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The Perturbation Method in Elastic Wave Scattering 

RU-SHAN W u  1 

Abstract--Methods of theoretical study in seismic wave scattering are reviewed with the emphasis 
on the perturbation method. Detailed analysis for weak scattering using Born approximation is given. 
For elastic random media, the mean square amplitudes of scattered waves are derived using a new 
approach by working directly in the spectrum domain. The conditions for the scalar wave approximation 
are obtained. The problem of sensitivity of fore- and backscattering to heterogeneities with different 
scales and properties (velocity or impedance) is discussed. 

Key words: Scattering, elastic wave, perturbation method, heterogeneity. 

1. Formulations of Elastic Wave Scattering Problems and the Solutions 

In a source-free linear heterogeneous elastic medium, the equat ion o f  mot ion  for 

displacement u is (see AKI and RICHARDS, 1980) 

Di~i = •ij , j  = (Ci jpqUp,q) , j  (l) 

where p is density, us and ~0 are the components  o f  the displacement vector and the 

stress tensor respectively, " ."  stands for a/&, " j "  for a/axj, and repeated index 

implies the summations  with respect to the index over the spatial dimensions, cop q 
are the components  o f  the tensor o f  elastic constant  e o f  the medium, which are 

functions o f  the position. 

In the case o f  isotropic heterogeneous media, (1) can be written as 

p(x)/ / ,  = (2(x)ujj),~ + [~(x)(u,  o + uj,,)]j (2) 

where 2 and p are the Lam6 constants  o f  the medium. All parameters  p, 2, # change 

with posit ion x. Heterogeneities in the medium can be treated as two different classes: 

cont inuous  and discontinuous.  Discont inuous heterogeneities are inclusions in the 

medium. Both  inside and outside the inclusions in the media  are homogeneous .  
Sharp discontinuities occur on the boundaries.  The scattering problem for a single 
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inclusion can be formulated as a boundary value problem (either a system of partial 
differential equations with boundary conditions or a system of boundary integral 
equations). The problem for a complex medium with multiple inclusions can be 
attacked by a multiple scattering theory based on the solution of the single inclusion 
scattering problem. Another approach is the perturbation method, which can be 
used for both discontinuous (weak heterogeneities) and continuous media and is 
more often used in seismology. We first discuss briefly the boundary matching 
approach and then concentrate on the perturbation method. 

2. Boundary Matching Approach 

Outside the inclusion, the medium is homogeneous. Therefore (2) becomes 

p0// ,  - (,~o + ~o) (Uj j ) , ,  - ~oU,,jj = 0. ( 3 )  

Equation (3) can be written as a vector equation after some simple tensor algebra, 

/9off - (20 + 2#o)V(V �9 u) + #or  x (V x u) = 0, (4) 

where "V", "V "' and "V x "  are the gradient, divergence and curl operators 
respectively, and Po, 2o and Po are the medium parameters outside the inclusion. The 
interior field Ul, satisfies the same equation as (4) except the parameters Po, 20 and 
#o are replaced by Pl, 21 and/a 1 of the inclusion. 

Taking divergence and curl of (4), we get a pair of equations, 

V'ii 2o+2#0V2(V .u)=O, 
Po 

(5 )  

V • ii - #0  V = ( V  x u)  = 0. 
Po 

Equations (5) show that within the homogeneous region of the medium, the 
compressional wave (P wave) and the shear wave (S wave) are decoupled. The first 
equation in (5) is the P wave equation, the second is the S wave equation. The 
corresponding P wave and S wave propagation speeds are a 0 = ,,f(20 + 2/~0)/p 0 and 
to = ~xf~o/Po, respectively. 

The inclusion scattering problem can be attacked by solving equation (4) for 
both the exterior and interior fields and matching the boundary conditions (conti- 
nuity of displacement and normal stresses) at the boundary. Equivalently, we can 
combine equations (5) and the boundary conditions to formulate a system of 
boundary integral equations. This formulation for discontinuously heterogeneous 
media, such as in the inclusion scattering problem, and curved interface scattering 
problem, etc., is widely used in the field of engineering seismology and seismic 
exploration. However, exact solutions exist only for the case of a uniform sphere or 
a uniform circular cylinder in an infinite homogeneous medium (MORSE and 
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FESHBACH, 1953; PAO and Mow, 1973). These "exact" solutions are in the form of 
infinite series. Only for long wavelengths these series can be calculated with a few 
terms. When the wavelength is much shorter than the radius of the sphere or 
cylinder, the series converge very slowly. The other closed form solution is for a 
semi-infinite crack, derived by using the functional theoretical technique (the 
Wiener-Hopf technique) (ACHENBACH, 1973). Therefore, for most cases of complex 
objects we have to rely on the numerical methods. The boundary-integral-equation 
approach is very suitable for applying different numerical techniques. 

3. Perturbation Me thod  

In the perturbation method the heterogeneous medium is decomposed into a 
reference medium (the background medium) and the perturbations. The scattering 
problem can be therefore transferred into a radiation problem by considering the 
response of the perturbations to the incident wave as the excitation of secondary 
sources. MILES (1980) formulated the problem into a volume integral equation and 
derived the explicit expressions in the case of Rayleigh scattering (for small 
heterogeneities) using Born approximations. HERRERA and MAL (1965) considered 
the problem of interface discontinuity of the heterogeneities and applied the 
method to the scattering of thin inclusions with strong contrast (dikes, lenses, cracks, 
etc.). This approach was also used by HADDON and CLEARY (1974) for the P-wave 
scattering near the mantle-core boundary and by HUDSON for the scattering by 
granular media (1968) and for the scattered waves in the coda of P (1977). HUDSON 
(1977) also gave a unified expression of the first-order approximation for several 
scattering problems (weak heterogeneities, thin inclusions and slightly rough sur- 
face). GUBERNATIS et al. (1977a) also formulated the scattering problem of a 
homogeneous inclusion into an integral equation and obtained solutions for the case 
of Born approximation in the whole frequency range. SATO (1984), WU and AKI 
(1985a,b) applied this approach to the coda generation and the seismogram envelope 
problem. Wu and AKI (1985a) expressed the Rayleigh scattering in terms of 
equivalent point sources with different forces and force moments, and decomposed 
the general elastic wave scattering into "velocity type" and "impedance type" and 
pointed out their different scattering characteristics. SATO (1984) expressed the 
results of Born approximation in terms of density, P velocity and S velocity. SATO 
(1984), WU and AKI (1985b) have derived also the scattering coefficients for elastic 
random media with different types of correlation function. In the following, we give 
a brief derivation of the basic formulas and then present the main results and their 
geophysical applications. 

In this paper we mainly deal with the large-angle scattering problem. For 
small-angle scattering (forward scattering) problem, such as the transmission 
fluctuation problem, the scalar wave approximation can be applied. The perturbation 
method for that case will be treated in another paper of this issue (Wu and FLATTI~, 
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1989). Also we restrict ourself in this paper to the problem of volume heterogeneities 
and leave the boundary perturbation method, which is used in the core-mantle- 
boundary scattering problem, to the other paper in this issue (BATAILLE e t  al . ,  1989). 

Suppose in equations (1) or (2) the medium parameters can be expressed as 

p(x) = Po + 6p(x) 

eCx) = c ~ + 6cCx) (6) 

o r  

2(x) = k0 + a2(x), ~(x) = ~o + @(x),  

where Po, e ~ (or  20 and ~o in the case of  isotropic medium) are the parameters of  the 
reference medium, which is either a homogeneous or a slowly varying continuous 
medium, and @, 6e or 62 and @ are the deviations (perturbations) from their 
reference values. We decompose the total field as 

u(x, t) = u~ t) + U(x,  t) (7) 

where u ~ is the primary field, i.e., the field when there is no perturbation in the 

reference medium, and U is the scattered field. Substituting (6) and (7) into (1) yields 

p0U~ o -- (Cijpq Up,q),j = Qi, 
(8) 

Qi  = - { 6pi i i  - (6CupqUp,q).j } 

where Q(x, t) are the equivalent body forces due to the interaction of  the heterogenei- 
ties with the wave field. 

Introducing the Green's function for the reference medium G~ t lx', r)  and 
applying the representation theory to (8), we can express the scattered field as 

(HERRERA and MAL, 1965) 

= fvG~ , aj d3x' + fs (G~ - a% , uj)nk d2x" + fs, G~ * nlk[6CjkpqUp,q] d2x' (9) 

where " * "  stands for the temporal convolutions, V is the volume containing 
heterogeneities, S is its boundary surface, x' is the position on the surface, n is the 
normal on the surface towards outside, u and z are the displacement and stress on 
the surface, a ~ is the stress produced on the surface due to G~ $1 is the surface across 
which exists a jump discontinuity of the normal s t r e s s  nlk[6r where n I is the 
normal of  S~ and [ ] stands for the jump of a quantity across the surface. Formula 
(9) is a general equation valid for both continuous and discontinuous heterogeneities 
and for a general reference medium. 

If  the reference medium is unbounded, we can set S to be the surface on which 
both G and u are zero. We can further combine S and SI into a closed surface system 
so that we can apply the divergence theory to it 

G 0. ne[fic~kpqUp,q] [(~r },k d3x ' .  ( 1 0 )  
+ s  I 
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In the case of weak scattering, U < u ~ so that 

[(~CjkpqUp,q] ,~ [3Cjkpq]•p, q = - -  3CjkpqUp, q . (11) 

Substituting (11), (10) and Qj (8) into (9), we obtain 

u, = f v  { - 6p~,j �9 G ~ - 6cj~,,qU~.q �9 a~ } a3,, ". (t2) 

Because the cancellations of the term in volume integration and the term in surface 
integration in (9), it concludes with a simple equation (12) which does not have the 
term involving with spatial derivatives of he. Therefore, equation (12) is valid for 
both continuous and discontinuous heterogeneities provided the scattering is weak. 
This point is first illustrated by HUDSON (1968). 

In the case of isotropic media, (12) becomes 

= ~ { -6p i6G ~ - [aj~ 6.~,,qq + 6#(.j,~ + uk,A * a~ } d3x'. (13) u, 
Jv 

4. Born Approximation for Weak Scattering 

Now let us concentrate on the case of isotropic media. When the scattered field 
U is weak compared to the primary field u ~ we can approximate the total field u in 
(12) or (13) by the primary field u ~ This is the Born approximation. Equation (13) 
thus becomes an explicit formula for the scattered field 

V,(x) = - f v  6P(X')//~ (x') * 6,~(x, x') dV(x') 

f V  ," 0 r - {6:~6~(x')[V-u~ +61,(x)[ . j ,~(x)  + u ~  ') 

= fv [Fj (x') * 6u(x , x') + Mjk(x' ) * 60.~(x, x')] dV(x'), (14) 

where Fj(x') is the equivalent single force and Mjk(x') is the moment tensor of the 
equivalent force couples at point x' of the scatterer. As no confusion can happen, 
we drop the ,o, for the Green's function. The Born approximation is valid under the 
condition 

6P k R  < l, (15) 
Po 

where k is wavenumber of the wave field, R is size of the heterogeneity volume 
(such as the diameter of a sphere), and 6p/po is the average parameter perturbation 
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of the heterogeneities, 

6p (~SP)rrn s (6Z)rms -{- 2(6/'t)rms 
+ , (16) 

P0 P0 2o + 2#0 

where ( )rms stands for the root mean square value. Roughly speaking, (15) means 
that the total "phase fluctuation" caused by scattering must be less then one radian. 
This restriction can be satisfied for two cases: (1) when the size of the heterogeneity 
volume is very small compared with the wavelengths, i.e., kR ~ 1. This is the case 
of Rayleigh scattering. In this case, the heterogeneities can be strong, namely 6p/po 
is not necessarily small. (2) When the size of the heterogeneity volume is not small, 
but the heterogeneities are weak such that (15) is satisfied. In optics it is called the 
Rayleigh-Gans scattering. 

Elastic Wave Rayleigh Scattering 

When the size of the scatterer is much smaller than the wavelength, phase 
differences between the scattered far fields from the different parts of the scatterer 
can be neglected. The whole heterogeneous body can be considered as a point 
scatterer. The right-hand side of (14) can be integrated out. Therefore (14) becomes 

Ui (x) = F/( x ~ * G o ( x, x ~ + My k (x ~ * G/y,k (x, x~ ( I 7) 

where x ~ is the position of the center of the scatterer and 

F+ (x ~ = - 6p v/i ~ (x~ 

Mjk(x ~ = -6+k6~VIV u~176 - 6-~V[u~ ~ + u~176 (18) 

where V is the volume of the scatterer, 6p, 62 and 6/~ are the average values of the 
corresponding perturbations. 

If the incident wave is a plane harmonic P-wave in xl direction, i.e., 

o = 6s I exp[ - ioo(t - xl/~o], uj 

where a0 is the P-wave speed in the background medium, then the equivalent single 
force is (assuming x ~ is at the origin) 

F = ~ o 2 6 p V e  i,ot (19) 

where # is unit vector in xl direction and the equivalent force moment tensor is 

m m 

I 
62+26~t 0 O1 

M = - i  c~ V 0 6~ 0 e-"% 
~o o o ~ J  

(20) 

Substituting (19), (20) and the far field expressions for G~/and Gij.k (see AKI and 
R~CHARDS, 1980, chapter 4) into (17), we have 
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m _ _  _ _  

092V1 -ir r/~~ _ 6,)o __2(~[2 } 

092V I -i{~176 (6il--,i,l)--2[~~ (6ii,1--,i,2)} , (21) 
+ 4 - ~ o  2 r e  (Poo LCr 

where r = ]x - x ~ and ~,. is direction cosine of the scattering directions with respect 
to the i-th axis, which is the i-th component of the unit vector ~. 

If  we take spherical coordinates having their polar axis in the incident direction 
x~ (i.e, in the direction of particle motion) (Figure la), we can write the scattered 
P=wave e e P s U~ and S-wave Ume r as  

4~ ~0 2 (p0 cos 0 
6-~ 26# } !  --i09(t--r/~o) (22) 

20 + 2#0 2o-+-2#o c~ 0 e 

and 

r o16# }e i~ 
Umer = 4~ ~ Lflo2_J~po sin o + sin 20 , 

LOCoJ #o r 
(23) 

where the subscript r stands for the r-component, and "mer" stands for the 
meridian component. Because of the symmetry of  the problem with respect to the 
polar axis, there is no latitudinal component of the S-wave, i.e., PUL~ts _- 0. 

Figure 1 give__s the equivalent forces and the scattered P and S waves produced 
by 6p, 62 and 6# in the case of plane P-wave incidence. We see that 6p V generates 
a point single force, 62V behaves like a point negative explosion (or contraction), 
and 6pV behaves like a point crack (collapse). 

Similarly for a plane S-wave incident in Xl-direction and having its particle 
motion in x2-direction, 

o = 6j2 exp[i09(t - xl/fl0)], (24) uy 

the equivalent forces and scattered field are 

F = 33oj 26p Ve - io,, 

CO 
M = - i ~ o  V 0 e -i~ 

0 
(25) 

where 33 is the unit director in the x2-direction, and 

=092~v f~i~21e_~, rj~o,_(~ni~a,2) l } 092 aSV 
Ui 41rp0 [ o~ 2 r flo -r ei~ "/~o) + fl~ 4~p----oo 

~--27i7,72 1 e_,O~( , r/~o)+ (27;V,Y2-- 6i, Y2-- 3i2~)1) 1 e_eO~( , r/Bo)} (26) 
•  ~3 r ~3 r " 
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If we take the direction of particle motion of the incident field (y-axis) as the polar 
axis of the spherical coordinates (Figure 2a), the scattered P-wave s u f  and the 
scattered S-wave s s s s Ume r and U~at can be written as 

- -  - e i ~ ( , -  r/~o), ( 2 7 )  
4 =  ~ (Po ~00 # o  r 

Um~r -- 4~ C~O 2 (00 sin 0 + --#o cos 20 sin ~b r e -i~(t- r/~o), (28) 

and 

- - -  cos 0 cos e -~(' - ~/~o) (29) 
Ll 0A 

Figure__2 shows the equivalent forces and the scattered fields by 6p and 6#. Note 
that 62 does not have any effect on S-wave scattering as expected. The density 
perturbation 6p V acts still like a single force in the direction of particle motion. The 
scattered waves due to 6/~V are equivalent to the radiation field of  a point double 
force couple, which is equivalent to a point dislocation (shear motion along a 
crack). In Figure 2, we decompose the scattered S-wave due to 6p into two parts, 

each of which corresponds to a pattern due to a single couple. 
From Figures 1, 2 and the related formulas we can see several important 

features of elastic wave scattering. 
(1) The amplitudes of the scattered waves have a frequency dependence of r 2, so 

the scattered power is proportional to o~ 4. This is the characteristic of  Rayleigh 
scattering, which is the same for acoustic wave, electromagnetic wave and 
elastic wave scattering. 

(2) When # = 0, (22) becomes the same as for acoustic wave scattering. In general, 
the scattering patterns for elastic waves are much more complicated than that 

for acoustic waves. 
(3) From Figures 1 and 2 we see that the cross-coupled scattered waves (P-S 

coupling, Sme~ - S~at depolarization coupling) are always apart from the incident 
direction. Their maxima are in the directions perpendicular to the incident 
direction. Therefore for a pure forward scattering problem, the cross-coupled 
waves can be neglected. 

(4) From (22) we see that in the forward direction, cos 0 = 1, the combination of 
the parameter perturbations inside the bracelets becomes 

6p 62 +26# 26~ 

P0 20 + 2p0 % 

Therefore in the forward direction, the scattering strength is only proportional 
to the velocity perturbations. On the other hand, in the backward direction, 
cos 0 = 1, the combination of the parameter perturbations becomes 

6p 62 + 26# 2~Zp 
Po 2o + 2po Zpo ' 
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(a) Spherical coordinate system for P-wave incidence, and (b) the scattering patterns for different 
equivalent forces. 
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where Zp is the P-wave impedance. Therefore, the strength of the back- 
scattered waves is only dependent on the impedance perturbations. We see 
that the forescattering and the backscattering reveal quite different characteris- 
tics of  the medium, although the parameter dependences in both cases become 
simpler. 

The same conclusion can be drawn for the common-mode S-S scattering 
(28). In the forward direction (0 = ~b = 90 ~ the strength is dependent only on 
the S-wave velocity perturbations, while in the backward direction (0 = 90 ~ 
~b = -90~ only on the S-wave impedance perturbations. 

(5) Comparing the strengths of  the scattered P waves (22) and (27) and S waves 
(23, 28 and 29), we see that the scattering S waves are [s0/ri0] times stronger 
than the scattered P waves for similar perturbations. That is because the 
S-wave impedance of the medium is always smaller than the P-wave 
impedance. Therefore, after propagating and scattering for a long distance, 
the scattered waves will be dominated by S-waves that agree with the observa- 
tions on coda waves. 

If we choose 6p/po, 6ot/e o and 6fl/flo as free parameters, the scattering patterns 
(22), (23) and (27)-(29)  can be also expressed as 

m 

{~PP ( fl~ ) ~ + 4  fl~ sine0 ~o} eE~e= Po c ~  --2Cr cr ' 

{  (-,+2  cosO)sinO+4 ~ 
E mer = ~0 S0 ~XO flO ' 

{6p( sin4)']_2flo~flsin2Osinc~} SEe= P0 c o s 0 - f l ~  
So ] So flo ' 

E m e  r = - -  (sin 0 + cos 20 sin q~) + 2 cos 20 sin q~ , 

and 

(3o) 

_ _  m 

,x  ( ,+27o)CO 0CO   } Ela t = 
( \ P o  

The scattering patterns can be written also in terms of velocity and impedence 
perturbations (see W u  and AKI, 1985a). 

Figure 2 
(a) Spherical coordinate system for S-wave incidence, and (b) the scattering patterns for different 

equivalent forces. 
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Elastic Wave Rayleigh-Gans Scattering 

When the wavelength is comparable to or smaller than the size of  the inclusion, 
the phase differences of the incident field at different parts of the inclusion and of  
the scattered field from different parts of  the inclusions can no longer be ignored. 

The equivalent source of  scattering can no longer be regarded as a point source. 
Nevertheless, if the resulted scattered field is still weaker than the incident field, the 
Born approximation can still be applied to the problem. This is the case of  

Rayleigh-Gans scattering. 
From (14) we see that the scattered field is a superposition of  the scattered field 

by all the volume elements of the heterogeneity, each of which is of Rayleigh 

scattering type. 
We can further simplify (14) by taking the far-field Fraunhofer approximation 

to G•(x, x'), i.e., (henceforth we use the frequency-domain expression and drop the 
factor e-i~ 

Gu(x, x') = G,~.(x, x') + G~(x,  x') 

1 1 
_ _  A A ~ t  ^ ^ f l  / 

47Zpo~ 2 oiojg (x, x') + ~ (6i; - oio;)g (x, x ) (31) 

where G ~ and G s are P-wave part and S-wave part of G respectively, and 

where 

1 1 
= _ ei(~O/vo)r ,~ ei<~/~o)t,o- 6.<x'- xO)] = g~(x, X~ g~ x') r 

1 
g V ( x ,  X 0) = ~ ei(Co/v~176 

(32) 

~OV(x ') = e -i(,~/vo)~-(x" - xO) 

r =[x -x ' l ,  r~ Ix-x~ 

and x ~ is the center of the inclusion, 6 = ( x -  x~ ~ is the unit vector in the 
outgoing direction of the scattered wave (scattering direction). 

Substituting (30) and (31) into (14), we obtain 

U,(x) = u f ( x )  + Uf(x), 

4Zcpo~ 2 g=(x, x ~ oio j x ) -- z --~ o~Myk(x ( x )  dV(x') 

US (x) - &zlofl~o gP(x, x~ fv (6O --6i6j){Fj(x') -- i f16kMjk(X') } ~ ( x ' )  dV(x')'( 33) 

In this section we will use a more general form of the incident wave (primary 
field). If the source is far from the inclusion, the primary field at x' can be 
approximated locally by a plane wave 

u ~ (x') = Ai~(x ' )  = A i exp[ik in. (x'  -- x ~ - ir~t] (34) 
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where A = A ~ is the amplitude of  the incident wave, i is a unit vector, k i" is the 

wave number vector of  the incident wave, k i" = k " i  = (m/Vo)i, where v0 is P-wave or 

S-wave velocity of  the reference medium depending on the wave type of the incident 
wave, and i is the unit vector in the incident direction. Thus we can derive Fj and 

Mjk (see equation 18) as follows 

Fj (x')  = 6p(x')m ZAi ~(x'),  
(35) 

Mjk(x') = - i{62(x')6jk(A - k in) 4- 6#(x')(Ayk~" + Akk 7 )  }O(x'). 

Therefore, f rom (33) we have (expressing in vector form) 

4npoC~ ~ g~ 6 ( 6 "  A ) m 2 6 p ( x ; )  - -  ~ 6 2 ( x ' ) ( A  �9 k i") 
0~ o 

- 2 m 6#(x')(6 �9 A)(6" ki")~e i(k"- *, ~) ("-  .o) dV(x')  (36) 
O~ 0 J 

U~(x) - *~pooo" ~ g~ [A - a(a.  A)lm~p(x ') - ~ 6~,(x')I(a �9 k")(A - a(a.  A)) 

+ (6" A)(k ~ - 6(6" k~"))] }e i(k" - k~a).(x'-xO) dV(x')  

where k~ = 

Writing 

PU P = 

m/a 0 and ka = re~rio. 
explicitly in the forms of  P-wave and S-wave incidence, (36) becomes 

g~ j v 6(x')A(x') (6.  i) 6p(X')po 2o62(x')+ 2#0 - (6. i) 2 2o + ~#oJ 

.ei(,~i- k~6)-(." - .o) dV(x')  

= ~ [~(x') - 6(x')(~. ,)]A(x ) ~ (6. i) ~ ~ j  

-e ~(k~ ~ - k. 6),(~' - ~o) d V ( x ' )  ( 3 7) 

Po L~o_l #o .I 
.e~(k~- k~ ~).(." - ~o) dV(x') 

= ~ A(x') (~ a(a ~)) ~p(~') [(a. ~)[~- a(a. ~11 
Po 

+ ( 6 -  ~ ) [ i  - -  6(6" i)] 6 p ( x ' ) ~  e~(k~_ ,p6) . ( . ' -  .o) #V(x'). 
#o ) 

If  the source is far enough from the inclusions such that A(x')  and i(x')  are 
constant over the volume of the inclusions, then (37) becomes: 
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eU, = A_~k~2g~6~(6.1) 6p(k) 62(k) (6.1)2 26#(k,) 
,~lr ( P0 20 + 2#0 20 + 2#oJ 

( Po L~oJ 20 + 2#03 

s u e =  g~6 (6"f i )6P(k)-~f l~ h)(6"i ) 25#(k)~ (38) 
Po L~oJ #o ) 

Ak2~ ~f A 6p(k) [ (6 .1 ) [ i -  6(6. ~)] s u s = ~ - g  ~ [ a - 6 ( 6 .  a)] P0 - 

+ (~. a)[i- ~(8. i)]] a#(~)~ 
/Zo ) 

where tip(K), hA(K) and 5#(K) are the complex 3-D spatial spectra of 8p(x), 82(x) 
and 5#(x), respectively, and are defined as 

cO 

5p(K) = f f f  Sp(x)e '~x d3x (39) 

- - 0 0  

etc. In (38), k = k i ' -  k so, where k sc is the wave number of the scattered waves, 
which is k~ b or k B 6 depending on the wave type of the scattered waves. 

Note that the vector M = ~ - 6(6 �9 i) is perpendicular to 6 and lies in the plane 
determined by 6 and ~. We can define a unit vector in this direction (the meridian 
direction) 

M 
= ~ = [ i  - 6 (6"  ~.)]/ll - 6 ( 5 .  ~-)1 (40)  

and another unit vector perpendicular to the (6, fi) plane (the latitudinal direction) 

| = ( ~  • 6), (41)  

which is also perpendicular to the outgoing direction ,b. Therefore, 6, | and 
\ 

compose a right-hand coordinate system. We can decompose the scattered wave 
into two orthogonal components: a meridian component along ~ (or in-plane 
component) and a latitudinal component along | (or off-plane component). From 
(38) we see that vUS has only the meridian component. Whereas sus has both 
meridian and latitudinal components, 

su s= Ak} t [ ~ k ~  -i)[1 (b-~ a)215#(k) l+ | (6"  ~)(|'i)5#(~')~. (42) 

Comparing (38) with the corresponding results of Rayleigh scattering (21 and 
26) we see that the scatter___iing formulas for__the two cases have the same form except 
the total perturbation 6pV, 62V and 6#V are replaced by their corresponding 
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spectral densities at the spatial frequency equal to the exchange wave number of the 
scattering process, k = k i n -  k so. In the case of Rayleigh scattering, since the 

wavelength is much longer than the size of the inclusion, the scattered waves can 
only detect the d.c. component of the heterogeneity; while in the case of Rayleigh- 
Gans scattering, the scattered waves respond to different spectral components of the 
heterogeneity depending on the scattering angles. 

Composition Factor and Distribution Factor 

If  the perturbations are formed by a nonuniform distribution of heterogeneities 
with the same composition, then (38) can be further simplified. We introduce a 
parameter distribution function D(x) such that 

t 

6p(x) = 6poD(x), 

and 

62(x)=62oD(x ), 
(43) 

6~t(x) = 6#oD(x), 

where 6po, 620 and 6/~o are the parameter perturbations at the center of heterogene- 
ity and satisfy 

- 

6po D(x) dV(x) = 6pV, etc. (44) 

The scattered field in (38) then can be written generally as 

U = C(6po, 620, 6#0)D(k). (45) 

Here we call C the composition factor, which is the scattered field of elastic wave 
Rayleigh scattering by a unit volume of inclusion with perturbation 6po, 62o and 
6/~o, and D, the distribution factor (or the volume factor). We see from (38) that PC p, 
pcs, sCp and scs have the same expressions as in (38) for U's except 6p(k), 62(~,) 
and 6#(k) are replaced by 6po, 620 and 6#0. The distribution factor (which is also 
called the "form factor" or "shape factor", etc. for uniform inclusions) 

D(k) = I D(x)e'~x d3x = D(K = k) (46) 
dv 

where D(K) is 3-D spectrum of D(x) and k = k in - k ~c. If  the perturbation distribu- 
tion is spherically symmetric, then 

2n 
D(K) - K 41r D1 (K) (47) 

where D1 (K) is the corresponding 1-D spectrum and K = IKI. 
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In the following, we list the distribution factors (i.e., the complex spectra) of  
some simple forms of distribution: 
(1) For a uniform sphere of radius a, 

1 Fsin(Ka) ] 
D(K) = 4rca 3 ~ L Ka cos(Ka) . (48) 

(2) For a Gaussian spherical heterogeneity, 

D(r) = exp( - r2/a2), 

D(K) = nw/-~a 3 exp[ - (Ka) 2/4]. (49) 

(3) For a uniform cylinder of radius a, height 2b (in z-direction), 

D(K) = 4naZb J' (Kxa) sin(Kzb) 
Kxa Kzb ' (50) 

where Kz is the vertical component of K and K~ is the horizontal component of 
K. 

(4) For a Gaussian cylindrical heterogeneity, 

l 
x 2 

D(x, z) = exp b2 a-~ ' (51) 

D(K) = v / ~ a 2 b  exp I (Kxa)24(Kzb)2.1. 
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(5) For an ellipsoid of axes al, a 2 and a 3 aligned along the x, y and z directions, 

1 rsin(IKa[) cos(lKa[)l 
D(K) = 4rta]a2a3 ~a[~ L Igal ~ (52) 

where IK.I 2 2 2 2 /t,.-2 ~ 2-~ 1 / 2  = (Kxa]  + K y a 2  +, , . z , . , 3 j  �9 

The value of D(~,) depends on ~, = k i" - k% which is a function of the scattering 
angle. In the case of spherically symmetric heterogeneities, 

= ]kl = 2k sin O, for common-type scattering 

= x / k  2 + k2e - 2k ,  kt~ cos 0, for type-converting scattering, (53) 

where 0 is the scattering angle (the angle between the incident direction and the 
scattering direction), ks and k~ are the P-wave number and S-wave number, 
respectively. 

Figures 3 and 4 show the distribution factors of a uniform sphere as functions 
of scattering angles. Figure 3 shows the case of common-type scattering. In the 
forward direction, 0 = 0, D(0) is the d.c. component of the inclusions and therefore 
is always the maximum. This is because all the scattered waves from different 
volume elements are always in-phase along the forward direction. For high frequen- 
cies, i.e., when k~ >> 1, the main scattered energy is concentrated in the forward 
lobe and therefore the scattering characteristics are controlled by the velocity 
perturbations. 
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Figure 4 shows the D factors of type-converting scattering. In this case, 
however, ~ does not go to zero in the forward direction (0 = 0), but approaches a 
limited value. Therefore the D value oscillates in the forward direction and is not 
always the maximum. 

The resultant scattering patterns for a Rayleigh-Gans scattering are the product 
of a Rayleigh scattering pattern and a D factor pattern. 

5. Elastic Wave Scattering by a Random Medium 

For very complex media, the deterministic approach is either intractable or 
impractical. The stochastic approach plays an important role in that case. If  the 
rang-scale ratio R/a >> 1, where a is the average scale length of the heterogeneities 
and R is the extension of the heterogeneous medium (or the propagation range), the 
case is more suitable for the stochastic approach. 

Suppose in equation (6) 6e or 6p, 62, and 6p are zero mean Gaussian random 
variables. Then the heterogeneous medium becomes a random medium. A random 
medium is a large family of innumerable heterogeneous media. Each member of the 
family, with a certain probability of existence, differs from the others in the detailed 
structure, but has some common statistical properties of the family, such as the 
average size and strength of the heterogeneities, etc. For a specific number of the 
random medium, called a realization, we can formally express the scattered far-field 
using the Born approximation as (37), (38) or (45). If we know the detailed spatial 
distribution of 6p(x'), 62(x') and 6#(x'), we can calculate the scattered field. Often 
it is impossible to know these distributions and more often they are just what we are 
trying to infer from the measured scattered waves. The random medium approach 
deals with the statistical quantities of the medium and the wave field. One of the 
useful quantities is the mean-square amplitude of the scattered waves, which is 
proportional to the average scattered energy. 

Mean-Square Amplitudes of Scattered Waves 

If  6p, 62 and 6/t are not totally correlated, ([U[ 2) depends generally on the auto- 
and cross-power spectra of the perturbations. For instance, for the P-P scattering, 
taking ensemble average of the square amplitude of (38) results in 

AZk 4 V r,~ 
([eUV[ 2) - ( 4 ~ r )  2 (to" i)2Wp(k) + W~.(k) + 4(6. i)4W~,(k) -- (6.  i) Wo~.(k) 

- 2(6. i)3 Wou(k) + 2(6. i)2 W~u(k)} (54) 

where ( ) stands for the ensemble average, Wo, Wa and W, are the auto power- 
spectral densities and Wp~, Wpu and W~ are the cross-power spectral densities of 
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the random functions defined as 

1 (6p*(K)  
W (K) = \ 

, 1 / 62"(K) 

1 (6p*(K)  
wp (I ) = \ po 

Po / 

52(K) \ 

32(K) \ 

20 + 2po/  

(55) 

etc., where * denotes the complex conjugate and V is the volume of the random 
medium and k = k i" - k so. 

If the size of the random medium is much larger than the scale of the 
heterogeneities, and the heterogeneities have a statistically uniform distribution, we 
can consider approximately the random medium as a stationary (or uniform) 
random field, so a correlation function may be defined for the medium. It is known 
that the power spectrum of a random medium is the Fourier transform of its 
correlation function, therefore we have the relation 

o o  

Wp(K)=ff;f~P(O)3P(~)~eiK~d3~=I(~o)2) Po P~o / 

- ~ ( 5 6 )  
O(3 

P(K) = [ [ t N(r162 d3r 

- - c / 3  

where N(~) is the normalized correlation function, ~ is the spatial lag vector and 
P(K) is the normalized power spectrum of the density perturbations. For the 
cross-spectra we have 

c o  

. Z ~ - ~ o / ) e  d3r ( 5 7 )  

If the random medium is also statistically isotropic, the 1-D power spectrum P~ (K) 
is related with its 3-D power spectrum P(K) by the relation (47). 

In the following we list several most widely used correlation functions and their 
power spectra (all for statistically isotropic and uniform random media) 
(1) Gaussian Correlations function, 

N(r) = exp( - re/a 2) 

P, (K) = ~ a  exp( - K2a 2/4) (58) 

P(K) = ( ~ a )  3 exp( - K2a2/4). 
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(2) Exponential Correlation function, 

N(r) = exp(-[r] /a)  

2a 
PI (K) 1 + K2a 2 

P(K) = 87~ 
a 3 

(1 + K2a2) 2" 

(3) Von Kfirmfin Correlation function, 

, ' 
N(r) = 2v 'F(v) 

P, (K) = 2w/~ F(v + �89 a 
F(v) (1 +K2a2) ~+'/2' 

(59) 

(6O) 

P(K) = 8gx/~ F(v + I) a3 
F(v) (1 + K2a2) v +3/2' 

) is the gamma function, and Kv( ) is the modified Bessel function 

for P-P scattering, and 

where F( 
of order v. When v = 1/2, the correlation function is equivalent to the exponen- 
tial correlation function, and v = 1/3, the Kolmogorov's turbulence. 

If  6p, 62 and 6kt are from heterogeneities with the same composition, i.e., these 
perturbations are totally correlated, we can use (45) to calculate the scattered fields 
for each realization. In this case, 

([U[ 2) = ( U * .  U )  = ( (C* .  C)(D*D)) = ([C[2)(D*D) = V(ICI2)P(k), (61) 

where P(k) is the "shape spectrum", i.e., the 3-D power spectrum of the parameter 
distributions function 

1 
P(~,) = ~ (D*(k)D(k)) .  (62) 

In deriving (61), we use the independence of C and D. From (58) and (42), we can 
write (61) as 

A z v  (Igl2)k4e(~) (63) (I UI 2) - (4nr)Z 

where E is the elastic-wave-Rayleigh-scattering pattern function and 

Po 2o+2/to 2o+ 2#o) / 
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~ 20+2#03 / ,  

( [SERf2)  = (&. h)2f ~6p _ (6" i)U fl~ 2~#~2~, (64) 
\ ( P o  L~oJ /~0 J / 

<tSE~l=>=[1-(6a) =] ~o-(6~) 1 1-?g_~)2A~-oj/ 

in the case of P-S, S-P, and S-S scattering. Here we drop the subscript "0" for ~p, 
~2 and 6g because of the statistical uniformity of these random variables. 

Directional Scattering Coefficient 

We define the directional scattering coefficient for P-P scattering as 4re times the 
mean scattered power in 6 direction per unit solid angle by a unit volume of random 
medium for a unit incident field (i.e., unit power flux density) in ~ direction. From 
(63) we obtain 

4gr 2 1 
gPP(o, 9) = ~ - ~  (Ipupl 2> = ~ <[PEPI2>k 'p( ) (65) 

where P(k) is the power spectrum of the random parameter distributions, we have 
dropped the subscript. 

Note that gPP defined in (65) is 4~ times the total differential scattering 
cross-section in the case of discrete scatterers 

gPP = 4tens ~s, (66) 

where ns is the number of scatterers per unit volume, and ~s is the average 
differential scattering cross-section for individual scatterers. By defining the scatter- 
ing coefficient, we can treat both the continuous and the discrete random media in 
a unified approach within the weak scattering regime. 

In the same manner as in (65) we can define the other scattering coefficients gps, 
g-W, and gSS. 

In the case of P wave incidence, (6 �9 ~) = (6 �9 i) = cos 0, where 0 is the scattering 
angle. If we assume 

6p 62 m 61~ n 6p = le, 
P0 2o + 2po 3 20 + 2B0 3 /% 

we obtain 
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1 ( m 2n 2 ) 2 3 gPP(O) = ( s  COS 0 COS 0 k4e(k), 
1 ( _ l f l0  )2 (67) 

gPS(O) = (E 2) sin 0 sin 20 k4~p(F,). 
~0 

Similarly, we can derive g~P and gS~, 

g~P(O, OA) =7-- (E 2) COS 0A - - ~ o  COS OA COS k~P(k) 

1 
g~'(O, 0A, ~) = ~ (c 2){[sin OA -- l sin 0A cos 0( 1 -- ctgZ0A)] 2 (68) 

where 
+ (l cos OA cos ~k)2}k~P(~) 

cos  0 = (6  -9), cos  0A = ( 8 .  a),  cos  ff = ( | .  ~). 

Total Scattering Coefficient 

Total scattering coefficient (or simply "scattering coefficient") gP or gS is the 
mean total scattered power by a unit volume of a random medium for a unit 
incident P or S wave. For P wave incidence 

gp = gpp + gps = ~ gPP(O) + gPS(O) an. (69) 
7r 

Substituting (67) into (69), we can derive gPP and gps. Wu and AKI (1985b) gave the 
results for the case of exponential correlation function. For the low frequency 
approximation (k~a ~ 1) 

[1,  4 l gPP~2 ~ + ~ m 2 +  n2+ mn (E2)k~a 3, 

[~ L , 2  fl~l/E2\k4 a3 (70) 
gPS~4 + 1 5 "  ~2oJ\ / ~ " 

In the high frequency range (k~,a >> 1) 

t~ t~  2 2 

p s  ~ - -  

g "~ 2a 

where D is a constant depending on the medium parameters. 
Compare (70) and (71) with the scattering coefficients from the scalar wave 

theory (CHERNOV, 1960, equations (56), (58), and (59) for exponential correlation 
functions) 
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gscalar ~ 8  ~0 k~a , when k~a ~ 1, 

(72) 

gsca~r~ 2 k~a, when k~a ~> 1. 

We see that for low frequencies the scattering coefficients for elastic waves are more 
complicated and depend not only on the velocity perturbations (as in the case of 
scalar waves) but on all the perturbations of density and Lam6 constants. On the 
other hand, the h-f asymptotics for both the elastic and scalar cases are equal. This 
implies that in the case of weak perturbation of parameters, the travel time 
fluctuation in the forward direction will dominate the scattered field when the 
wavelength is very short compared to the sizes of heterogeneities. This explains why 
the scattering coefficient (by the Born approximation) should not be taken as an 
attenuation coefficient, especially in the h-f range. The k 2 frequency dependence of 
gep also demonstrates the inapplicability of the Born approximation to the h-f limit, 
because gpe will go to infinity (according to the Born approximation) when the 
frequency goes to infinity. 

Frequency Dependence of the Scattering Coefficients 

From (67) and (68), we see the frequency dependences of g(0)'s are determined 
by k4p(k). From (58) to (60) we see that for low spatial frequency (Ka ~ 1), P(K) 
is flat for all the cases, while for high K(Ka ~> 1) the slope of the spectra depends on 
the form of P(K). Gaussian medium has a Gaussian shape falloff of the spectrum 
in the high-K range, while exponential and von K~irm~in media have power-law 
falloffs with power index - 4  and - ( 2 v  + 3), respectively. For a fixed scattering 
angle,/~ = Ik in - kSCI is proportional to the frequency of the wave field. Therefore, 
the frequency dependence of g(O) in the low frequency range is 0)4, which is typical 
for Rayleigh scattering and identical to scalar wave scattering. However, in the h-f 
range, the frequency dependence can deviate from the scalar wave case substan- 
tially. The frequency dependence also varies with the scattering angle. In the 
forward direction, 0 = 0, so the common-type scattering gPP(0) and g'S(0) have 
always the 0) 4 dependence. For other angles, there are critical frequencies above 
which the 0)4 frequency dependences give way to the h-f asymptotes. The backscat- 
tering (0 = re) has the smallest critical frequency. 

The total scattering coefficients have similar frequency dependences: 0)4 for the 
low-f and different asymptotes for h-f. Figure 5 shows the frequency dependences of 
the total scattering coefficients gPP and gpS for the case of exponential media. In the 
figure we also plot the dependences of the scalar wave case for comparison. For the 
common-type scattering gPP, the frequency dependences can behave quite differently 
from the scalar case in the intermediate frequency range, depending on the 
combination of parameter perturbations. For high frequencies, forward scattering 
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caused by velocity perturbations becomes dominant, so that gPP behaves as in the 
case of scalar wave scattering except for the case of 

52 5# 5p 

20 #o Po 

("impedance type" scattering), gps has flat h-f asymptotes for exponential media. 
For a general von K~rmhn type medium, the h-f spectrum slope of type-converting 
scattering is 4 - (2v + 3) = 1 - 2v. When v = 1/3 (Kolmogorov spectrum), the slope 
increases slightly with frequency. For a Gaussian medium, gps goes to zero 
exponentially. 

Fore- and Backscattering, and the Scalar Wave Approximation 

In the nearly forward direction, 0 ~ 0, which we call forescattering, the direc- 
tional scattering coefficients (67) and (68) become 

gPP( O ~ O) ,~ - k 4 p (  o) 
7~ 

gP~(O ~ 0) ,~ 0, (73) 

gSP(O ~ O) ~ O, 

gSS(O ~ O) ,~ - k~P(O). 

In deriving we used the relation 

1[ 5p 52+25#] 
~0 2 [  Po 2o+2#oj"  

We see that for forescattering the scattered waves are decoupled, and the mean 
scattered power is proportional to the mean square of P or S velocity perturbation 
only. In this case the scalar wave approximation can be applied. 

Similarly, in the backward direction, i.e., in the case of backscattering (0 ~ n) 

\ L z P o J  / 

gP~(O ,~ ~) ,~ O, (74) 
gSP(O ,~ ~)  ~ O, 

g~(O ~ ~) ,., 1 / [ - S Z s l 2 \  4 

Figure 5 
(a) Frequency dependences of P-P scattering coefficient. The solid lines are from the scalar wave theory 
and the broken lines, elastic wave theory, (b) frequency dependences of P-S  scattering coefficient from 

elastic wave scattering theory. 



632 Ru-Shan Wu PAGEOPH, 

Here we use the relation 

and 

6Zp l F 6 p + 6 2 + 2 a ~  1 
Zpo=2LPo 2o + 2--~o J 

Zso 2 L Po I%1 

where Zp = p~ and Zs = pfl respectively. We see that the backscattered waves are 
also decoupled (under the Born approximation) and the mean scattered power is 
proportional to the mean-square perturbation of P wave impedance or S wave 
impedance accordingly. The scalar wave approximation can be used in this case 
too. 

In conclusion, both fore- and backscattering of elastic waves are similar to the 
scalar wave scattering, but with different scalar quantities as the perturbation 
parameter: velocity for the forescattering and impedance for the backscattering. 
We should of course bear in mind that the analysis is only valid for weak 
scattering (Born approximation). For strong heterogeneities, multiple scattering 
inside the random medium becomes important and waves are no longer decou- 
pled. 

In other directions there are no simple relations as in the case of fore- and 
backscattering. The full elastic wave formulation has to be applied. In the case of 
82/20 = 61~flto and 20 = #o, we can decompose the perturbations into velocity and 
impedance perturbations using the relations 

6p 6Zp 6~ 6Zs 6fl 

Po Zpo c% Zso flo' 

62 61~ 6Zp 6u 6Zs 6fl 

20 #o Zpo + so --Zso + yo 
Substituting (75) into (64), we obtain the scattering patterns 

<I~E~I=> = ( c ,  - B , )  - aA ( c ,  + B , )  
\ (Lpo  ~o 

<1~E~12>--~2~o( ,-7",)-  (&+T,) 

\[Zso - ~o (cA + v, , )  

<,sE~l=>= { f6z~ (& _ B~) aft }~) 
\ l zso - ~o (& + B~) + 

where 

(75) 

(76) 

tLT~ + ~o] j /  
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1 2 2 
Ci=cosO, B l = ~ + ~ c o s  0, 

SI = sin 0, T~ =/3o sin 20, 
�9 o (77) 

CA = cos 0A, ira ---- 2/30 cos 0 A cos 0, 
~o 

SA = sin OA, BA ---- sin OA COS 0(1 -- ctg2OA), D~ = cos 0A cos ~, 

are constants depending on the scattering angle and the polarization directions. 
The directional scattering coefficients can be found from (76) by relations similar 

to (65). In order to see the differences between the scalar wave and elastic wave 
scattering, we show the comparison between the scalar case and the P-P scattering 
of the elastic case in Figure 6. Figures 6a,b and c are for (cO/~o)a = 0.I, l and 10, 
respectively. For Rayleigh scattering (Figure 6a) the scattering pattern of scalar wave 
is isotropic (see the upper half plane), whereas the pattern for elastic waves is quite 
unsymmetric depending on the parameter combinations (the lower half plane). When 
the wavelength becomes increasingly shorter than the scale length a, the scattered 
energy becomes incrementally more concentrated in the forward lobe, except for the 
case of "impedance type" scattering which always has a big back lobe. 

The Sensitivity of Backscattering and Forescattering to Heterogeneities with Different 
Scales 

From (73) and (74) we see that the back- and forescattering sense not only the 
different elastic properties of the medium, but also the different spectral components 
of the medium power spectrum. The forescattering feels only the d.c. component of 
the random medium P(0). Therefore it is most sensitive to the large-scale heterogenei- 
ties. This can be understood physically. When the wave passes through a random 
medium, the accumulated phase change is mainly determined by the large-scale 
variations, the effects from the small ones tend to cancel each other. On the other 
hand, the backscattering only senses P(2k), the spectral component of the medium 
at K = 2k where k is the wave number of the incident wave. It means that only the 
Fourier component of the medium with spatial period equal to half the wavelength 
of the incident field can be detected by backscattering. Therefore, it is most sensitive 
to the heterogeneities with scale length near the wavelength. Assuming an exponen- 
tial medium with P(k) of (59), we see from (74) that, for S-S scattering, 

a ~, ~ooa ~ 1 
g S~(~z) oc 

, / 3oa  1 

(78) 
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Therefore there exists a n  aop t that has maximum response to the detecting field. By 
differentiating (74) with respect to the correlation length a and equation to zero, we 

can get aop t 

6O 
rio aopt ~ X/~3 = 0.87 (79) 

i.e., 

aov t ~ 0 . 1 4 2 .  

From this analysis we can expect that backscattering experiments using S-S  
waves will have a maximum response to heterogeneities with scale length compara- 
ble to the wavelength. For  the 1 Hz short period S waves, the corresponding 
correlation length of maximum response is around 0.5 km. 

Figure 7 shows the responses of heterogeneities with different correlation lengths 
to 1-Hz S waves (/~0 = 3.5 km/s). The maximum is at a ~ 0.48 km. For  heterogene- 
ities with correlation length a ,,~ 10 km the backscattering response drops to 1/11.8 
of  the maximum value. However, these large-scale heterogeneities have much 
stronger responses to the forescattering. 

The above analysis helps us to understand those seemingly contradictory 

observations in seismology. Through the measurements of  phase and amplitude 
fluctuations across a large array such as LASA or NORSAR, and the travel time 
inversion for 3D velocity distributions in different areas around the world, we 

recognized the existence of  meso-scale velocity inhomogeneities with scale lengths of 
a few tens of km and velocity perturbations of a few percents. In the mean time the 
coda waves from a local earthquake are believed to be the backscattered waves from 
the heterogeneities in the lithosphere. However, if we calculate the backscattering 
coefficient from the meso-scale velocity heterogeneities derived from the transmis- 
sion fluctuation measurements and the travel-time inversions, which are forescatter- 
ing experiments, it became too small to explain the observed coda strengths. The 
analysis on the sensitivity of fore- and backscattering to the scale lengths shows that 
the two kinds of observation may originate from heterogeneities of  different scale 

lengths. The fluctuation measurements sense the meso-scale velocity inhomogene- 
ities (the scale length detectable is limited by the array sizes), while the coda 
strengths are mainly determined by the small-scale impedance heterogeneities in the 
lithosphere of  the local region. Therefore, the lithosphere must have multi-scale 
heterogeneities, at least 2 scales to account for the above-mentioned two kinds of 
observation (this two-scale model of lithosphere was first proposed by Wu, 1984; 

"11 

Figure 6 
(a) Comparison of scalar wave scattering (upper half plane) and elastic wave scattering (lower half 
plane) for P wave incidence when (o3/%)a = 0.1; (b) same as in (a), with (~o/%)a = 0.5; (e) same as in 

(a), with (o)/%)a = 1. 
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Figure 7 
Backscattering responses of heterogeneities with different correlation lengths for 1-Hz wave. 

Wu and AKI, 1985b). Recent measurements on the angular coherence of transmit- 
ted waves using the NORSAR array (FLATTg and Wu, 1988) suggest further that 
the two-scale heterogeneities may have different depth distributions. The small-scale 
ones are much shallower than the meso-scale ones; the meso-scale ones may begin 
from the middle of the crust and extend beyond the asthenosphere. 
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