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Th icknesses  f r o m  W i d e - a n g l e  Seismic Ref lec t ion  T imes  
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Abstract--Wide-angle reflections are now routinely recorded in high resolution explosion seismics 
to study the crustal structure. Use of Dix's hyperbolic approximation to the nonhyperbolic wide-angle 
reflection travel times causes major errors in the determination of interval velocities and layer thicknesses 
of a stack of horizontal velocity layers. Here we propose a layer stripping method to directly calculate 
the interval velocities and layer thicknesses in a vertically heterogeneous earth from the strong and 
reliable wide-angle reflected events. Synthetic reflection travel times, at wide-angle range, for a given 
velocity model, contaminated by some random errors, have been used to demonstrate the reliability of 
the algorithms to determine the interval velocities and thicknesses of various layers. The method has also 
been tested on two field examples along two deep seismic sounding (DSS) profiles with well identified 
wide-angle reflection travel times, which illustrates the practical feasibility of the proposed method. 
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Introduction 

Recording of wide-angle seismic waves generated from controlled sources has 
become a very important tool to obtain deeper crustal information about velocity 
and regional structure in any area. Because of the sudden increase in the reflection 
coefficient near the critical angle (RICHARDS, 1961; WINTERSTEIN and HANTEN, 

1985), the amplitudes of post critical (wide-angle) reflection events are very large 
due to total internal reflection. Wide-angle events from intra- and subcrustal 
horizons associated with a small velocity jump (less than 0.4 km/s) stand out clearly 
on the seismogram even in a noisy area. Many excellent examples of the same are 
available in a review of such studies in central Europe, edited by GIESE et al. 

(1976). 
Interpretation of wide-angle reflection travel times is beset with several 

difficulties such as lateral inhomogeneities, block structures, steeply dipping events, 
etc. Even if the simplifying assumption of lateral homogeneity is made, the 
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refraction effects at each overlying interface of a stack of horizontal velocity layers 
increase with increasing offset and become very large at the wide-angle range. The 
reflection travel times at large offset are explained by nonhyperbolic series (TANER 
and KOEHLER, 1969). However, to date, hyperbolic.approximation (neglecting the 
third and higher order terms of the series) which is valid only at small offset, is used 
for seismic data processing. KAILA an gAIN (1994) show that percentage errors in 
rms velocity and zero offset two-way travel time increase manifold as determined 
from wide-angle reflection times by hyperbolic approximation without any control 
at low angle region. On the other hand, these errors are reduced considerably with 
successive inclusion of higher order terms of the series. They mention that more 
than two coefficients polynomial fit needs data accuracy up to a fraction of a 
millisecond which is, at present, not attainable with real data sets. AL-CHALABI 
(1974) pointed out that velocity determination from large offset reflection times by 
hyperbolic approximation causes errors in the determination of interval velocities 
unless an appropriate adjustment is allowed for refraction effects. A1-Chalabi's 
method of extrapolation back to the zero effective offset is a good approach to 
estimate the rms velocity from stacking velocities. However, when the same 
principle is applied to wide-angle reflection travel times, though the method reduces 
the error in rms velocity, the overall errors are still too substantial to be ignored 
unless one uses constraints from the low-angle range. KAILA and KRISHNA (1979) 
evaluated effective velocity from reversed reflection travel times at large offsets or 
wide-angle range, considering all overlying layers as an effective single layer to 
calculate the depth to the interface but the interval velocity analysis has remained 
rather difficult. 

Different authors have determined interval velocities and layer thicknesses from 
large offset reflection times in different ways. DIx's (1955) interval velocity formula 
can be used only when rms velocities and two-way travel times close to zero offset 
are known. As the offset increases, the estimated velocity, called slant path rms 
velocity (ROBINSON, 1983), obtained by hyperbolic fitting, is different from Dix's 
rms velocity due to refraction of the ray at each overlying interface. Unless the 
refraction effects are taken into account, the velocity analysis will be erroneous and 
this error will be massive at the wide-angle range. To consider the refraction effects, 
SATTLEGGER (1965) proposed an iterative method which considers the exact ray 
path in a multilayered earth in the computation of travel times for a given velocity 
model. These travel times are then compared with the observed travel times by a 
least-squares method, based on Gauss-Newton solution. This method is applicable 
only to some limited offset travel times for which refraction effects are very small. 
LIMOND and PATRIAT (1975) made use of Sattlegger's method in the computation 
of forward response to match the wide-angle reflections in marine sonobuoy work 
by a least squares method in which only velocity is varied while constraining the 
zero offset travel time from a normal incidence reflection profile. Without using any 
constraints from normal incidence reflection profiles, gAIN and KAILA (1994) 
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proposed an iterative method of computing interval velocities and layer thick- 
nesses from a set of wide-angle reflection travel times, using a damped least- 
squares technique. Here we propose a method to directly calculate the interval 
velocity and thickness of a layer from wide-angle seismic reflection travel times by 
a layer stripping method, keeping parameters (once estimated) of all overlying 
layers fixed. 

To calculate interval velocities from reflection travel times at any offset, GAR- 
MANY et al. (1979), DIEBOLD and STOFFA (1981), and SCHULTZ (1982) presented 
techniques which need transformation of the X - T  data to the r - p  domain, 
where p (=dT/dX)  is the ray parameter and z equals to T - p X .  The z, T and X 
are the intercept time, the two-way travel time and the offset distance, respectively. 
In our proposed method, we show that even without transforming the coordinates 
in the "c - p  domain, the layer parameters can be calculated quite accurately from 
any set of wide-angle reflection times. NOWROOZI'S (1990) direct method of 
calculating interval velocities and layer thicknesses, of course, needs no transforma- 
tion of data but his method requires recognition of the (X, T) pairs of reflected 
phases from the top and the bottom of a layer, associated with the same ray 
parameter, to calculate the interval velocity and thickness of that layer. For field 
data which contain many errors, at a particular wide-angle recording spread, 
recognition of the same ray parameter from the top and the bottom of a layer can 
be rather very difficult. The same ray parameter from the top and the bottom of the 
layer may not be available at a given recording spread and hence direct calculation 
of interval velocity and layer thickness from wide-angle reflection phases by 
Nowroozi's method is not always promising. On the other hand, we can calculate, 
by a new approach discussed in this paper, the ray parameters at points of 
observation lying at any wide-angle recording offset, which can be used to strip off 
the contributions to the offsets and travel times of all overlying layers. 

Laterally homogeneous velocity structure is assumed in all 1-D forward model- 
ing of travel times and amplitudes (FuCHS and MUELLER, 1971), Wiechert-Her- 
glotz inversion (BULLEN and BOLT, 1985) and ~--p  inversion (DIEBOLD and 
STOFFA, 1981). The advantage of 1-D modeling is that they are relatively quick and 
easy to implement as compared to 2-D techniques which need very good starting 
models. Our direct method of calcuating interval velocities and thicknesses of 
various layers from unreversed reflection times serves as a good starting model for 
the 2-D modeling. 

Synthetic reflection times at wide-angle range, contaminated by some random 
errors, for a given velocity model, have been used to calculate the layer parameters 
by the proposed method. The study presents a very good estimation of the layer 
parameters with small mean errors for a number of models. This serves as a good 
indicator of the reliability of the proposed method for velocity analysis from 
wide-angle reflection times. Application of the method on well identified field 
examples demonstrates the practical feasibility of the method. 
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Theory of the Proposed Metho& Velocity Analysis 

Velocity analysis, i.e., calculation of interval velocities and layer thicknesses of 
a stack of horizontal velocity layers, is often done fitting reflection times by Dix's 
hyperbolic equation. To investigate the deep continental crust, wide-angle reflec- 
tions are being extensively Used in the USSR, USA, Canada, parts of Europe and 
India. Marine seismic experiments using long towed arrays or multiple ship 
operations acquire seismic data with large source-receiver offsets (STOFFA and 
BUHL, 1980; STOFFA et al., 1981, 1982). The velocity-depth information derived 
using Dix's formula degrades when hyperbolic approximation is used to fit the 
( X - T )  data ai-large offsets (CRESSMAN, 1968; BROWN, 1969; TANER and 
KOEHLER, 1969; TANER et al., 1970). Corrections for it are approximate, model 
dependent or require iterative application (SATTLEGGER, 1965; AL-CHALABI, 1974; 
HUBRAL and KREY, 1980). 

Velocity-depth information in the z - p  domain improves in contrast to the 
hyperbolic travel time approximation as additional ray parameters are observed. 
The z - p  inversion (DIEBOLD and STOEEA, 1981), layer stripping method 
(ScHuLa'z, 1982), an approximate method based on finding the best single ellipse 
(CUTLER and LOVE, 1980), are very well known methods in the z - p  domain. 
When only discrete X - T data at wide-angle range over a recording length of say 
20 to 30 km, are available, calculation of the ray parameter at each observational 
point by the standard slope-intercept method becomes problematic. Again, if 
limited values of ray parameters and intercept times are available, fitting by 
elliptical equation also produces large errors in the calculation of interval velocities 
and layer thicknesses. For field data which contain many errors, ray parameters, 
calculated at various observational points by drawing the tangent to the X -  T 
data, do not always show the increasing trend of the ray parameters with offset. 
BESSONOVA et al. (1974) calculated z(p) from a set of discrete travel-time data 
(Ti, ~ ) ,  based on the extremum property of T(po) -pX(po) as Po is varied with p 
fixed. T,.-pXi is plotted for a fixed value of p as a function of Jfi. The extreme 
value of Tg -pX~ is euqal to z(p) at X(p) and hence p is known at same X. Another 
fixed value ofp  which differs very little from the earlier one gives the extreme value 
of T~ -pX~ at another point of X(p). For many data points, this method needs one 
such search for each data point (Ti, Xi) through a careful selection of p. Our 
method of calculating p is very simple and reliable even from noisy wide-angle 
seismic data and we need not form a chart to calculate the ray parameters at 
various points of a set of discrete data. Of course, the error in calculating p is 
proportional to that in the observed travel-time data. The knowledge of ray 
parameters enables one to calculate for any (X, T)-point of a reflection travel-time 
data set the contributions to the travel times and offset distances due to overlying 
layers. After subtracting these contributions we derive travel times and offsets 
associated with the layer from the bottom of which the reflections are under 
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Figure 1 
Reflection ray path in homogeneous, isotropic and horizontal layers with various parameters defined. 

consideration. These times and offsets are related by the hyperbolic equation 
perfectly and therefore directly yield accurate values of the interval velocity and the 
thickness of the layer concerned. 

For a medium consisting of n homogeneous, isotropic and horizontal layers, the 
reflection time T(J 0 and offset X are expressed as a function of layer parameters 
(velocities and thicknesses) and ray parameter p as, 

T(X) = 2  ~ dk/[G(1 n2"'2~1/21 - 1 "  ~ u  J, (1)  
k = l  

X = 2p ~ ahVh/(1 --p2v~)'/2, (2) 
h = l  

where p is defined by Snells law as, 

p = sin(0h)/G, (3) 

Ok is the angle of down-going or upcoming ray at the kth layer with respect to the 
vertical. Oh, xh, vk, dh, and X are defined in Figure 1. For the case of a single layer, 

T(X) = 2d 1/[vl (1 - p 2/) 2) l/2], 

X =-- 2pd 1 v~/[1 - p 2 v ~ ]  1/2. 

Equations (4) and (5) are related as 

T2(X) X2/v~ + 4 2 = dl/vl ,  

(4)  

(5) 

(6) 
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Figure 2 
Comparison between true ray parameters and those calculated by the proposed method from noisy and 
noise-free synthetic reflection travel times corresponding to the bottom layer of the model shown in 

Figure 3. Ray parameter at midpoint of each segment is compared. 

which is purely hyperbolic, and by a simple Tz(x)  versus X 2 least-squares fit, we 
can deduce the interval velocity (v]) and thickness (dl) of the first layer. To give a 
complete relationship between reflection time and offset for the case of more than 
one layer, TANER and KOEHLEP. (1969) related equations (1) and (2) through an 
infinite series of the following form 

T2(X)  = C O + C ] X  2 -}- C2 X 4  Jr- C3 X6 Jr-. � 9  �9 (7) 

where (2,-, (i = 0, 1, 2 . . . .  ) are functions of velocities and thicknesses of layers 
concerned. The first coefficient represents the square of the two-way travel time at 
zero offset and the second one is the inverse square of the rms velocity. Depending 
on the velocity variation, the series can be truncated to Dix's hyperbolic (two 
coefficients) approximation only at very small offset where refraction effects at all 
overlying interfaces are negligibly small. Large refractions take place at large 
offsets, and calculation of interval velocities from these travel times will be 
erroneous unless refraction effects are taken into account. 

For a given velocity model and prescribed take-off angles at the source, travel 
times T(X) at various offsets X covering the gamut of low-angle and wide-angle 
range reaching offsets say five times the depth of the bottom of the last layer of the 
model shown in Figure 3 can be calculated using equations (1) and (2). The exact 
ray parameters at various offsets are calculated using Snell's law by equation (3), 



Vol. 146, 1996 Method of Calculating Interval Velocities 349 

6.5 

(/3 

2x~ 

> - 5 - 5  
b- 

o 

~ 4.5 

n," 
T 

3.5  
I -  
Z 

.._1 
(]) 

Velocity Thickness 

2.0 1.0 
3,0 1.5 
4.0 2-0 
3-0 1.5 
5.0 2.0 
6-0 4.0 

TRUE VALUE 

. . . . . . .  CALCULATED FROM NOISE FREE 
SYNTHETIC DATA 

o o o o o o o  CALCULATED FROM NOISY 
SYNTHETIC DATA 

2 " 5  ~ i [ [ i f [ i I l i ~ I I I 

0"0  2"0 4"0 6 '0  
OFFSET/DEPTH 

Figure 3 
Comparison between true slant path rms velocity and the one calculated by the proposed method from 
noisy and noise-free synthetic reflection travel times for the model shown in the figure. Slant path rms 

velocity at the midpoint of each segment is shown. 

corresponding to different prescribed take-off angles at the source, and have been 
plotted in Figure 2 against offset/depth ratio. The solid curve represents the true ray 
parameter. Now the question arises, is it possible to calculate ray parameters quite 
accurately at all points from a set of discrete travel-time data at increasing offset? 
Our answer to this question is yes, it is possible, and we have shown here how to 
calculate the ray parameters quite accurately by a new approach using wide-angle 
reflection times, even when contaminated by random errors. This method is 
described below. 

The travel times calculated from the bottom most layer of the model displayed 
in Figure 3 are segmented such that each segment contains some points, say 15, in 
a manner that the first segment contains the first to fifteenth point, the second 
segment the second to sixteenth point, the third segment the third to seventeenth 
point and so on. The approximate rms velocity, obtained by hyperbolic least 
squares fit to the increasing offset travel times at various segments, is better termed 
as slant path rms velocity (ROBINSON, 1983), and the hyperbolic relation is written 
as 

T2(X)_ 2 2 2 --Jr" /Vsprms -~- Tsp 0. (8) 

where Tsp 0 is the two-way travel time corresponding to the slant path rms velocity 
Vsprms. Considering V~p,~, and T~po approximately constant over a reasonable 
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length of a travel-time segment, we can differentiate equation (8) with respect to 
offset X as 

T dT/dX = X~ V2p . . . .  (9) 

where dT/dX is nothing but the ray parameter (p). Each point of the set is 
associated with its individual slant path rms velocity and ray parameter, both of 
which increase with increasing offset. The actual Vsprm s at different (X~, T,)-coordi- 
nates can be calculated by equation (9) using exact ray parameters as shown in 
Figure 2 by a solid line. The true Vsprms values are plotted against the offset/depth 
ratio in Figure 3 for the model shown in this figure itself. When noise-free synthetic 
data are used, segmenting all travel times containing only three points at a time 
produces the Vsprms indicated by dots in Figure 3, which falls quite accurately on the 
solid line curve. This has been plotted at the second point of each segment against 
its distance, divided by the depth of the bottom interface of the last layer from 
which reflection times have been calculated. Once we know Vsprm s from travel times 
only, we can calculate the ray parameter using Equation (9) and the same shown by 
dots are plotted against offset/depth in Figure 2. We see that they also fall on the 
true curve, indicated by the solid line. When the data contain errors, the trend, as 
a whole, increases with increasing offset but the values differ in its close vicinity and 
the variations depend on the number of points taken into consideration for fitting. 
For noisy data we have to take as many data points in a segment as possible. From 
the contaminated data with errors lying between -50  ms and +50 ms for the 
model under consideration we see that many points, say more than twenty data 
points in one segment, produce a very good estimate of V~p~m~ shown in Figure 3 by 
open circles. These have been plotted at the midpoint of each segment, divided by 
the depth of the bottom interface of the last layer. Correspondingly, we can 
calculate the ray parameters from noisy travel-time data using Equation (9), and 
the same have been plotted against offset/depth in Figure 2 by open circles. This 
shows a very good estimation of the ray parameter. It is to be noted that the ray 
parameter, calculated by this method, is valid only at the midpoint of the segment. 
Also to be considered are the ray parameters at other points of the segment, which 
are calculated as follows. 

The tangent drawn to a point of a theoretical reflection travel-time curve 
produces the ray parameter at that point for the reflected phase. For a set of 
discrete data, the ray parameter at a point can be calculated by the finite-difference 
method from data lying very closely on both sides of the point at equal interval. 
This is equivalent to drawing a straight line based on a least-square fit to the three 
travel-time data as 

T = p X +  C, (10) 

the slope (p) of which produces the ray parameter at the midpoint. To gain 
accurate value of the ray parameter, travel times should be very accurate and data 
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Figure 4 
Comparison between true ray parameters and those calculated using equation (9) at all points of each 
travel time segment using noisy synthetic reflection travel times for the model indicated in Figure 3. Ray 

parameters at all points of each segment are compared. 

(or geophone) interval should be very small. For noisy data we must take data as 
numerous (here 21 points) as possible. The ray parameter calculated by Equation 
(10) and the one obtained by Equation (9) using the slant path rms velocity 
(corresponding to the 21 data points), are very similar. Now using the same slant 
path rms velocity, which is strictly valid at the midpoint of the segment consisting 
of a set of data points, when we calculate the ray parameters at all other points of 
the segment using Equation (9), we gain the ray parameters very close to the true 
values at the low-angle range, as is evident from Figure 4. This figure also indicates 
that the calculated values of ray parameters display some variance from the true 
values at sufficiently large offset, i.e., in the wide-angle range (more than offset/ 
depth ratio of 2.0). It is clearly observed from Figure 2 that the ray parameters at 
wide-angle range increase very slowly. We notice from Figure 3 that the slant path 
rms velocity also increases with successively increasing offset. Hence, the ray 
parameter calculated as per Equation (9) at a point in the first half of the segment 
is always less than its normal value, because to calculate it we are using a slightly 
higher slant path rms velocity which is actually determined at the midpoint of the 
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Figure 5 
Comparison between true and calculated ray parameters, obtained by taking the average of the ray 
parameter calculated using Equation (9) and that with (10) from noisy synthetic reflection travel times 

for the model indicated in Figure 3. Ray parameters at all points of each segment are compared. 

segment using Equation (8). On the other hand, the calculated ray parameters for 
points on the second half of the segment are always more than their true values due 
to the use of midpoint slant path rms velocity which is slightly smaller than that 
which should have been used for the points. By taking the average of the calculated 
dT/dX values determined as per Equation (9) at various points of the segment and 
the estimated dT/dX at the midpoint of the segment as obtained by Equation (10), 
quite accurate values of ray parameters are obtained. Figure 5 shows these ray 
parameters at different points calculated from various segments of increasing offset 
reflection travel times. To illustrate how well the principle works, we have taken 
twenty (X, T) data points in a segment as a specimen lying between 32.8 to 40.8 km 
offset distance at 400 m interval for the model shown in Figure 3. Corresponding to 
these twenty data points, true ray parameters are already known and have been 
denoted in Figure 6 by the solid line. Using the above principle, we calculate the ray 
parameters at different points of the segment from noise-free and noisy synthetic 
data. They are shown in the same figure by dots and open circles respectively for 
noise-free and noisy data. This clearly shows that there are slight differences 
between the true ray parameters and the calculated ones from both the noisy and 
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noise-flee data by the proposed method. Please notice the scale for the ray 
parameters in Figure 6, which is highly exaggerated. It is observed from Figure 6 
that ray parameters for points on the first half of the segment are slightly 
underestimated, whereas those for the second half are slightly overestimated. 

Let us now see how we can strip off the contributions in the offsets and travel 
times associated with overlying layers. Referring to Figure 7, we are interested in 
calculating the interval velocity and layer thickness of the nth layer from wide-angle 
reflection times for which end values are T s and Te from the nth interface in the 
distance range between Xs and -'go with respect to the source at O. Of course, we 
assume that the layer parameters (velocities and thicknesses) of all overlying (n - 1) 
layers are known. Using the principle described in earlier paragraphs we can 
calculate the ray parameters at other offsets lying between X~ and Xe ,  with their 
values being p~ and Pe at the end points respectively. The offset contribution of all 
the overlying (n - 1) layers to the total offsets corresponding to the ray parameter 
p, is given by 

X s ( n  --  1) = ODsl  + D , 2 X ,  (11) 

n--1 
- p ~ v k ]  - (12)  = 2 p s  E dkl)k/[1 2 2 1/2 

k = l  

The travel-time contribution by all (n - 1) layers corresponding to the ray parame- 
ter p, is expressed as 

n - - I  

r~.(n 1) 2 ~ dk l [v~(1  2 : L/2]. - = - p , v ~ )  (13) 
k = l  

The travel time associated with the nth layer for the ray parameter p, is 

T . ,  = T ,  - -  T , ( n  - 1). (14) 

where 7", is the travel time at offset X s from the nth interface, The offset associated 
with the nth layer for the ray parameter p~ is 

X , ,  = X s - X ~ ( n  - 1). (15) 

Similarly, the travel time and offset associated with the nth layer for the ray 
parameter p~ corresponding to the end point data (Xe, Te) are given by the 
expression 

T.~ = re  - Te(n  - 1), (16) 

Xne = X e --  X~(n  --  1), (17) 

where T ~ ( n -  1) and X~(n -  1) are the contributions to travel time and offset 
corresponding to the end ray parameter Pe for all overlying (n -- 1) layers. In this 
way, offsets and travel times for the nth layer, corresponding to all other ray 
parameters lying between p, and p~, can be calculated. These are related to the 
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interval velocity vn and thickness dn of the nth layer through the hyperbolic 
equation 

T2 2 2  2 2  = JGIvn + 4 dnlv.. (18) 

Least-squares hyperbolic fitting to these points directly gives the interval velocity 
and thickness of the nth layer. 

In reality, seismic velocity within a layer varies both laterally and vertically, and 
interfaces are often not horizontal. Hence, the assumption of a flat layered earth 
model and the errors in observed (X, T) data and those in calculating the ray 
parameters at the observation points will produce a mean error in the resulting 
velocity of the nth layer 

m(v,) = -~ m ( T  2) k j , (19) 
X 4, ~_ X]i 

i=1  i 1 

where m(T  2) is the mean error of squared offset times for the nth layer and k is the 
total number of (X,,, T,) pairs lying between Xs and Xe. The mean error in the 
resulting thickness of the nth layer is calculated as, 

/)2 I/2 

2 / = 1 7 ~  k ( 2 0 )  
2 2 " 

Synthetic and Field Examples 

To show the efficacy of the method, it is always preferable to apply the 
technique on synthetic data contaminated by some random noise, where the model 
to be estimated is known. A simplified nine-layered velocity model of the continen- 
tal type crust in the West Bengal basin, India, has been shown in Figure 8 by the 
solid line curve. Corresponding to various interfaces, wide-angle reflection times are 
analytically computed using the parametric Equation (1) at offsets defined by 
Equation (2) by providing various take-off angles at the source. The reflection 
times are then contaminated by random errors with a specified value of 50 ms to 
simulate a field situation. The specified value of 50 ms in the random number 
generator (PRESS et al., 1986) adds errors randomly lying between - 5 0  to + 50 ms 
to the reflection times associated with different interfaces. These synthetic data 
limited to the wide-angle range are shown in Figures 9(a), (b), (c) and (d) for 
different phases. Figure 9(a) contains two sets of wide-angle synthetic data for the 
first two layers. Figure 9(b) exhibits data for the third, fourth and fifth layers. The 
synthetic data for the sixth and seventh layers are displayed in Figure 9(c). 
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Figure 8 
A nine-layered true velocity model, compared with the estimated velocity model obtained by the present 

method using wide-angle synthetic reflection travel times (shown in Figure 9). 

Synthetic data for the eighth and ninth layers are shown in Figure 9(d). The data 
have been shown for clarity at every third data point in a reduced time scale with 
a reduction velocity of 6.0 km/s. Since reflection times for the first layer are purely 
hyperbolic, least-squares fit to the travel-time data with a hyperbolic equation 
directly gives the velocity and thickness of the first layer. Once estimated, the first 
layer parameters are held fixed for the estimation of the second layer parameter. 
Using the proposed method, we extract velocity information in a layer-by-layer 
fashion from all reflected phases. The estimated parameters are denoted in Figure 
8 by the dashed line. This illustrates a very good agreement between the true model 
and the estimated model by the proposed method. The mean error in interval 
velocities and layer thicknesses, obtained from wide-angle reflection times by the 
proposed method, are calculated using Equations (19) and (20). They are shown in 
Table 1 against the estimated parameters. We see from Table 1 that mean errors in 
velocities and thicknesses do not follow any increasing trend with growing depth. 
This is because errors in velocity and thickness are random in nature and they may 
be affecting the computed offset and time contributions due to various layers in a 
random manner, not leading to any cumulative or systematic effects on the 
computation of  layer parameters from one layer to the next. This indicates the 
reliability of the proposed method. To demonstrate how well the estimated model 
fit the data, we have computed the rms residual between the synthetic data and the 
travel times of the estimated model for different layers. This is also shown in Table 
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Synthetic reflection travel times from various interfaces of the true model shown in Figure 8, with 
random errors added and their comparison with the travel time curves generated for the estimated 

model. Time scale with reduction velocity of 6.0 km/s has been used in (a), (b), (c) and (d). 

Table 1 

Error analysis in interval velocity and layer thickness as determined from wide-angle seismic reflection 
travel times 

True Estimated True Estimated Travel time 
Layer velocity velocity thickness thickness residual (rms) 

number (kin/s) (kin/s) (kin) (kin) (s) 

1 2.00 1,98 + 0.02 1.00 0.96 • 0.04 0.018 
2 3.00 3,02 ___ 0,02 1.50 1.68 • 0.06 0.028 
3 4.00 4.02 • 0.03 2.00 1.83 • 0.08 0.026 
4 3.00 2.91 _+ 0.06 1.50 1.40 • 0.06 0.015 
5 5.00 5.00 i 0.05 2,00 2.I7 • 0.18 0.027 
6 6.00 5.99 • 0.06 4.00 3.85 • 0.22 0.030 
7 5.60 5.58 • 0.08 3.00 2.93 • 0.18 0,024 
8 6.50 6.52 • 0.05 9.00 9.28 • 0.22 0.021 
9 7.00 7,02 • 0.05 12.00 12.09 • 0.43 0.030 
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Figure l0 
Field seismogram corresponding to shot point 25 along the Sadra-Degam part of the North Cambay 
DSS profile, India, (KAILA et al., 1990) showing two subbasement reflections p5.8 and p6.6, travel times 

for which were used for the computation of an interval velocity model in Figure 11. 

1 against the layer number. For all reflected phases we see that the rms residual is 
less than 0.03 s which indicates a first-rate match between the synthetic data and the 
calculated travel times of the estimated model. The travel times of the estimated 
model are shown in Figures 9(a)-(d) by solid lines. 

We now use two field data sets to demonstrate the practical feasibility of the 
proposed method. For the assumption of the flat layered velocity model, the presbnt 
technique gives averaged interval velocities and thicknesses of various layers. In 
deep seismic sounding investigations, usually the structure extending to the base- 
ment is interpreted using the refraction data, whereas the subbasement velocity 
structure upto the Moho is interpreted using strongly observable wide-angle reflec- 
tion data by the 2-D forward modeling technique which is very time consuming and 

laborious. 
Two well identified wide-angle reflected phases marked by pS8 and p6.6 in Figure 

10 from layers below the basement, corresponding to the shot point 25 along the 
Sadra-Mehmadabad-Degam part of a long profile in the North Cambay and 
Sanchor basins, India (KAILA et al., 1990), have been used to find the velocity 
structure by the proposed method. Since we work layer-by-layer downward, we 
need velocity information at the shallow level up to the basement. The first arrival 
refraction data at the shallow level can be analyzed by one of many available 
refraction methods. As the 2-D velocity model in this region (KAILA e t  al., 1990) 
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1-D velocity model, superimposed on a 2-D veloc- 

ity model available along the above profile. 

is more or less flat, we have averaged out the velocity values in the first three layers 
(obtained by forward refraction modeling) to a simplified three layer 1 - D interval 
velocity model, indicated by velocity values in italics and thicknesses by dashed 
lines in Figure 1 l(b). The first layer with a velocity of 2.00 km/s and a thickness of 
1.32 km, the second layer with a velocity of 3.30 km/s and a thickness of 4.00 km, 
and the third layer with a velocity of 4.80 km/s and a thickness of 1.55 km are held 
fixed while dealing with the two subbasement wide-angle reflection travel-time 
ranges shown in Figure 1 l(a) by dots. Here also, data are plotted in a reduced time 
scale with a reduction velocity of 6.0 km/s at every third data point. The first 
reflected phase gives the interval velocity of 6.18 + 0.04 km/s and the thickness of 
3.67_+0.05 km with rms residual of 0.013 s. The second reflected phase gives 
interval velocity of 6.01 _+0.03km/s and thickness of 2.11 _+0.03 km with rms 
residual of 0.014 s. The estimated layer parameters are shown by velocity values 
written in italics at the right-hand side of Figure 1 l(b) and the thickness or depth 
by dashed lines. The theoretical reflection times corresponding to the estimated 
velocity model are designated by solid lines in Figure 1 l(a). As the present method 
is based on the exact ray theory and the calculation of ray parameters is quite 
accurate, there is no problem with the estimation of the low velocity zone (LVZ) in 
the upper crust. 
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Figure 12(b) 
1-D velocity model, superimposed on 2-D velocity 

structure along the above profile. 

Another field example is given in Figure 12. Travel times of three wide-angle 
reflections are shown in Figure 12(a) by dots at every third data point, correspond- 
ing to the shot point 8 aiong the Betiator--Burdwan--Bongaon DSS Profile in the 
West Bengal basin, India (KAILA et al., 1992). These reflections have been used to 
find the 1-D interval velocity structure of the crust in the Burdwan-Satgachia- 
Dbatrigram part. The 2-D velocity model (KAILA et al,, 1992) in this region is more 
or less flat, We have averaged out the first five layers up to the basement into a 
simplified five layered 1-D interval velocity model, indicated by velocity values in 
italics and thicknesses by dashed lines in Figure 12(b). The velocities of the first five 
layers are 1.95, 3.00, 3.80, 4.80 and 3.90 kin/s, respectively. The corresponding 
thicknesses are 0.95, 1.55, 2.10, 1.10 and 1.00 km, respectively. These layer parame- 
ters are held fixed as is conventionally done in a layer-by-layer processing work for 
the investigation of the deeper crustal structure in terms of interval velocities and 
layer thicknesses. By the method proposed above we receive the interval velocity of 
6.02 + 0.07 km/s and thickness of 4.49 _+ 0.10 km from the first wide-angle reflected 
phase with rms residual of 0.02 s. The second reflected phase gives the interval 
velocity of 5.59 _+ 0.06 km/s and thickness of 1.76 -I- 0.09 km with rms residual of 
0.018 s. The third reflected phase gives an interval velocity of 6.50 _+ 0,09 km/s and 
a thickness of 3.35 _+ 0.12 km with rms residual of 0.021 s. The estimated layer 
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parameters are indicated by velocity values written in italics at the right-hand side 
of Figure 12(b) and the thickness or depth by dashed lines. Here also we see that 
a low velocity zone (5.59 km/s) is present in the upper crust just below the basement 
layer of velocity 6.02 km/s. The velocity of the LVZ is a little less than the one 
obtained by 2-D forward modeling. Since we have assumed a flat layered earth 
model, the effect of the lateral variation of velocity in all overlying layers plays a 
role in determining the layer parameters of deeper layers. As a consequence, we 
derive the averaged interval velocity of the sixth layer as 6.02 km/s. This layer 
extends to a depth of 11.19 km. The 2-D reflector depth for this laye r in the region 
varies between 12.0 to 13.0kin from shot point 8 towards shot point 10. The 
estimated thickness of LVZ (5.59 km/s) is only 1.76 km, whereas that for 2-D 
modeling varies between 1.90 to 2.30 km from shot point 8 towards shot point 10. 
The bottom interface of the present model, obtained by the proposed method, has 
risen to a depth of 16.30 km, whereas the 2-D depth range lies between 16.65 km 
below shot point 8 and 18 km below shot point 10. As a whole, the estimated 1-D 
velocity model by the present method matches quite well with the available 2-D 
velocity model (KAILA et al., 1992). 

Conclusions 

The layer stripping method proposed here estimates the layer parameters, i.e., 
interval velocities and thicknesses, quite accurately as it is based on the exact ray 
theory. The method is mathematically very simple and can be easily adopted for the 
velocity estimation from any wide-angle reflection times. Being very fast, the 
method helps to process a large volume of wide-angle seismic reflection data in a 
deep seismic sounding investigation to engender an approximate 1-D crustal 
velocity structure within a very short time. The assumption of a flat layered earth 
model and errors in observed (X, T) data and those in calculated ray parameters 
produce mean errors in the estimated layer parameters but they do not propagate 
downward systematically from one layer to the next, making the proposed method 
very reliable. If the associated errors are estimated substantial, the present method 
indicates a need to refine the velocity structure further by 2-D modeling. The 1-D 
models, independently obtained from different sets of reflection times from various 
shot points along a profile, when plotted together in their respective distance-depth 
location, will produce a pseudo 2-D velocity picture of the subsurface. This will 
serve as a superior initial model to either 2-D forward modeling or 2-D inversion 
modeling. 
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