term 'stick-slip' refers here to a regular jerky motion along contact surfaces. 
This phenomenon has long been known (e.g. WELLS, 1929) but only recently has 
become the object of study with reference to earthquake source-mechanisms (BRACE 
and BYERLEE, 1966). In attempting to relate measured stress-drops in laboratory 
stick-slip experiments with the estimated stress-drops of actual earthquakes, dif- 
ferences in magnitude of large proportion have been a source of consternation; an 
order of magnitude smaller stress-dr0Ps in actual earthquakes are attributed to the 
action of gouge along the fault surfaces, confinement at the locked extremities of the 
slipping region, the influence of system stiffness, and other factors. It is with respect 
to the influence of system stiffness on stick-slip that this paper is mainly concerned. 

Investigators of fault-dynamics have used a variety of laboratory techniques, 
some of which are sketched in Fig. 1. Because the independent variables differ from 
apparatus to apparatus, stress-drops and other observable phenomena such as 
amount and duration of slip vary widely in magnitude, even from one laboratory 
investigation to the next. BYERLEE and BRACE (1968) reported deviator stress-drops 
in triaxial experiments with Westerly granite of the same order of magnitude as the 
confining pressure, .while SCHOLZ et al. (1972) reported shear stress-drops in biaxial 
experiments on the same rock type of only one-tenth of the normal stress. 

In a triaxial test, a deviator stress-drop introduces changes in both the normal 
stress across and shear stress along the fault surfaces. However, in a direct shear 
'test, where the fault is oriented parallel to the directions of shear load application, 
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Figure 1 
Laboratory techniques for sliding experiments. 

the normal load remains practically constant unless the fault surfaces are very rough. 
It is not obvious how these various testing modes might relate to one another and to 
the prototype fault which is the object of  observations. In this paper, therefore, we 
discuss how the stick-slip might be altered by changing the style of confinement and 
loading. 

2. Models for the different test modes 

Figure 2a shows a block of mass M on a clean, smooth fault surface of  contact 
area A. Fy is the normal load. As the horizontal force F x is slowly increased, the theory 
of friction presumes no slip occurs between the block and the supporting surface 
until the full frictional resistance has been mobilized. The simplest model that 
permits jerky motion is sketched in Fig. 2b, where the frictional resistance is assumed 
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Figure 2 
Sliding behavior of  a block on a fault plane. 

to drop immediately from a value # to a smaller value/~a, as soon as the force F x 
reaches the magnitude/~Fy. As a result, a small increment of slip produces a stress 
unbalance which causes the block to accelerate at a rate and for a duration dependent 
upon the spring constants and damping associated with the application of forces 
F x and Fy. (In this discussion, damping will not be considered.) 

In contrast to the model represented in Fig. 2b, actual shear tests performed in a 
direct shear machine on rough rock surfaces, at low normal stresses such that stable 
sliding prevails, reveal a shear force versus shear displacement relationship as 
depicted in Fig. 2c. As the force F x is applied with an initially small force, Fy, a small 

slip occurs along the fault. If the stiffness associated with Fy is large, the accompanying 
normal deformation uy increases the normal force and the shear force follows along 
the dotted curve. If the Y-direction stiffness is small, on the other hand, the normal 
load and thus the stress on the fault will remain practically constant 3) and the shear 

3) The terms normal 'stress' across and shear 'stress' along the fault indicate the applied normal or 
shear force divided by the gross area of  the underside of  the sliding block, even though the actual area of  
contact is much smaller. 
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force will follow the path of  the solid line. When the peak friction has been reached, 
the friction drops and approaches a value sometimes called the 'residual friction'. If  
the stiffness of the shear loader is less than the slope of  the post peak port ion of the 
solid curve of Fig. 2c, the system becomes unstable after the peak point and the block 
will accelerate. It is not clear exactly what the 'dynamic friction' would be in this 

case, although it is possible to calculate an equivalent value based upon the simple 
model of  Fig. 2b (BYERLEE, 1970a). The important  point to be learned from Fig. 2c 
is that a much smaller instability or none at all should result in the case of  the dotted 
curve. Thus, it is reasonable to conclude that the ratio of  normal load stiffness to shear 
load stiffness must be an important  control on stick-slip- its presence or absence 
and its characteristics. 4) 

A shear force versus shear displacement relationship such as that of Fig. 2c can 
be attributed to formation and breaking or over-sliding of interlocks along the rough 
surface. A similar mechanism has been invoked by BVE~EE (1970b) on a microscale 
to explain stick-slip on smooth surfaces - a mechanism termed 'brittle instability'. 

In order to facilitate comparison of  triaxial, biaxial, direct shear and field situa- 
tions, the simpler model of  Fig. 2b will be assumed. Figure 3 shows idealized models 
relating to different styles of loading. In the triaxial test, Fig. 3a, the sliding surface 

is at an angle ~ with direction of load application so that slip causes the slider to move 
uphill, compressing the confining pressure spring k z. The stiffness of the loader, k~, 
is prescribed by the equipment and connections used. BYERI~EE and BRACE (1968) used 
a variable-length column of water in series with the load piston to adjust the stiffness 
k 1 from 2 x 104 kN/m to 20 x 104 kN/m. The stiffness k 2 would be very small 
i ra gas were used to supply the confining pressure or to serve as an accumulator for a 
hydraulic confining system. On the other hand, if tests were conducted inside a thick 

copper jacket, the stiffness k 2 would be high and the force Fy would increase during 

slip. 
Figure 3b depicts a direct shear test on a rough fault surface, with asperities 

inclined at angle i with the mean plane along the fault. This test is similar to the triaxial 
test in that sliding occurs at an angle with respect to the applied load, since each slip 
must advance the slider in direction i, though the net accumulated movement will be 
parallel to the applied force. Again, the load stiffness k~ is prescribed by the equipment 
used. Two types of direct shear machines are used - hydraulically driven machines, 
with relatively low stiffness, and screw-powered machines like ours, which are 
somewhat stiffer. Our machine has a stiffness, k s of  12 x 104 kN/m. The normal 
confinement in a direct shear machine can be applied by an external hydraulic piston, 
by a dead weight system with levers, or by a rigid platen; thus k 2 in practice varies 
from close to zero to almost infinity. Figure 3c depicts a direct shear test along polished 
flat surfaces aligned perfectly with the loader so that shear motion is parallel with k s. 

4) TOLSTO1 (1967) was apparently the first to recognize the significance of the normal stiffness and normal 
vibrations in both stable sliding and stick-slip of metallic surfaces. OBERX et al. (1976) discussed the effect 
of normal stiffness on the shear strength of intact and fractured rocks. 
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Models for undamped stick-slip. 
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Figure 3d shows a biaxial test arrangement with a fault oriented as shown. 
SCnOLZ et aI. (1972) used such a device with 0 = 30~ while DEITER~CH (personal 
communication) currently has a large biaxial experiment in preparation with ~ = 45 ~ 
The biaxial test resembles the prototype fault Fig. 3e, in which the principal stresses 
~ and a 3 are inclined with respect to the fault surface, In this case, the local stiffnesses 
parallel and normal to the fault, k a and k b can be transformed to direction of  principal 
stresses to yield kl and k2. In general, such a transformation also produces cross 

coupling coefficients k~2 = k21. In all the above tests, the stiffnesses k I and k2 are 
influenced by the stiffnesses of  rams, the reaction frame, and portions of  the test 
specimen remote from the region of  fault slip. 

Denoting k, and k b as the shear and normal load stiffness referred to local 
coordinates, parallel and perpendicular to the fauk plane respectively (Fig. 3e), 
the force and displacement are related by 

\k21 k22/ [uy) 

.with k l l  = k~cos 2 ~ + k b sin 2 

k12 = k21 = (k~ - kb) sin ~ cos 

and k2z = k,~ sin 2 ~ + k b cos 2 ~b 

For  simplicity, the terms k12 and k21 are omitted for further analysis. 

(1) 

Solution to the equation of motion 

For the model of  Fig. 2b, the input of  constant velocity V to the left end of spring 
kl in Fig. 3 yields the following equation of motion after the commencement of slip: 

M//x + (k 1 + #*k 2 tan q))u x - (#* - #*)Fy,0 = k lVt  (2) 

where #* = tan (r + ~, + i) ; #* = tan (q5 d + ~p + i); and Fy, o is the initial load in 

the Y direction (in spring k2), 
Let us introduce the terms, unit stiffness, tci = ki/A. (i = 1, 2) and the initial 

stress ao =Fy, o/A. (Note ao is in the Y direction, and only when ff = 0 does a o 
correspond to the normal stress across the fault above.) 

The solution for the differential equation with the initial conditions u x = fix = 0 
when t = 0 yields 

u x =  ao(1 - cos cot)+ Vt 1 - - - s i n c o t  (3) 
•1 + #*K2 tan 0 cot 

in which the angular frequency 

~ K  1 K 2 (9 = ~ ~ +  ~#*tan~k. (4) 
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The stress drop As = AFx/A and is equal to 

As = - 2(/~* -/~*)cr o. 

The duration of slip (tslip) is 

879 

(5) 

and 

A~c = ha  t sin ~, cos $ + - -  sin 2 
KI  

Combining equations (9) and (10) and substituting in equation (8), we have 

where 

's~i~k = As/~q V. (7) 

In a direct shear test on a flat surface (~ = 0), the stress-drop, At, is equal to As given 
by the equation (5), since ao remains essentially constant. For O r 0, As is the drop 
in major principal stress, Aa 1. The drop in shear stress across the fault 

A~ = (Aa I A~'r) sin q/cos ~ (8a) 

and the change in normal stress 

= + - sin2 0 (8b) 

where Aa t = the drop in major principal stress and AF,, is the drop in 'confining' 
pressure spring force. Also 

AFy/A = (Au x tan 0)t% (9) 

aux = Aa~/K1, (10) 

(1 la) 

Ao-= Aal(s in2 ~ - ~c-A2 sin~cl Ocos ~9) (llb) 

In the triaxial test, with a gas accumulator connected to a confining liquid, 
rc 2 ~- 0 and Ar -~ Aa a sin @ cos ~ (e.g., BYERLEE, 1970a). When O = tan-  1 (~:2/~q) ' 
there is no change in the normal stress across the fault during the slip. 

Table 1 shows how Az/Aa I and Aa/Aa I vary with typical values of  ~ and l%/lq. 
It is interesting that for certain combinations of  ~ and ~r the normal stress 

The duration of stick (tsUck) is 

217 2 tan-1 ~ _COao(#* _- #*) .~. 
/'slip - -  CO (/) [_K 1 At- /s tan ~J  (6) 
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Table 1 

Resolved shear stress drop Az and normal stress drop Aa corresponding to 
observed drop in Aa 1 as a function o f  fault orientation ~ and stiffness 

ratio ~c2/K 1 

0 10 ~ 0.171 0.030 
20 0.321 0.117 
30 0.433 0.250 
40 0.492 0.413 
45 0.500 0.500 
50 0.492 0.587 
60 0.433 0.750 

0.50 10 0.186 --0.055 
20 0.379 --0.044 
30 0,558 0.033 
40 0.669 0.167 
45 0.750 0.250 
50 0.785 0.316 
60 0.808 0.533 

1.00 10 0.201 --0.141 
20 0.438 --0.204 
30 0.683 --0.183 
40 0.905 --0.079 
45 1.00 0.00 
50 1.08 0.095 
60 1.t83 0.317 

*) A positive value means  tha t  a shear stress drop in the x direction 
(Aal) is accompanied in a drop in shear stress (Az), or normal  stress (Aa). 

actually increases during the slip. For ~:2/Xl = 1.0, and ~ = 45; the normal stress 
across the fault does not change during slip. 

Discussion 

Table 2 gives values of  some of the stick-slip parameters corresponding to different 
test techniques. However, it should be recognized that while As is independent of  
stiffness ratios, the angular frequency co depends upon tc I and r% independently. 
For convenience, the angular frequency ratio is introduced: 

~o(~2 r O) / - ~ - q l  + ~c2 #~ tan ~ (12) 
K 1 

From Table 2, it is seen that according to the model of  Fig. 2b, the angular frequency 
ratio increases with stiffness ratio. The stress-drop ratio is of particular interest. It is 
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Tab le  2*) 

Stick-slip parameters related to friction properties, stifJhess and type o f  test 

881 

Fau l t  P e a k  stress F ina l  stress Stiffness 

F r i c t i on  Type  of  o r i en t a t i on  Stress d rop  ra t io  ra t io  ra t io  

p a r a m e t e r s  test  (See Fig. 3) As/ao a l /a  o or ~/a o %/a  o or  z/a o ~c2/~ q 

Frequency  

rat io  

(J)(K 2 r O) 

eo(~c2 = O) 

30 ~ 1.08 3.00 1.92 0.0 !.0 

0.5 1.16 
Tr iax ia l  1.0 1.30 

and 

q5 - 30 ~ biaxia l  45 ~ 3.18 3.73 0.55 0.0 1.0 

~d = 20~ 0.5 1.44 
i = 0 o 1.0 1.77 

Direct  for all  

shear  0 ~ 0.42 0.58 0.16 ~2/rl 1.00 

30 ~ 0.32 5.83 5.51 0.0 1.0 

0.5 1.11 
Tr iax ia l  1.0 1.22 
and 

q~ = 15 ~ b iaxia l  45 ~ 0.66 13.93 13.27 0.0 1.0 

qSd = 10 ~ 0.5 1.31 

i = 0 ~ 1.0 1.56 

Direct  for a l l  

shear  0 ~ 0.18 0.27 0.09 ic2/~ 1 1.00 

*) assumes  #e is cons tan t  i ndependen t  o f  ~c 2. 

strongly dependent on the fault inclination, and is independent of stiffness ratio. Yet 
SCHOLZ et at. found much smaller stress-drops in biaxial tests than did BVERL~ in 
triaxial tests for the same rock and fault inclination. This recalls the conundrum 
presented by small stress-drops of actual seismic events. We believe the problem lies 
partly with the assumption that/~e is constant during slip and that there is no slip 
before full friction is mobilized, as noted with reference to Fig. 2c. 

For example, Fig. 4 shows the path of hypothetical direct shear tests on rough 
fault surfaces with k 2 small (locus A-B-C) and k 2 large (locus A-D-E-F). The dynamic 
friction angle calculated from the kinetics of an instability in such a test cannot be 
smaller than the residual friction angle q5 r . If  we assume ~b d -- ~b~, then the stress drop, 
As will not be larger than 

2aol-tan (~bv + q}) - tan (q~r + ~9)] (13) 

Table 3 compares maximum stress-drops for the two paths in the hypothetical case 
for direct shear and triaxial tests. 
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Figure 4 
Stress path during direct shear on rough fault surfaces for small and large values of ~2. 

3. Stiffness associated with a fault 

The model of Fig. 2b assumes that the stiffnesses of the fault itself are infinite. 
However, in the laboratory experiments and in the field, stick-slip is found to be 
preceded by some premonitory slip (e.g., LOGAn, 1975). Thus, one can introduce 
fault shear stiffness (k s) and fault normal stiffness (k,) (Fig. 5b). The values of k s and 
k, influence stick-slip phenomena because they reduce kl and k 2. Consider the direct 
shear test (with Xparallel to the fault and ~ = 0). Because k s is in series with kl, the 
effective stiffness driving the slider in the X-direction is reduced from kl to k 1/(1 + 
kl/ks). Similarly, the stiffness reacting in the Y-direction is reduced from k 2 to 
k2/(1 + k2/k~). Thus it is of interest to measure k~ and k, for faults. The difficulty 

Table 3 

Effect of  Stiffness on As (Calculated using Fig. 3 (hypothetical case)) 

Maximum 

Type of test ~ K2 ~ ~d AS/6o 

Direct shear 0 0 60 ~ 46 ~ 1.39 
Direct shear 0 large 56 ~ 43 ~ 1. I 0 

Triaxial 25 ~ 0 60 ~ 46 ~ 17.05 
25 ~ large 56 ~ 43 ~ 7.68 
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Figure 5 
Direct shear of faults - influence of machine and measuring system. 

with the measurement is indicated in Fig. 5a. The desired measurement of k s is compli- 
cated by compliance in the material and fixtures holding the rock in the test device, 
e.g,, the shear box, the wall-rock and the potting material. The displacement gage 
cannot be attached to the fault itself. Thus there is always the effect of a stiffness k'  1 

(Fig. 5a) in series with k s in the fault shear displacement data. Similarly, the normal 
deformation experiment always includes apparatus stiffness k;. The influence of 
apparatus-stiffness is as follows: let the fault stiffness apparently measured be ks, ~; 
then the true value of k s is 

ks = ks ,~ / (1  - L o / k l )  

and a similar expression for k. 

k.  = k . ,o /O - k~,o/k'~) (14) 
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Rosso (1976) has made fault stiffness measurements with k[ and k~ very large by 
using extensometers fixed near the fault surfaces. 

4. Stiffhess for a fault slipping over a finite length 

An actual fault-motion initiates at a point or over a small segment of length 
bounded between locked regions. This occurs also in laboratory direct shear and 
triaxial experiments but the rupture quickly propagates to the extremities of the 
specimen. In a biaxial experiment with a large specimen the rupture propagation 
may take a considerably longer time. For conditions of a growing dislocation, the 
stiffnesses of the surrounding rock could be calculated using the theory for an open 
crack in an infinite elastic medium (NEVILLE COOK, personal communication). The 
resulting stiffnesses vary inversely with the fault length, with implications for gradual 
development of an instability through fault extension. 

Using a plane strain solution for displacements in an infinite region with an 
elliptical crack (JAEGER and COOK, 1976, Sections 10-11), the stiffness of the adjacent 
rock parallel and perpendicular to the crack (G and G respectively - see Fig. 3e) 
are found to be 

E 
G = G - 2(1 - v2)I (15) 

where 1 is the length of the fault undergoing slip and E and v are respectively the 
Young's modulus and Poisson's ratio of the surrounding rock. 5) A similar result can 
be derived from solutions for a penny-shaped crack (SNEDDON, 1946; SEOEDIN, 1951 ; 
KEER, 1966; and WALSH, 1971). For a penny-shaped crack also, tc b ~ G. 5) Note that 
the shear stiffness for out-of-plane shear is G/(I  + v). 

If  we assume G = G,  the system is isotropic and ~c 1 = K 2 regardless of ~. In this 
respect, a natural fault would behave unlike a triaxial compression specimen under 
constant normal stress for it is confined with a stiffness ratio of unity. 

Moreover, both tq and ~c 2 vary inversely with l so the stiffness of the 'loading 
mechanism' declines as the disturbance propagates. PRATT et al. (1974) also noted 
an inverse relation between stiffness and length. The implications are suggested in 
Fig. 6. Consider a fault surface undergoing stable sliding under constant normal stress, 
i.e. ~c z = 0. Friction fluctuates up and down during stable sliding due to the formation 

5) The more  precise expressions are 

k~ 

where a is the radius and G = [E/2(1 + v)] and 

kb 

g I 2 -  vG 

8 1 - v a  

H G 

4 (1 - v) a 
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Figure 6 
Implications on sliding behavior of decreasing stiffness with increasing fault length. 
0-1 Fault creep with stress build-up 
!-2 Fault creep with stress relaxation 
2-3 Fault creep with stress build-up 
3-4 Fault creep with stress relaxation 
4-5 Foreshock 
5-6 Stress build-up without creep followed by stress build-up with creep 
6-7 Large foreshock 
7-~ Stress build-up without creep followed by earthquake 

and destruct ion of  interlocks and bridges.  I f  the same surface undergoes  sliding with 

~c2 --- •1, the no rma l  stress will gradual ly  increase. Similarly, if slip initiates over  a 
short  segment  of  a locked fault, with ~c 2 = ~cl, then the no rma l  stress will begin to 
increase and,  since •2 varies with I in an inverse manner ,  the rate o f  increase o f  a will 

decline with displacement ,  yielding the type o f  curve shown in Fig. 6b. As a result, 

the f luctuations of  friction with sliding will augmen t  as shown in Fig. 6c. Initially, 
~1 is large and stable sliding (creep) prevails.  But as the slip region lengthens and ~cl 
decreases,  larger and larger instabilities occur,  l iberat ing foreshocks  and  finally a 
m a j o r  ear thquake.  It  should be possible  to examine  this scenario th rough  appropr ia t e  
friction tests, in direct shear or  biaxial  mode ,  using large specimens and  rough or 
gouge-covered  surfaces. 
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5. Conclusions 

Sliding phenomena of fault surfaces are strongly influenced by testing techniques. 
The common testing techniques, triaxial, direct shear, double shear and biaxial shear, 
have different system stiffnesses and employ different orientations of fault surface 
with respect to loading directions. For rough faults in direct shear the stiffnesses of 
both the shear load and the normal load mechanisms affect dynamic instability. For 
smooth faults in direct shear the normal load stiffness has less of an effect on stick- 
slip. However, in triaxial and biaxial tests, even for smooth faults, both X and Y 
stiffnesses (k 1 and k2, Fig. 3) affect stick-slip. 

In a triaxial system, where k2 is usually much smaller than kl, a drop of normal 
stress during slip occurs for all workable inclinations of the fault. On the other hand, 
in a biaxial test mode where k~ is essentially equal to  k2, shear stress drop occurs under 
essentially constant normal stress for the fault inclination of 45 ~ . 

Be it the laboratory or the field a fault can be assigned finite stiffnesses, k, across 
and k s along the surfaces of contact (Fig. 5). These values are particularly important 
in understanding stable sliding as well as the dynamic instability of faults. However, 
they are not easily measured even under laboratory conditions. The influence of fault 
stiffnesses on dynamic instability has apparently been neglected. 

For a fault which is a growing dislocation, it can be shown that both the normal 
and shear stiffnesses of the wall-rock are the same and decrease with increasing length 
of fault. The application of such a model is apparent in Fig. 6. Such a model may 
easily explain the occurrence of pre-seismic creep, stick, and foreshocks, before the 
final earthquake. 
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