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Array Analysis of Seismic Surface Waves: Limits 
and Possibilities 

By GUUST NOLET 1) and GIULIANO F. PANZA 2) 

Summary  - The dispersion of higher modes of surface waves over a region covered by an array 
of stations can be measured by applying a frequency-wavenumber transform to segments of the 
signals in these stations, centered at a number of group-velocities. Thus, at a fixed period, modes 
appear as separate maxima in a display of the power spectrum on a phase-velocity vs. group 
velocity plane. 

For regions Of mild lateral heterogeneity, the main source of error is shown to be due to the 
inadequacy of the array-response. Numerical experiments with synthetic signals indicate that a 
precision of the order of 1% can be obtained with a realistic number of stations. Improvements 
should be obtained by averaging data obtained from different events. The danger of misidentifica- 
tion of modes can be reduced by iteratively removing the sidelobes from the mode-separation 
diagram. 

1. I n t roduc t ion  

In  particular since the introduction o f  the Fast  Fourier  Transform (FFT)  by 

COOLEY and TuI~EY (1965), a number  o f  methods for the analysis of  surface-wave 

recordings in one or two stations have been developed. An  excellent survey of  these 

methods is given by DZIEWONSKI and HALES (1972). Because surface waves do not  

suffer f rom the fundamental  non-uniqueness which prevents the inversion o f  body- 

wave data  to unambiguous  models with a low-velocity zone, they are superior to the 

latter in fixing the shear velocity-depth distribution in the upper 400 km of  the earth's 

mantle. 

The observational material has mainly been limited to the fundamental  modes o f  

Love and Rayleigh waves, but  recently several attempts to measure clearly identified 

higher modes have been successful: NOLET (1975) employs a stacking technique with 

an ar ray  o f  s tandard long-period stations to obtain the average phase-velocities o f  a 

number  o f  higher Rayleigh modes over Western Europe in the period range o f  20-  

100 sec, while FORSYTH (1975) uses several events and several stations to determine 

those phase velocities o f  the fundamental  and first higher Love mode that  best fit the 
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observed phases in a least-squares sense over an oceanic path. Earlier, MENDIGUREN 
(1973) and GmBnRT and DZmWONSKI (1975) used the WWSSN stations as a network 
to identify higher modes in the period range of the earth's eigenfunctions (T > 80 sec). 

In this paper we describe the stacking method and analyse its resolving power by 
means of several numerical experiments with synthetic seismograms for different 
station configurations. 

2. The stacking method 

If  w(A, co) denotes the spectrum of the signal s(A, t) in a station at A km from the 
source, then the complex wavenumber spectrum is given by a Fourier relation 

W(k, w) = w(A, w)e-'~adA (1) 
to  

where k is the wavenumber and w the circular frequency. Since we prefer to obtain a 
spectrum with positive wavenumbers for waves travelling in the positive A-direction 
we take the sign in the exponent of the A -+ k transform negative, i.e. opposite to the 
sign in the t ~ ~o transform. We assume that we have N recordings in stations located 
at epicentraI distances Af (j  = 1 , . . . ,  N). As the integrand of  (1)is only known at a 
finite number of points along the A-axis, we cannot calculate W(k, ~) directly but will 
have to make an estimation: 

gZ(k, ~o) = 1 ~ w(A,, ~o)e-'k~,. (2) 
J 

The estimate (2) has the properties that it satisfies the inverse transform of (1) and that 
it would be an optimum estimate in 'a least-squares sense if we could assume that 
the values of w(A, o~) are uncorrelated over space. Of course this is no reasonable 
assumption since we know from the theory of surface waves that the signal is a transient 
that can be described as a discrete sum of modes, each with their own finite wave- 
number kn at a frequency w. But the estimate (2), which we will call the 'dirty stack' 
has certain advantages: it poses no computational problems and it is not critically 
dependent on the magnification of the seismograph, which is often poorly known. An 
alternative estimate would be the high resolution spectrum of CAPON (1970), but with 
the possible exception of the fundamental mode, the signal lengths necessary for the 
application of  this method are not available. For these reasons we will analyse in this 
paper the performance of the method using (2). In section 5 we will discuss how we can 
use our a priori information to make corrections to (2). For clarity of notation, we will 
henceforth omit the A -sign on W, it being tacitly understood that W is only an estimate 
of  the true wavenumber-spectrum. Compared with the difficulties encountered in the 
A ~ k transformation the transformation t--> co is relatively easy. We use a FFT- 
technique, i.e. we assume that s(t, A) is repeated periodically over those values of t 

unknown to us. 
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The spectrum of a component of the signal in station j can be represented by 

w(2xj, oJ) = ~ F.j(oJ)exp {i[k.(oJ)2xj + 4.j(m)]} (3) 

where n is the mode number, which is 0 for the fundamental mode, F.j(w) the amplitude 
spectrum in station j and k.(co) the wavenumber of mode n. k.  is related to the angular 
order I by: 

k.  = 1 + ~ (4) 
a 

where a is the earth's radius, 6371 kin. ~.j(w) is the initial phase, which depends on the 
azimuth from the source. However, if the stations do not differ considerably in azimuth 
and if the array is not situated near a minimum in the radiation pattern we may neglect 
the variations of q~.j(co) in the different stations (see PANZA et al., 1975a, b). We will also 
assume that the effect of dissipation over the array is small. If  necessary, we can correct 
for the geometrical spreading factor sin-ltz (A/a). Thus, we will remove the subscript 
j from F and 4. Inserting (3) into the dirty stack (2) we find: 

W(k, ~o) = .~I ~ F~(o)) exp {i~,(~o)} ~j exp {i[k~(o)) - k]As}. (5) 

With 

this becomes 

1 H(k) = ~ exp (ikAj) 
3 

W(k, oJ) = ~ F.(oJ) exp {i4.(o~)}H{k.(oo) - k}. (6) 

[H(k)l s is called the array response. It has a maximum of I in k = 0. If it is negligible 
outside this maximum, [W(k, co)12 will have maxima in curves (k, co) that are para- 
metrized by the dispersion relation oJ = co.(k). However, if the number of stations is 
small, the array response will have large sidelobes close to the main lobe that can 
disturb this simple picture. In that ease the maximum of [W(k, oJ)] 2 will only coincide 
with the dispersion curves w.(k) if the number of modes that is present in the signal is 
small. This problem can be evaded by analysing only a segment of the signal around 
an arrival time zj determined by a chosen group velocity vg: 

~'s = A j / v g  

If  the segment is not too long, modes with a group velocity that is markedly different 
from v o will have very little energy in the segment. We do this for a series of group- 
velocities Vg. If  we call the window function Bj(t, vo) i~he spectrum of the seismogram is 

F w( A~, o), vg) = s(A~, t)By(t, vg)e~~ (7) 
c o  
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Mode-separation diagrams for the event at 25 october 1965, origin time 22~34~22t Coordinates 
44.21N, 145.45E, depth 159 km. These diagrams were constructed from the recordings of 9 stations 
in W. Europe. Black triangles denote calculated locations of higher modes for a reference mode 
(Gutenberg, continental) and are used for identification. The first higher mode is at the top, the 
others follow in order of decreasing angular order. The group velocity interval does not include the 

fundamental mode. The contour interval is 1 dB. 

so that the stack now depends on the group velocity: 

W(k, ~, v.) ~ w(a, o~, v~). 

Writing a computer program, one has to choose 2 variables for a diagram of  I WI 2. If 
one prints (r k)-diagrams for several values o f  vo, the computations are very efficient 

but one is Ieft to the tedious job o f  looking over all the diagrams and comparing to 
find the maximum value. It is easier to print (v,, k) diagrams for several values o f  co, 
as was done by CARA (1976). An example is shown in Fig. 1. We will call a diagram as 

in Fig. 1 a mode-separation diagram. 
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3. Programming considerations 

779 

In the present version of the program, immediately upon being read in, the digitisa- 
tions are low-pass filtered using the FFT, corrected for instrument response and 
decimated, usually to a time interval of 8 seconds. Thus, the repeated FFT for each 
recording and each vg that is necessary to calculate w(As, ~o, vg) is done over very few 

points in time. 
Two FFT's  can be done in one by storing a second segment in the imaginary part 

of the array and splitting the transformed spectrum in an even and uneven part (see 

GOLD and RADER, 1969, p. 198). 
The stack (2) is calculated for equidistant values of  k so that the calculation of the 

compIex exponent exp ( - ikAj)  can be replaced by a complex multiplication with 

exp ( - i $kAj )  which has to be calculated only once. 
3k can be larger than the required accuracy since the program searches the diagram 

for significant maxima in the neighbourbood of specified theoretical values and finds 
the exact location of  k~(oJ) by quadratic interpolation. As an example, to analyse the 
dispersion at 7 different frequencies for 41 values of vg in a stack of 9 stations, it took 

one minute of computing time on a CDC 6400. 

4. Sources oferrors 

Using arrays of  about 10 stations in Western Europe at epicentral distances of 

7000-10500 km from sources in the Far East, NOLET (1975) obtained results showing 

a scatter of 1-2~o in the higher mode phase velocities. 
In this section we will investigate the origins of  this scatter both in a qualitative and 
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Figure 2 
The synthetic seismogram that was used for the numerical tests. For details see text. 
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in a quantitative way. For numerical tests we make use of a synthetic seismogram, 
consisting of the vertical component of the fundamental and 7 higher Rayleigh modes 
in the period range from 9-180 seconds. The dispersion of these modes was calculated 

using a spherical Gutenberg-Bullen-A continental model. The excitations were cal- 
culated for a source (approximately dip-slip) at a depth of 135 km. Dissipation was 
calculated and taken into account. The resulting signal is shown in Fig. 2 as it would 
appear at an epicentral distance of 9428 km. 

There are a number of sources of error that are not directly related to the method, 
such as digitisation errors, errors in the source location and imprecise instrument 
phase-corrections. Of these the latter are often the largest. If  we may assume these 
errors to be independent their influence will decrease as N-1/2 if we stack over N 

stations. Thus, we can reduce the scatter that is usually obtained in measurements of 
fundamental mode dispersion using the two-station method without having to take 
resort to heavy smoothing over the frequencies. 

A second class of errors is due to the approximations in the theory. First of  all, since 
eq. (3) arises from an asymptotic representation of a Legendre polynomial for A >> 0, 
the array should not be located too close to the source or antipode for eq. (3) to be 
valid. PANZA et al. (1973) obtained the condition kA > 10 for a 3-figure accuracy in 
the phases. The variation of the initial phase with azimuth is usually very small if the 
array is not situated near a minimum in the radiation pattern (PANZA et al., 1975a, b). 
For a regular distribution of stations over a small range of azimuths the error to be 

expected from the initial phase is much smaller than the other sources of error and we 
will not attempt to correct for it. The same applies to the phase errors due to truncating 
the record to a segment around ~-j. Numerous experiments with different window-sizes 

and shapes for the synthetic seismogram showed a phase velocity scatter of 0.03 kin/see 
for the 5th higher mode and usually less. In practice we use rectangular windows with a 
length of 2 to 5 times the period so that two different window sizes can cover at least 2 
octaves in the period range of interest. A possible disturbing influence of body waves 
(core phases) can be minimized by a careful selection of the event type and the distance 

range. 
Usually the largest source of errors is due to the interference of several modes of 

roughly equal group velocity combined with an inadequate array response. It is ob- 

viously important to know what can and cannot be achieved with a rather incom- 
plete coverage of  the region with recording stations, not only because it enables us to 
evaluate the quality of the measurements but also in connection with the planning and 
installation of new stations. 

Two properties of the array response function influence the resulting stack. The 
width of the main lobe, largely governed by the length of the array, determines how 
well two or more modes, close in wavenumber, can be separated. Large sidelobes, 
which occur when the number of stations is small, may introduce such interference 
that the maxima in the mode-separation diagram are shifted from the true wave- 
number k(oJ). In bad cases this may give such a confusion that the main lobes cannot 
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Array responses for different values of the number of stations (N) and the array span (D). The 

station distribution is given by eq. (8) in the text. 
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Figure 4 
Array response of a network consisting of all WWSSN stations in Europe, as 'seen' by a wavetrain 

arriving from N. Kurile. 



782 Guust Nolet and Giuliano F. Panza 

be distinguished clearly from the interfering lobes. Examples of array responses are 

shown in Figs. 3 and 4. In Fig. 3 we show the array responses for 4 imaginary arrays 

of N stations spanning a distance D. The distance of the i-th station from the epicentre 

was taken to be: 

A~ = Ao + �89 - cos ( ~ _  11 ~r)} i = l , . . . , ( N + l ) / 2 .  (8) 

(Thus, there is a slight concentration towards the centre of  the array). For example, at 

a period of 30 sec the first and second higher Rayleigh mode will be separated by 

0.003 cycles/km, which is well outside the main lobe in all cases so that these modes 

will easily be separated. However, for the 30 ~ array with N = 7 we expect interference 

of the first with the third mode, since their separation of 0.0064 cycles/km coincides 

with the large sidelobe and these modes have roughly equal group velocity at this 

period. With 13 stations we do not expect any trouble. The resolution that can be 

obtained using all available WWSSN-stations in Europe is shown in Fig. 4 for a 

great-circle path with an azimuth of  30 ~ . 

We used the array configuration given by (8) for a test of the method. D was taken 

30 ~ To the synthetic seismogram of Fig. 2 we added white noise with an amplitude of 

1~ of the maximum to account for noise and digitising errors. For this signal we tested 

the method with several values of N and the average distance A to the source. Some of 

Table 1 
Higher mode dispersion measurements, corresponding to the diagrams in Fig. 5c-f. 

Period 32.0 sec 

phase velocities group velocities 

mode error error error error 
nr theory N=13 % N = 7  % theory N=13 % N = 7  % 

1 4.72 4.73 0.2 4.67 1.0 4.29 4.33 0.9 4.33 0.9 
2 5.16 5.15 0.2 5.16 0.0 4.26 4.28 0.5 4.27 0.2 
3 5.60 5.65 0.9 5.68 1.4 4.43 4.32 2.5 4.32 2.5 
4 6.08 6.10 0.3 6.11 0.5 4.38 4.40 0.5 4.39 0.2 
5 6.52 6.58 0.9 6.56 0.6 4.80 4.93 2.7 4.90 2.1 

Period 21.3 see 

I 4.58 4.58 0.0 4.54 0.9 4.34 4.31 0.7 4.29 1.1 
2 4.82 4.80 0.4 4.90 1.7 4.25 4.22 0 . 7  4.29 0.9 
3 5.07 5.10 0.6 5.10 0.6 4.20 4.21 0.2 4.21 0.2 
4 5.36 5.37 0.2 5.37 0.2 4.29 4.29 0.0 4.29 0.0 
5 5.64 5.63 0.2 5.61 0.5 4.35 4.30 1.1 4.30 1.1 
6 5.97 5.98 0.2 5.96 0.2 4.43 4.42 0.2 4.41 0.5 
7 6.25 6.26 0.2 6.26 0.2 4.65 4.67 0.4 4.66 0.2 
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is the length of the time window used. For  discussion see text. 
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the results are shown in Fig. 5 and Table 1. In Fig. 5 we show diagrams of  l W(k, ,o, v~)[ 2 
for fixed ~o = 27r/T. The group velocity interval is chosen so that only the higher modes 

are present in the picture. Contour intervals are 1 dB, the theoretical values are given 
by black triangles and should coincide with the maxima of the contour-pattern. The 
first higher Rayleigh mode has the highest angular order l = a k  1 2"  

At a period of 32 seconds (Fig. 5a-d) we obtain much better results for an average 

A of  8000 km than with 4500 km, even though we work here with very short lengths 
of  the (rectangular) time window. Obviously the small differences in group velocity 
can be better exploited to reduce the number of modes within the window when A 
increases. I f  we decrease the window size to 40 see (Fig. 5b) the modes are better 
separated but the precision in the group velocity becomes worse. In general the group 
velocities become more accurate as the window size increases (LANDISMAN et  al., 1969) 

but our experience is that group velocity measurements with the stacking method 
should be viewed with caution since even in the presence of slight interference the 
maximum in the instantaneous amplitude may shift or break up into several maxima, 
each at the same value of the wavenumber. See for example the third higher mode in 
Fig. 5a-d or the first higher mode in Fig. 5e-f. A mild smoothing of I W] 2 for neigh- 

bouring values of v 9 sometimes gives a small improvement in the precision of vg. 
Reducing the number o f  stations from 13 to 7 greatly changes the picture by the 
introduction of side-maxima which could be wrongly interpreted. The main lobes are 
only slightly shifted, however. The danger of  using too few stations lies primarily in 
the misidentification of sidelobes as modes. 

Amplitudes of I WI 2 seem to be more influenced by the degree of interference than 
by the energy of the mode. Therefore, amplitude measurements with the stacking 
method and a realistic number of stations are not reliable. 

The precision with which the phase velocities can be measured largely depends on 
the span of the array in relation to the wavenumber-interval under study. A rough 
measure of the resolving power of an array is given by the parameter: 

X = 27riD 

where D is the span of the array. I f  x is about one half of the difference in wavenumber 
between the modes, as is the case in Fig. 5, we may conclude that the errors in the 
phase-velocity due to the data-processing method do not exceed 1~ in the case of a 
dense array (N = 13) or about 2~  o for a thin array (N = 7) and are usually much less 
(Table 1). 

A last source of error is due to the fact that we have assumed that the earth is 
isotropic and laterally homogeneous. There is evidence for anisotropy just beneath 
the Moho-discontinuity, as was demonstrated by CRAMPIN (1967) and others. Sharp 
discontinuities like ocean-continent boundaries or mountain roots will give rise to 
multipathing. For periods larger than 10 sec, however, we expect that these disturbing 
effects will be mainly limited to the fundamental mode. The reason for this is that the 
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Figure 6 
Analysis of a synthetic multipathed signal with the stacking method (crosses) and with the two- 

station method (dotted line). For details see text. 

energy of the higher modes will reach much deeper, at least to the bottom of the low 
velocity channel if that is present. If  severe heterogeneity extends below the lithosphere, 

the method will not work even for higher modes and the mode-separation diagrams 

will become blurred. 
Since we assume in eq. (2) that the modes travel along a great-circle path to each of 

the stations the summation will never be optimal for refracted arrivals and the stacking 
method tends to enhance the direct arrivals relative to the (unwanted) multipathed 

signals, provided the array is not one-dimensional. We have tested this for the funda- 
mental mode. To simulate a multipathed arrival we have superposed on the synthetic 
seismogram, calculated for a source located at 45~ 150~ a second signal with the 

same characteristics and an amplitude 20700 of the first, arriving from a source at 
15~ l15~ and analysed the recordings for a small array consisting of  8 existing 
LP-stations in Italy. The average A is 9400 km, while the refracted path is on the 
average 500 km longer and has an azimuth deviation of 45 degrees. In view of the 
ray-path solutions obtained by Btr~GUU and CAVON (1974) this simulation is not 
unrealistic for the fundamental mode at periods of  20-40 sec. We note here that our 
synthetic signal is rather unfavourable for this analysis since the amplitude at low 
periods is rather small and grows strongly with increasing period. The errors in the 
results (Fig. 6) are thus on the large side. The interference disturbs the phases, such 
that a phase velocity analysis with the two station method would give grossly wrong 
results, even if we remove the higher modes from the signal, and one has to apply a 
heavy smoothing to obtain a reasonable result. The array analysis of this signal gives a 
maximum error of 0.025 km/sec or 0.670. We conclude that small, local arrays like the 
Italian LP-network can be used to determine an accurate average phase velocity of  

the fundamental mode under the region. 
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5. The cleaning algorithm 

As we mentioned in the last section, one source of possibly large errors comes from 
the misidentification of  sidelobes as modes. As can be seen in eq. (6), the wavenumber 
spectrum consists of  a sum of weighted and shifted array responses H(k).  If we fix 
co and vg, that is if we look at one '  column' in the mode-separation diagram, we can write 

Wo(k) = ~ a , H ( k ,  - k) (9) 
n 

where a,  is an unknown complex amplitude. We will now try to incorporate our 
a priori knowledge that (9) is a sum over only a few terms. Since (9) is not a linear 
equation in k ,  and since it is only an approximation to the real situation, we have to be 
careful with any attempt to deconvolve it. 

An approach to this kind of problem is the stripping process (Mac~: and SMART, 

1972), and a similar but slightly more elaborate scheme is used with much success in 
radio astronomy (H6GBo~, 1974), where it has been labeled 'cleaning'. The complex 
extension of this method, that we use to remove sidelobes from the mode-separation 
diagram, is best described by an outline of the algorithm. The method is based on the 
assumption that the largest amplitude of [W0(k)[ is no sidelobe but coincides with a 
real mode. The algorithm then proceeds as follows (we denote the iteration number 
with i): 

(a) Find k = k~ax for which [ W,(k)[ has its maximum 
(b) Subtract W,+l(k) = W,(k) - r W , ( k k a x ) . H ( k ~ x  - k) where 0 < y < 1 
(c) Store W , ( k ~ )  and k ~ x  

(d) I f  ~ lW,+~(k)ldk > ,. X lWo(k)ldk go bach to (a) else 

W,(k~x). ( ~  k) (e) Sum back W(k) = W~+ z(k) + V ~ ~ ~ U - 
l = 0  

Here 0 < ~ << 1 and ~ ( k )  is the main lobe of the array response H(k).  The loop gain y 
need not be chosen too small. Clearly, if only one mode is present, y = 1 would be 
most efficient. In practice we usually choose y = 0.4. The iteration is performed 
separately for every value of va in the diagram. We work with a rather coarse grid 3k, 
and since Re {H(k)) and Im {H(k)} contains oscillations with 'frequency'  Aj, we have 
to be careful not to lose all precision if k ,  is in between two grid points. Define: 

W'o(k) = e'~%Wo(k) (10) 

where A0 is the average A of the array. From (10) we see that: 

I Wg(k)I 2 = I W0(k)l 2 

so that the mode-separation diagram does not change. But if we now apply the stacking 
method to calculate W~(k) we find: 
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where 

and 

W ; ( k )  = ~ a , , ~  . . . . .  tk,~ - k)  
J 

a I _~. 
n ane *kn% 

H'(k)  = ~ e*~(a~-% ) 
t 

contains only oscillations with frequencies (Aj - A0) so that it behaves much smoother. 

One should therefore use W' for the construction of mode-separation diagrams if the 

cleaning algorithm is applied. 

In Figs 7 and 8 we show the results of  an application of the method to real and 

synthetic seismograms. Figure 9 show that results obtained for the synthetic seismo- 

gram as recorded in a 9-station array with a span of 2200 km. Apart  f rom cleaning 
the mode-separation diagram of sidelobes for a less ambiguous interpretation of 

complicated responses, it is seen that the phase velocity determinations are over all 

slightly better. This is undoubtedly due to the fact that we remove at least partly the 

effect of  sidelobes that interfere with main lobes. 
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Figure 9 
Combined data of an analysis of the synthetic seismogram, using a 9-station array with a span of 
2200 kin. Crosses denote measurements with application of the cleaning algorithm, circles without. 

Straight lines denote the theoretical values of the phase velocity. 
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6. Conclusions 

To our knowledge, the method presented in this paper is at present the only method 
capable of resolving a great number of higher modes with some precision in the period 
range of 20-100 sec. The results are not very sensitive to noise and instrument calibra- 
tion errors, because of the averaging properties of the stack, and can be used to screen 
refracted arrivals. These factors often spoil phase-velocity measurements of the funda- 
mental mode with the two-station method. 

The precision of the method is highly dependent on the array span and the station 
density. Only at a few places in the world is the WWSSN network dense enough for 
an optimum exploitation of the possibilities of this technique. This imposes a severe 
limitation to the application of the method. It would be worthwhile to install a few 
'migrating' stations in regions of interest to enhance the station density temporarily, 
until enough data have been collected, and then move them on to other regions. 

The largest errors of 1-2~ due to the data-processing with limited resolving power 
quite satisfactorily explain the largest scatter found in real data, obtained for a purely 
continental region. However, no experience has yet been gained with cases where the 
great-circle paths cross regions of severe lateral heterogeneity. 

The mutual interference of modes is a strong function of their excitation and of the 
array response. Thus, by averaging data obtained from events at different depths and 
arriving from different directions one acquires a more accurate estimate of higher- 
mode phase-velocities. 

For a mild lateral heterogeneity, the method will give an average phase velocity 
over the array. In the short-period approximation (MADARIACA, 1972) we expect that 
ray-theory becomes valid for surface-wave propagation, so that this phase velocity is 
representativ e for the average structure of the earth directly under the array. The 
depth of the mantle that can be probed depends on the span of the array, which 
determines at what phase-velocities the modes can be separated. Thus it is obvious 
that there is a trade-off between the vertical and horizontal resolution of the method. 
Gilbert and Dziewonski (1975) showed the possibility to average over the whole globe 
for angular orders lower than 70. Since we expect lateral heterogeneity to decrease 
with increasing depth it will be a good tactic to determine the deep structure using a 
large array and supplement these data with local determinations of the fundamental 
mode and dispersion using the two-station method. 

We note here that the method might be used to attempt to obtain S-velocity structure 
from later arrivals and the groundroll in refraction experiments, provided the crust 
can locally be approximated by an average horizontal layering. 
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