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E v o l u t i o n  o f  Loca l i zed  F o l d i n g  for  a Th in  Elast ic  L a y e r  in a 

Sof ten ing  Visco-e las t ic  M e d i u m  

G. W. HUNT] H-B. M~HLHAUS 2 and A. I. M. WHITING 1 

Abstract--Long compressed elastic struts on softening elastic foundations have a tendency to 
buckle locally. The same tendency is demonstrated laere for the instantaneous response of elastic struts 
supported by visco-elastic media. A governing nonlinear partial differential equation is derived to 
describe the evolution of the localized form in time. Under the assumed constant end-shortening this is 
found to be approximated by a coupled set of seven ordinary differential (diffusion) equations. As the 
load drops to zero, the localized buckle pattern evolves towards the form of the single tong wave, but 
remains aperiodic for all time. Three-dimensional plots show how this localized pattern changes over 
time. 
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1. Introduction 

It is commonly held amongst structural geologists that the folding of stratified 
rock is a slow process, and therefore is primarily a controlled viscous phenomenon. 
There is however a growing realization, succinctly put by PRICE and COSGROVE 
(1990) for example at the end of the chapter entitled "Introduction to Folding," 
that much of what is observed may be due to inherent elasticity. In referring to the 
viscous studies of BlOT (1965) and others, they comment " . . .  their predicted results 
regarding L/a ratios have not fitted observed natural data. Only by treating rocks 
as highly nonlinear viscous materials has it proved possible to bring theory and field 
observations into line. This problem has arisen because it has been implicitly 
assumed that elastic behaviour of rocks during the initiation of folding can be 
ignored" (after PRICE and COSGROVE, 1990). The present paper shows one effect of 
introducing nonlinearity into the bedding relations, for a thin strip of elastic 
material supported within a visco-elastic (Maxwell) medium. 

We find that elasticity in the embedding medium provides the opportunity for 
"instantaneous" elastic behaviour to affect the form of deformation before viscosity 
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and consequent dissipation have had time to play their part. Not only are 
wavelengths (L/a ratios) affected, but new structural forms can emerge; the opening 
exists for some of the rich and varied bifurcation phenomena of elastic buckling to 
appear at the start of the evolutionary process, with continuing influences as time 
progresses. The response of the system, in a time scale associated with the rate of 
loading, mirrors that of pure elasticity, yet in the longer time scale the response is 
effectively governed by the viscous part of the embedding medium. What is unstable 
in the sense of the latter may be stable in the sense of the former, and both elastic 
and viscous parts are germane to what may be seen. 

In particular, with a softening nonlinearity in the bedding relation, the system 
settles naturally at the start of evolution into a pattern of localized buckling, 
contrasting sharply with the strongly-periodic trend found in purely viscous formu- 
lations (BLOT, 1965; Mt)HLHAUS et al., 1994). Localized buckling has a wide range 
of spectacular variations, with a chaotic tendency that is only now being under- 
stood in the purely elastic case (HUNT and WADEE, 1991; CHAMPNEYS and 
TOLAND, 1993). Although the Maxwell representation of the bed is fundamentally 
that of a fluid, governed in the long term by viscosity, it is seen that for the limiting 
case of infinite length, the route to the fully relaxed state from an initial localization 
remains inherently aperiodic; periodicity, so dominant for purely viscous embed- 
ding, never makes an appearance. Thus localized forms are seen to be an integral 

part of the geological timeframe. 

2. Linear Fourier Analysis 

We start with the small displacement response of an incompressible elastic layer 
of length L, thickness h and shear modulus G, embedded in a medium of vertical 
resistance per unit length, q, and compressed horizontally by an axial load P. This 
is describable by the linear differential equation (BIOT, 1965), 

Gh 3 
3 ~ + Pa~(w)  - q = o, (1) 

where ~ ~ denotes i differentiations with respect to the spatial variable x. Deflections are 
taken as having no variation in the second horizontal dimension. The lateral deflection 
w is expressed as an infinite set of Fourier components with amplitudes am, 

w= ~ Win= ~ am coskmx, (2) 
m = 0  m = 0  

and we correspondingly define components of the bedding force, 

q = ~ q~ cos k,,x, (3) 
m = 0  



Vol. 146, 1996 Evolution of Localized Folding 231 

where k,, = 2~zm/L, leading to the following relations in terms of  the amplitudes am, 

Gh 3 
k4am 2 

- -  -- P]cmam -- qm = 0. (4) 
3 

2. I. Elastic Bed 

Let us suppose that the embedding medium extends to infinity in all directions, 

and initially is elastic. Following B~OT (1965), the amplitudes of the bedding force 
are related to the amplitudes of the buckle pattern by, 

qm = -- 4G1 km am, (5) 

where G1 is the bedding shear modulus. We note the wavelength dependence of 
this bedding relation (BLOT, 1965). After substituting into equation (4), we can 
write, 

4G1 Gh3 2 
P =  ~-~ + ~ - k  m, (6) 

and see that each wavenumber m has associated with it a different distinct critical 
load, pc .  If an elastic Winkler foundation instead of an infinite domain is used, the 
denominator of the first term appears as kRm (HUNT and WADEE, 1991). Differenti- 
ating the expression for P with respect to km gives the minimum critical load and 
corresponding mode, 

c _ 6 1 3/6GI 
Pmin kmin G1, where kmi n = ~ X / G  " (7) 

There is more than one way of nondimensionalizing the basic equation (1), 
depending on the characteristics of the bedding relation. For  the present elastic 
system for example, we can introduce a nondimensional load p = P/pemi,, a 

nondimensional spatial measure 2 = kmi~X, and a "nondimensional" wavenumber 

~c m = k m/kmin, such that a "modal"  form of equation (1) associated specifically with 
this wavenumber can be written. 

w'~' + 3pwL + 2/~,w,,, = 0, (8) 

where a prime denotes differentiation with respect to 2. We shall compare and 
contrast this with a second nondimensionalization, associated with the viscous 
properties of a visco-elastic bed, later in Section 2.3. 

2.2 Viscous Bed  

Again following BIOT (1965), we now presume the supporting medium is purely 
viscous, and write the amplitudes of  the bedding force q as, 

q,, = -4r/lkm0t(am), (9) 
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Figure 1 
Dispersion relation for a purely viscous medium. 

km x/Gh 3 

where t/l is the bedding viscosity, and 3~ denotes partial differentiation with respect 

to time t. We note again the dependence on wavenumber km. Substituting into 

equation (4) then gives, 

Gh 3 
- -  k3mam - Pkma m -}- 4r h ~3 t(am) = O, (10) 

3 

and adopting the eigenmode solution am = A,, e ~~ t we obtain, 

Gh 3 
- - k 3 m  - P k m  q-4thOgm = 0 ,  (11) 

3 

leading to the dispersion relation for c%, 

3Pk m - Gh 3k3 (12) 
6 9  m = 12rh 

This suggests a quite different behaviour from that of  the elastic system. Under 
constant load, at time t all wavelengths apart  f rom that for m = 0 have a nontrivial 

form in x. Plotting mm against km gives the curves of  Figure 1, with the dominant 
wavelength of  BrOT (1965), corresponding to the most rapidly-growing amplitude, 

appearing when co m is a maximum. This is found simply by setting dram/dk~, = 0, to 

give, 

~oa= k a where k d =  ~ . 
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A different form of nondimensionalization is appropriate for a purely viscous 
bed. If we define a nondimensional spatial measure 2 = kdX and nondimensional 
time t '=  COdt with respect to the dominant viscous wavelength kd, the following 
equation appears in the modal deflection function w,~, 

ell! H km wm +3Wm+2 l~m ~--- 0. (14) 

Here/~m = k m / k d ,  primes denote differentiation with respect to the new 2 and a dot 
denotes differentiation with respect to ~. We note the P-dependence of the trans- 
formations, but the absence of parametric variation with P from the final equation. 
However, if applied end-shortening rather than load is held constant, as in the 
work that follows, P varies over time, and the new spatial measure 2, being 
P-dependent, must also change. To avoid this added complication, the P-indepen- 
dent nondimensionalization of the previous section is used exclusively in the 
nonlinear analysis. 

2.3 Visco-elastic Bed 

For a visco-elastic supporting medium under a harmonic deflection function 
win(x), we write initially a strain rate equation for a bedding material with a 
Maxwell constitutive law in terms of amplitudes, 

17 1 
-4k,/?t(a~) = ~ t(qm) -}- --~h q,7. (15) 

Operating symbolically we can then write, 

q,~ = -4G,  km ( ~t@r )am, (16) 

where r = Gl/th. 
For a visco-elastic bed there is a choice of possible nondimensionalizations. 

_ _  C Remembering the nondimensional load is defined by p -  P/Pmin, we can take 
2 = kminX and k,, = km/km~n as with the elastic analysis, and introduce a related 
nondimensional time ~= rt. Equation (1) now becomes, 

;v~' + 3p~'~ + 2~c,,,~,~ + w's + 3w'~(p +/~) = 0. (17) 

Under constant load (p = 0), with an assumed periodicity in x and the same 
eigensolution as before, a m = A m e ~.~ ;, after slight manipulation this gives a nondi- 
mensionalized visco-elastic dispersion relation, 

3p/% - / ~  
~ = _ . (18) 

-3p;m +2 
Plotting c5 m against /~m then creates the f ami lyof  curves shown in Figure 2(a). As 
p approaches the elastic critical load p c = 1 at km = 1, the denominator of equation 
(18) vanishes and c5,, approaches infinity. 
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Figure 2 
Nondimensional dispersion relations for a visco-elastic medium. 

On the other hand, nondimensionalizing with respect to the dominant wave- 
length of the purely viscous system ka by writing ~ = kdx  and ~'= mat, where ka and 
co d are given by equation (13), reduces equation (1) to, 

~?g' + 3 v ~  + ~ / ~ , . W m  § +3W~,) =0 ,  (19) 

where f = r/co a. The possibility of time-dependency in the spatial nondimensional- 
ization apparently limits application to the case of constant load. Assuming again 
periodicity in x,  with the eigensolution am = Am e ~m ;, we obtain an alternative form 
for the visco-elsatic dispersion relation, 

3/~m _ ; 3  
_ ~, ( 2 0 )  

eSm 2 3/~m + s 
p 3/2 

giving the family of curves of Figure 2(b). Now, in contrast to the purely viscous 
bed under the same nondimensionalization, p enters parametrically. As p ap- 
proaches the elastic critical load p c = 1 at k~ = 1, the denominator is again seen to 
vanish and 05m approaches infinity. 

We note at this stage a useful interrelation between the dominant viscous and 
minimum-load elastic wavenumbers, 

kd ~-- k m i n N ~ .  (21)  

2.3. I Aperiodicity and Linear Eigenvalues 

For a linear or the following nonlinear system, when w is small equation (17) 
must be satisfied. If the assumption of periodicity is replaced by the more general 
complex representation w m = a.~ e ;~, where 2 = e + ifl, the characteristic equation, 

2 4 + 3p2 2 § 2]~ m = 0, (22) 
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again imparts a zero denominator to (18). Substituting for 2 and setting real and 
imaginary parts to zero results in the relations, 

f~ = ~4 _ 6~2fi2 + f14 + 3p(a2 _ f12) + 217m = 0, 

f2 = 2c~fi(2" z + 3p - 2/~ 2) = 0, (23) 

representing allowable elastic solutions near the flat state w = 0. If we set ~ = 0 and 
fl = kin, the periodic solutions of the previous section appear, but non-zero values 
of ~ can also satisfy these expressions--describing fluctuating forms with ampli- 
tudes that either grow or diminish exponentially, as in the tails of localized 
solutions. If  ~ is small and the amplitude is slowly varying (HUNT et al., 1989), it 
is then reasonable to assume that the wavelength of this linearized solution matches 
that of the bedding relation. In all that follows we thus shall be setting, 

fl =/Tin. (24) 

The effect of the bedding relation is such that the eigenvalues ~ and fi are more 
difficult to identify than their Winkler counterparts (HUNT and WADEE, 1991), but 
the princ~le remains the same; they are both expressible in terms of p. The forms 
f l  (with km= fl) and f2 are central to the following nonlinear study, where for t r 0 
they appear as non-zero functions of time. 

3. Nonl inear  Analys is  

Two different forms of nonlinearity are to be considered. First, a softening cubic 
nonlinearity is introduced into the bedding relation (15), which in an associated 
elastic problem has the effect of inducing localized buckling (HUNT and WADEE, 
1991; CHAMPNtYS and TOLAND, 1993). Secondly, in a quest for physical reality, we 
shall consider the evolution to be under conditions of constant end displacement. 
Displacement control under periodic conditions introduces a 'noncoupling' end- 
restraint nonlinearity (MOHLHAUS, 1993; MOHLHAUS et al., 1994); when a con- 
stant axial displacement is prescribed at the plate edges, the driving force of the 
instability, the effective axial force, decreases during the fold evolution according to, 

where, 

Eh 
r 2 

Peer = P 1 - -  1 )2 (W )av, (25) 

,2 l 0L 
1 2 2 (w ) ~ -s w '2 d x  = ~ kma,~. (26) 

m = 0  

The combined effect of both nonlinearities is such that the Fourier representa- 
tions of the previous section, familiar also from the work of BIOT (1965), no longer 
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fit the bill: the more localized a response, or alternatively the longer the specimen, 
the less well the displaced shape is modelled by a concoction of periodic modes. 
Instead, we start by assuming that a specified end-shortening A is suddenly imposed 
at time t = 0, and is thereafter maintained as constant. There is thus a clearly 
defined initial elastic phase, followed by a slow (viscous) evolution over time. An 
ordinary differential equation (ODE) is defined for the elastic phase, for which a 
valid solution appears in the form of a localized fluctuating buckle, modulated 
spatially in both amplitude and phase. Associated solutions of the governing 
nonlinear partial differential equation (PDE) of evolution are then sought. Rather 
than deal in dominant wavelengths (BIoT, 1965; MOHLHAVS et al., 1994), we 
observe how the continuous response of this equation changes in wavelength and in 
the modulations of both amplitude and phase, over time. The outcome is a 
convincing time history. 

3. I Softening Foundation and Localization 

A cubic softening nonlinearity in the bedding relations alters the expected form 
of the response from periodic to localized. For a visco-elastic medium with a 
general cubic nonlinearity we can write the dimensional form of the governing 
nonlinear partial differential equation as, 

Gh~3 + p~2w + 4Glkm(~t@r )(W + ~W3) = 0, (27) 

where in general ~ can be positive or negative. The wavelength dependence of the 
bedding relation, expressed by km in the coefficient of the final term, is assumed to 
extend to the nonlinear term as shown. We are of course aware that this effect arises 
from purely linear considerations (BIOT, 1965), but retain it in the nonlinear term 
on the basis that, in the absence of further information, whether or not it is 
included will have little qualitative effect on the outcome. This is indeed confirmed 
by numerical experiment. 

The governing nonlinear equation can also be written, 

~Gh33 37 /Gh 3 ) a~w + ea~w +4Glkm(w +r ) j+r~-a4w + ea~xw_=O. (28) 
t L 

With the earlier nondimensionalizations defined with respect to the elastic critical 
wavelength kmin, and setting in addition v? = x / ~ w ,  we write this as, 

~3;[~"' + 3p~" + 2/~m(~ _ ~3)] + (v~"' + 3pk") = 0, (29) 

where the + sign represents a hardening foundation and the - sign a softening 
foundation. These two cases must be considered separately. From this point we 
shall drop the tilde from all nondimensisonal representations and consider only the 
softening nonlinearity. 
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3.2 Initial Elastic Phase 

The fundamental nonlinear differential equation becomes, 

~,[w"' + 3pw" + 2km(w - W3)] ~- (W" ~- 3pw') = O, (30) 

and to explore the instantaneous elastic response we set the square brackets to zero, 

w"" + 3pw" + 2km(w - w 3) = 0, (31) 

which is of course the equilibrium equation for a purely elastic embedding medium. 

All the machinery of elastic analysis is now available (see for example, HUNT and 
WADEE, 1991; HUNT et al., 1993). The prospect of localized solutions, described by 
a homoclinic loop in phase space and for a long strut representing the most likely 
outcome in practice, must be considered. Close to the elastic critical point we thus 
look for solutions of  the form, 

w = A sech ex cos fix + B sech c~x tanh ex sin fx .  (32) 

This introduces the possibility of a modulation to the amplitude of a harmonic 
function, expressed by the sech function, together with a phase modulation deter- 
mined by the relation between A and B. We note also that ~ and f are respectively 

the real and imaginary parts of the linearized solution of equation (31), as expressed 
by equations (23) which define respectively the rate of exponential growth/decay 
and the wavelength of the modulated periodicity at the tails of the localization; we 
henceforth match this with the wavelength of the bedding relation by setting 
k,~ = f ,  as described above in equation (24). 

After substituting into equation (31) and cancelling by sech c~x, we obtain, 

( f lA  - f 2 B )  cos fix + ( fzA +f iB)  tanh c~x sin f x  + [cd(12f 2 - 6p - 20~2)A 

- 4 e f ( 2 f  2 - 3p - 20e2)B - ~ f A ( A  2 + B2)] sech 2 c~x cos f x  

+[ -24~3f lA + 6~2(6f 2 - 3 p -  10~2)B 

- 3 f B ( A 2  + B2)] sech 2 c~x tanh c~x sin fix + . . . .  O, (33) 

where fj and f2 are the same expressions as in equations (23), and . . .  conceals 
(small) higher-order terms involving sech 4 ~x, sin 3 fx  and cos 3fx. Approximate 
solutions to the governing differential equation are obtained by setting the co- 
efficient of  cos f x  and sin fix to zero. There are two distinct sets. First, putting c~ - 0 
implies that the solution is periodic. Phase shift can then be ignored as being merely 
a translation in x and so B can be set to zero. We then have the periodic form 
picked out by the linear visco-elastic dispersion relation (18) at p =pC= 1, but 
extended into the nonlinear regime, 

A 2 = 2[f(f2 _ 3p) + 2]. (34) 
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We note the existence of real solutions for/~ = 1 and 0 < p < 1, describing subcrit- 
ical periodic post-buckled states. 

On the other hand, e ~ 0 solutions appear if all four terms of equation (33) are 

simultaneously zero. The first two, coefficients purely of  cos/3x and sin/3x, are free 
from nonlinearity, and are satisfied by the complex linear eigenvalues of equations 

(23) for which f~ =f2  = 0; the assumed localized form thus matches the linearized 
solution for small w as expected. The remaining two terms set the amplitude and 
phase of the localized buckle pattern, expressed in the solution for A and B of the 
two nonlinear equations, 

cd( 12/32 - 61o -- 20c~2)A - 4c(fl(2132 - 3p -- 20c~2)B - 3flA(A2 + B 2) = 0, 

-24~3/3A + 6~2(6/32 - 3p - 10~2)B - 3#B(A2 + B 2) = 0. (35) 

We note that if c( is taken to be small and 0t 2 ignored in comparison with /32, in 

conjunction with the linear eigenvalues of equations (23) this gives 

2~/3 
B ~- A, (36) 

2fl 2 - p  

and B is small in comparison with A. 
Solutions to (35) are readily obtained numerically. Initially B can be assumed 

zero and the first equation solved for A, the obtained results then substituted into 
the second equation which is solved for B, both results substituted into the first 
equation to provide an improved result for A, and so on. The linear eigenvalue 
solution (23) shows that this collapses on to the flat fundamental state A = B = 0 
at c~ = 0, /3 = 2 w3, p = 25/3/3 ~ 1.058, just above the lowest elastic critical load at 

I3 = 1, p C =  l; the latter thus admits only periodic buckling. However, for long 

to  

1 t ~ a ~  
- -  a o  = 0.1 

--_2 L ~ _ o .  

-1 

Figure 3 
Three instantaneous elastic responses. 
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structures, the load to end-shortening response for localized behaviour has a more 
severe stability characteristic than its periodic counterpart (HUNT et al., 1989), and 

localization becomes significant almost as soon as the post-buckling range is 
entered, despite the slightly higher critical load. 

3.2.1 Ini t ial  End-shor ten ing  

Under constant load conditions all subcritical post-buckling states are unstable; 

this can be demonstrated either by elastic analysis at t = 0 or evolution via the 
diffusion equations seen later. To stabilize the initial elastic phase we can constrain 

the end displacement. I f  the layer is assumed to be inextensional, the first-order 
nondimensional geometric end-shortening A due to the localized form (32) is, 

A = i (w') 2 dx 

= {[(0~ 2 q- f12)(A2 q- B 2) sech 2 ~x + 4~2B 2 sech 6 o~x 
cO 

--(o~2A 2 Jr- 4c~2B 2 + 2c~fiAB + f12B2) sech 4 o~x] 

+ [(cdA 2 - cdB 2 - 4c~flAB - f laA 2 +/~2B2) sech 2 ctx 

- (c~ 2A 2 _ 4ct 2B 2 _ _  6ctf lAB + 132B2) sech 4 c~x 

--4cx2B 2 sech 6 ~xx] cos 2fix 

+ 2[(~/?A 2 _ ~[3B 2 + ~ 2 A B  _ f iZAB ) sech 2 cox tanh ex 

+ 2 ~ B ( f i B  - aA)  sech 4 c~x tanh c~x] sin 2fix} dx. (37) 

This is readily integrable if terms in cos 2f ix  and sin 2/3x are ignored. These can be 
shown to vanish as c~--*0 by repeatedly integrating by parts (HUNT and WADEE, 
1991), and introduce small errors for small but non-zero values of ~; they are 

obtainable via so-called contour integrals (GRADSHTEYN and RYzmK, 1994), but 
would introduce extra complexities to the analysis that follows. In Section 3.5 we 
check end-shortening by integrating numerically in x, to give some account of  the 
errors introduced by this and other approximations. 

Evaluation of the remaining integrals in (37) then leaves, 

1 
A = ~ [5(3fi 2 + cr 2 -- 2 0 ~ f lAB  + (5fl 2 q- 7a2)B21. (38) 

To reduce the possibility of  error, these expressions have been produced using the 
algebraic manipulation package Mathematica (WOLFRAM, 1988). Several allowable 
elastic solutions for a range of initial % values are shown in Figure 3. We note the 
general trend that the greater the chosen value of 70, the greater the initial 
end-shortening, the more localized the elastic response, and the lower the initial 
load. 
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3.3 Time Evolution 

The significance of the localized form at the start of the evolutionary process is 
that, in contrast with the purely viscous foundation (BIOT, 1965), t ~ 0 solutions 
display more than just the growth of periodic amplitudes. Decay of localization into 
a final homogeneous state must also be considered. If  the layer is infinitely long, 
end-shortening of a finite-amplitude periodic buckle is similarly infinite, but end- 
shortening of a localized buckle is finite. For long systems under constant or 
slowly-varying applied end displacement, it is therefore useful to envisage decay of 
an initial localized state through a succession of localized states to the end result of 
a nearly-flat state, in the complete absence of periodicity. 

The procedure for following the evolution takes much the same course with 
equation (30) as the elastic analysis with equation (31). An assumed form for the 
deflected shape is substituted into the governing differential equation and co- 
efficients of the lower-order contributions, sech ~x cos/~x, etc., set to zero. Now 
however, because ~ and/~ are free to vary in time, terms in x sech ~x sin/~x and 
x sech ~x tanh ~x cos/~x start to appear, and to account successfully for these 
during evolution, similar forms are introduced into the assumed expression for w, 
giving the primitive form, 

w = A sech ~x cos/~x + B sech ~x tanh ~x sin/~x 

+ Cx sech ~x sin ~x + D x  sech ~x tanh ~x cos/~x. (39) 

The inclusion of terms in x implies that after differentiation with respect to time, terms 
in x 2 appear, which themselves should then be included in the initial form, and so 
on. The following formulation is limited to the four terms of (39), on the basis that 
such effects are increasingly of higher and higher order. The difference between the 
evolution with just A and B, and with A, B, C and D, is explored in Section 3.4. 

With A, B, C, D, ~,/~ and p as unknown variables in t, we then look to reduce 
the nonlinear PDE (30) to seven simultaneous first-order ODEs. Six of these equations 
result from setting specific coefficients to zero, as described below and seen in detail 
in the Appendix; the seventh comes from the constraint of constant end-shortening. 

3.3.1 Constant End-shortening 
1 S~ ~ (w') 2 dx. After As before, total end-shortening is given by the integral A = 

substituting the above expression for w, if terms in sin 2px and cos 2//x are ignored 
as before, all integrations can be carried out within Mathematica. This gives, 

= + ~-~)B - A C  

+ (40) 
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and differentiating with respect to t, 

~A ~A 0A 5A 0A �9 0 A i  + d + /5 =0 .  (41) 0 ~  ~ + V / ~  +~-~A +~-  ~ ~-~ ~-~ 

Coefficients 0A/3a etc. of this first-order equation in t, representing the constraint 
of constant end-shortening, are readily found and are given in the Appendix. 

3.3.2 Remaining Diffusion Equations 
Seven unknown variables and a single constraint equation suggest that six 

further equations in time should lead to a well-posed problem. If the required 
differentiations are performed on equation (39) and the result substituted into the 
fundamental partial differential equation (30), complicated expressions are to be 

expected. Now however, with the power of modern algebraic manipulation pack- 
ages, this task can be reduced to a simple algorithm, which with careful program- 
ming can be relied upon as being error-free. 

We can thus set the coefficients of sech ~x cos fix, sech ~x tanh ~x sin fix, 
sech 3 c~x cos fix, sech 3 c~x tanh ~x sin fix, x sech ~x sin fix, and x sech c~x tanh c~x 
cos fix, to zero to provide the extra six equations. All differentiations and collection 

of like terms can be performed within Mathematica, giving the coefficients found in 
the Appendix; they have also been output into C-format (WOLFRAM, 1988) and 
introduced directly into a program written in the computer language "C"  to form 
the evolutionary time plots seen later in Section 3.4. 

3.3.3 Initial Conditions 
At the start of the evolutionary process, initial conditions are set by the elastic 

phase, which for a particular end-shortening A furnishes initial values %, fl0, Po, Ao 
and Bo, along with Co = Do = 0 for the remaining two unknowns. With the full 
seven variables however, a significant difficulty is encountered at the start of the 
evolutionary process; each of the final two equations of the Appendix, relating to 
coefficients of x sech ax sin fix, and x sech ax tanh :~x cos fix, has a full set of zero 
coefficients at t = 0. We are therefore left with a double singularity at the s t a r t - -  
five equations expressing seven unknowns. Since this is only an initial (startup) 
problem, it can usefully be seen as a shortage of a couple of initial conditions; after 
the start the missing two equations cut in, and the scheme progresses smoothly in 
the full seven variables. 

We believe this problem to be an inevitable consequence of the visco-elasticity, 
with its two disassociated time scales. The "instantaneous" response described by 
the initial elastic phase would of course involve inertial effects not included here, 
but which in the evolutionary time scale would provide a set of initial velocities. It 
is apparently a limitation of the present formulation that all starting conditions 
cannot be completely specified; certain "initial transients" remain undefined. There 
is no obvious cure for the chosen constituent model of  the foundation. Only by 
slowing down the instantaneous response could we be sure of the validity of  
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Figure 4 
Five variable evolution with c% = 0.2, At = 0.0l. 

ignoring inertial effects. This could be achieved by replacing the Maxwell fluid by 
a three parameter fluid based on a Kelvin/Voigt solid in series with a dashpot, a 
promising development that is yet to be explored. 

3.4 Resu l t s  

The process for following the time evolutions is as follows. An initial value of 
~o is first chosen, from which end-shortening A and the initial (elastic) response are 
determined as prescribed above. The first-order equations of the Appendix are then 
integrated forward in time, using a forward-difference technique with a small 
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Seven variable evolution with % = 0.2, A = 0.01, ~o = 0, C0 = 0.18. 

increment ,  typica l ly  At = 0.01. F igure  4 shows a typical  response if C and  D are 

suppressed  and  only five equa t ions  used. F igure  5 shows the c ompa ra b l e  result  

when C and  D are a l lowed to vary  and  all seven equa t ions  are used. There  is no 

p r o b l e m  with  an  ini t ial  s ingular i ty  for  F igure  4, bu t  F igure  5 is subject  to two ext ra  

(assumed)  ini t ial  condi t ions  as descr ibed above  and  explored  fur ther  as follows. 

F igure  6 compares  two possible  sets o f  init ial  condi t ions  over  short-  and  

long-term, evolut ion,  the top  d i ag rams  being for  ~0 = 0, Co = 0.18, and  the b o t t o m  

two for C o -- D o = 0; the la t ter  co r responds  to the f ive-variable evolu t ion  o f  F igure  

4 for  the first t ime step alone,  fo l lowed by  seven-var iable  evolut ion.  Small  differ- 
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Seven variable evolution with different initial conditions: % = 0.2, At = 0.01. Top: /~0 = 0, C0 = 0.18. 

Bottom: Co = Do = 0. 

ences can be detected at the start, as might be expected, but the long-term 
evolutionary patterns are broadly similar; other starting conditions tested also led 
to similar initial perturbations, either to a greater or lesser extent, as those seen in 
Figure 6(c), but again the subsequent evolution is always broadly like that of  

Figure 5. All contrast sharply with Figure 4 however, which is clearly experiencing 

a greater degree of constraint over time. 
This point is reinforced in Figure 7, which compares long, and very long, term 

evolution for five and seven variable formulations. The five variable evolution, at 
the top, is seen to experience considerably greater disturbance than the seven 
variable evolution at the bottom; C and D are clearly having a smoothing effect. A 
time sequence of  successive sections through Figure 7(c) is also shown in Figure 8. 

It is interesting to observe qualitatively the sequence of  events for this nondi- 
mensionalized and hence quite general treatment. The first and most significant 
feature is that the load drops quickly to zero as the viscous part of the foundation 
absorbs its stored energy. In common with the elastic response (CHAMPNEYS and 

TOLAND, 1993), the lower the load the more localized the form, and so the drop 
in load is accompanied by an increase in ~. In the meantime, fi also tends to 
fall, indicating an increase in wavelength as the elastic bending energy in the layer 
is released. The combined effect is to evolve towards the single long wave 
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Five and seven variable comparison: % = 0.1. At =0.01. Top- C = D =0 for all time. Bottom: seven 

variable evolution with fi0 = 0, Co = 0.086. 

wi thout  ever approaching  a periodic form. We note again that  localization is by its 

very nature nonlinear,  and the analysis thus has a quite different flavour f rom the 
linear, periodic, contr ibutions o f  B~or (1965). 

At  the time limit o f  the evolut ionary process there is a tendency for the load p 

to take small negative values. We attr ibute this unlikely event to approximat ions  
inherent in the analysis, as discussed below. 

3.5 Approximations 

There are three different types of  approximat ion  in the above formulat ion that  

we can identify as likely to affect the accuracy of  the results over time. The first is 

the assumption of  a finite number  o f  modeforms  in equat ion (39). Just as terms 

described by A and B imply the presence o f  small contr ibutions C and D as time 

progresses, so do the latter imply yet smaller terms in x 2, which in turn imply terms 
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in x 3 and so on. The differences in the evolutions of  Figure 7 give some indication 

of  the significance of this effect. 
A second type of  approximation follows from the assumption that a is small. 

Among such effects we might include the higher-order terms in sech 4 ~x that are 
ignored after substitution into the governing partial differential equation, and terms 

in sin 2fix and cos 2fix in the integrand (37) of  the end-shortening. We see from 
Figures 4 and 5 that, even if the initial ~0 is small, ~ grows to a maximum value of 
about 0.4 before falling. Such higher-order effects are likely to be significant by this 

stage of the evolution. 
Finally there are approximations deriving from the inherent assumption that 

deflections, although moderately large, are not gross. Terms in sin 3fix and cos 3fix 
that are ignored after substitution into the governing equation are of this nature; 
unlike the above, they would affect results that are purely periodic. Other higher-or- 
der terms in (w') 4, (w') 6, etc. that nominally should appear in the full integrand for 
end-shortening (THOMPSON and HUNT, 1973), are likewise ignored; these are the 

same as the so-called "elastica" large-deflection terms (HUNT el a[., 1993), and to 
include them would therefore demand, for consistency, extensive modifications to 
the governing differential equations. 

Much of  the above could be addressed with the addition of extra modeforms to 
(39), although the spatially-chaotic nature of the related elastic system does suggest 
that the problems can never be overcome completely (HUNT and WADEE, 1991; 
CHAMPNEYS and TOLAND, 1993). A check on the approximations associated with 
the end-shortening is provided by the following reasoning. 

Although not included analytically, the effects of ignoring certain integrals in 
the evaluation of  the end-shortening (40) can at least be estimated. The actual 
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end-shortening of the numerical model can be evaluated by summing 
A = I2 ( 1 - x/1 - w'2) ~x over the range of x for which w is computationally finite; 

this can then be compared with the assumed A from equation (38). For the initial 
elastic phase, at % = 0.1 a difference of about 2% is found. Binomial expansion of 
the above summation, for which the first term is 5Z1 (w') 2 ~x, shows that the 
difference is almost entirely due to the higher-order terms in (w') 4, (w') 6. etc., which 
remain outside the scope of this formulation (see above); for this small value of 
the missing contribution from the contour integrals is thus negligible. In the time it 
takes for the load to fall to zero the disparity grows to about 12%; similar 
breakdown by binomial expansion attributes about half of this to the higher terms, 
and about half to the contour integrals, which we would expect to have a growing 
influence as ~ increases. 

It must be emphasized however that this can only be a rough guide to the effects 
of the missing terms. Their true significance will only be revealed when the 
complete, exact, response is known. 

4. Concluding Remarks 

We regard this paper mostly as a pilot study. Questions remain unanswered, for 
example the relative significance of the approximations discussed above. Its impor- 
tance however is that it provides a mechanism, possibly for the first time, for 
aperiodicity and localization to govern within the geological framework. There are 
a number of developments that are thus worthy of further examination. 

It may for example be asked just how a particular physical system will set about 
selecting its initial end-shortening. The answer lies in extra effects not included here. 
The first is axial compressibility, which is relatively simple to include, and gives to 
the load to end-shortening (effective stiffness) relation a characteristic '"C" shape, 
seen for example in the application of elastic localization theory to uplift buckling 
in pipelines (BLACKMORE and HUNT, 1996). A second effect is that of imperfec- 
tions, nontrivial to handle, which can round off subcritical bifurcations at loads 
only a fraction of the lowest classical critical (linear eigenvalue) result. The 
combined effect is for the elastic system to snap-buckle at some load determined by 
imperfection shape and magnitude, at an end-shortening initially comprising mainly 
axial compression. The subsequent sudden release in load signifies axial compres- 
sion giving way to geometric end-shortening of the kind considered here. Full 
treatment, including imperfection effects, is marked for future study. 

It is also perhaps lacking a certain realism to propose that any event of 
geological folding would occur instantly, as suggested by this model employing a 
Maxwell fluid for the bedding material. The model does emphasize, however, that 
two quite different time scales may be involved, one in which the response is 
predominately elastic and localization may develop, and one in which viscous 
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dispersion is the governing effect and it evolves. It may be more realistic to see both 
effects in the same timeframe, which should be achievable by replacing the Maxwell 
foundation by a three parameter fluid comprising a Kelvin/Voigt unit in series with 
a dashpot. The folding mechanism seen here--instantaneous localization followed 
by slow diffusion--would then given way to a family of possible evolutionary 
histories in a single t, with the particular pattern depending on the various 
parameters of the formulation. Again with the help of Mathematica it is hoped that 
this will prove to be a relatively straightforward operation. 
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Appendix 

Components o f  Mit = r where i t = [~, ~, p, ,;t, B, C, D] T 

constant end-shortening: 

A 2 f12A2 7B 2 ~292 flAC fl2BC C 2 
Mll 6 2~ 2 ~ 30- 6 a ~  + ~- ~3 6a2 

~2C2 ~2fi2C2 fi2AD fiBD 2flCD 
72e2 8~4 e3 3~2 3~3 

g2flCD 7~2D 2 fi2D2 ~2f12D2 

9~ 3 360~ a 2~ 4 24~ 4 , 

M12 fiA 2 2AB fiB 2 A C  _flBC z;213C 2 
~ -  3 ~- 3c~ a ~ 5 -  + 12a~ 

flAD BD CD g 2 C D  flD 2 ' ~z2flO 2 

+ ~ +  ~ 3~2+ 1--~-~2+3-~ 3+  36~3 , 

M13 = 0, 

~A 
M14 = ~-- + 

fl2A 2fiB tiC D ,  fl2D 

o~ 3 or 6 ~- ~ ' 

M15 
-2/~A 

3 

7or 32B C fl2C flD 
~- ~ -  + W + 2 + -~2~ z -4 3 ~ ' 
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M I 6  - 

- - A  f l2A 
M I 7  = ~ -  + 2e~- + 

lr I = 0 .  

c o e f f i c i e n t  o f  s ech  ~x  c o s  fix: 

-flA B. ]~2B C 7y2C g2fl2C ~D rc2flD 

- - - + - 5 + ~ + ~ + ~ 6 ~  ~ ~_~ 3cd + ~8~'  

~B ~C rc~C 7rc~D f l2D 7c2f12D 
30~ 30~ 2 ~- ] ~ 2 - 1 -  1 ~ - I - ~ f ~ 3 +  360:3 ' 

M z l  = 4~3A - 12ct/~2A + 6c~pA - 12cdf lB  + 4f13B - 6~pB 

+ 2 4 ~ / ~ C  - 1 2 e 2 D  + 12/3aD - 6pD, 

M22 = 2A - 12~ZI~A + 4f13A -- 6~pA -- 4 ~ 3 B  -[- 12c~fl2B 

-6~pB  + 120:~C - 1 2 f l z C  + 6 p C  + 24c~/~D, 

M23 = 3~2A --  3•2A - 6c~/3B + 6tiC - 6c~D, 

M24 = ~4 + 2p - 6 ~ / ~  2 + p4 + 3~2p - 3r 

M25 = - 4 ~ 3 / 3  + 4c~fl 3 - 6o~flp, 

M26 = 12~ 2fl _ 4/~3 + 6/3p, 

M27 = - 4 c ~  3 + 12c~/~ 2 - 6ep ,  

F 2 --  __0:41 ~- 6~2/~2 A - -  /~4 A - -  3e2pA + 3~2pA + 4c~3BB 

- 4 c ~ f l a B  + 6ct~pB - t2c~2/3C + 4 f l 3 C  - 6~pC + 4c~3D 

- 12~/~2D + 6c~pD. 

c o e f f i c i e n t  o f  s ech  e x  t a n h  c~x s i n / ~ x :  

M3~ = 12c~2/~A - -  4f13A q- 6~pA + 4~3B - 12c~flZB + 6c~pB 

- 12~z2C + 12f l2C - 6pC - 24~z/~D, 

M32 - 4~3A - 12c~/32A + 6~pA + 2B - 12~2/~B + 4/33B 

-613pB + 24c~flC - 1 2 ~ D  + 12fl~D - 6pD, 

M33 = 60:flA + 3~ZB - 3f12B - 6c~C - 6 f lD,  

M34 = 4~3f l  - -  4~f l  3 -t- 6~flp,  

M~s = ~4 + 2 ~  - 6~2/~ 2 + / ~ 4  + 3~2~ _ 3 / ~ p ,  

M36 = - -40:3  + 12~/~ 2 - 6~p,  

M~7 = - 12ez/3 + 4fl  3 - 6/~p, 

r3 = - 4 ~ 3 f l A  -k 4~/~3A - 6c~pA - ~ 4 B  4:- 6o:~f12B - ~4B 

-3cdpB + 3flZpB + 4 ~ 3 C  - 120:/~2C + 67pC + 12c~f lD  

-4fl~D + 6flpD. 
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coeff ic ient  o f  sech 3 ~x cos f x :  

M41 = - 8 0 c d A  + 2 4 e f 2 A  - 12c~pA + 2 4 0 c d f B  - 8 f 3 B  + 12fipB 

- 4 8 e f C  + 240e2D - 2 4 f 2 D  + 12pD, 

3A 3 3 A B  2 
M42 = 24c~2fA - - ~ -  + 80c~3B - 2 4 e f Z B  + 127pB - ~ - -  

- 2 4 e a c  - 4 8 e f D ,  

M43 = - 6 ~ 2 A  + 12o~fB + 12c~D, 

9 f A  2 3 f B  2 
M44 = -200~ 4 + 120~2fl 2 - 6cdp 2 2 ' 

M45 = 80~3f  - 8 e l  3 + 1 2 e f p  - 3flAB, 

M46 = -24c~2f ,  

M47 = 80~ 3 - 2 4 ~ f  2 -t- 12ep, 

r4 = 20e4A - 12~2fZA + 6cdpA - 8 0 e 3 f B  + 8 e f 3 B  - 12c~flpB 

+ 2 4 ~ 2 f C  - 80~3D + 2 4 e f 2 D  - 12c~pD. 

coeff ic ient  o f  sech 3 e x  t a n h  ~x sin f ix:  

Ms1 = - 7 2 c d f i A  - 240e3B + 72~fZB - 36c~pB + 72~2C + 144c~fD, 

M52 = 

M53 = 

M54 = 

M55 = 

M56 = 

M57 = 

r 5 

3A2B 3B 3 
- 2 4 ~ 3 A  + 7 2 7 2 f B  ~ 72~2D, 

2 2 

-18~2B, 

- 2 4 7 3 f l  - 3flAB, 

3 f A  2 9 f B  2 
--60~4 q- 36~2fl2 --  18eZP 2 2 ' 

24e  3, 

7 2 e 2 f ,  

24e3flA + 60~4B - 360~2flZB q- 18c~2pB - 24~3C - 72~2flD. 

coeff ic ient  o f  x sech c~x sin f ix:  

M61 = -4c~3flA q- 4 e f 3 A  - 6c~flpA - o~4B - -  2fiB + 6 c d f 2 B  

--fi4B - 3o~2pB + 3fZpB + 8c~3C --  2 4 ~ f 2 C  + 12c~pC 

+24c~2fD - 8 f 3 D  + 12flpD, 
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M62 = - ~ 4 A  - 2/~A + 6e2fi2A - fi4A - 3e2pA + 3fi2pA 

+ 4 7 3 f l B  - 4~f13B + 6c~flpB + 2C - 24~2f iC + 8/~3C 

- 12flpC + 8~3D - 247fi2D + 12~pD, 

M63 = 3~2C - 3fl2C + 6~flD, 

M64 : O, 

M65 : O, 

M66 = ~4 + 2 f  - 6~X2f 2 + f 4  + 3o&p - 3f12p, 

M67 = 4c~ 3f  _ 4c~fl 3 + 6c~fip, 

r6 = - 4c + 6  f2c - - 3 2pC + 3 f 2 p c  -4 3fD 

+ 4 ~ f 3 D  - 6~fpD. 

�9 coeff ic ients  o f  x sech ~ x  t a n h  ~ x  c o s  f x :  

M7~ = - ~ 4 A  - 2 fA  + 6~2fZA - f4A - 3~2pA + 3fi2pA 

+4c&flB - 4c~f3B + 6~flpB - 2 4 ~ 2 f C  + 8fi3C 

- 12fipC + 8~3D - 24c~f2D + 12c~pD, 

M w  = 4~3fA - 4~f13A + 67fpA + ~4B + 2fiB - 6~2fi2B 

+ f 4 B  + 3cdpB - 3f2pB - 8~3C + 24~/~2C - 12apC 

+ 2 D  - 2 4 ~ 2 f D  + 8f3D - 12fpD, 

MT~ = --6c~flC + 3c~2D - 3f12D, 

M74 = O, 

M75 = 

M76 = 

M77 : 

r 7 : 

O~ 

- -4~3f l  + 4~fl 3 -- 6c~fp, 

(X 4 "~ 2/3 - 6 ~ z f  2 + f 4  ~_ 3~2p _ 3f2p,  

4 ~ 3 f C  - -  4~fl3C + 6e fpC - c~4D + 6~2f 2D - find 

-3 bD + 3fl pD. 
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