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A Branching Model for Crack Propagation 

By D. VERE-JONES 1) 

Summary - A branching model for crack propagation is proposed, a 'branch' corresponding 
to an existing microfissure or flaw in the material, and the propagation of the crack to the coales- 
cence of such branches. Increase in external stress increases the probability that a given branch will 
link into more than a specified number of further branches. Such increases can continue until a 
critical state is reached when the mean number of branches linking into a given branch is equal to 
unity; beyond this point, the system becomes unstable, and any slight movement is likely to lead to 
catastrophic rupture. The distribution of the sums of the lengths of the branches linked together 
in a cracking episode is investigated, and shown to lead, in the critical case, to a Gutenberg-Richter 
type relation with parameter b = 0.75. Departures from this value are attributed to the influence 
of the distribution of the lengths of preexisting fissures, this distribution varying with the strength 
of the material and its stress history. Some difficulties with the theoretical model of Scholz are 
raised, and it is suggested that a more complete analysis of Scholz's model should lead to results 
qualitatively similar to those obtained for the branching model. 

1. Introduction 

Most  theoretical studies of  crack propagat ion refer to the growth of  a single crack 

in a homogeneous  medium. However,  experimental studies of  rock fracture, par- 

ticularly those of  HOEK and BIENIAWSKI (1965), have suggested that, at least in the 

final rupture stage, the dominat ing mechanism may be that  o f  coalescence o f  existing 

cracks. More  recently, studies o f '  d i la tancy '  by Brace, Scholz and other writers confirm 

the impression that  microfracturing plays a central role in determining the sequence of  

physical changes leading up to rupture. SCHOLZ (1968a,b) has also studied the relation- 

ship o f  these changes to changes in the energy distribution of  microfractures. This 

work  led him to postulate a certain theoretical model for crack propagat ion;  starting 

f rom the statistical distribution o f  microscopic variations in strength and stress, he 

obtained a qualitatively attractive formula  for  the dependence of  the b-value (the 

parameter  in the Gutenberg-Richter  relation) on the applied stress. The main purpose 

o f  the present note is to propose an alternative model for crack propagat ion,  based on 

the not ion o f  crack coalescence referred to above. This model also leads to a version of  

the Gutenberg-Richter  law, and to some qualitative inferences concerning the variation 

of  b-value with applied stress, but  not  to a direct dependence o f  b-value on stress. In 

1) Mathematics Department, Victoria University of Wellington, Private Bag, Wellington, New 
Zealand. 
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section 6 of the paper I shall put forward some grounds for supposing that Scholz's 
formula is not soundly based, and that a more rigorous formulation of his model would 
lead to conclusions closer to those in the present paper. 

As a starting point for the discussion, consider the stress distribution round the tip 
of  an existing crack in a material under uniaxial compressive stress. BRACE and 
BOMBOLAKIS (1963) showed that even in a homogeneous material such as glass, such 
cracks will not in general propagate catastrophically, but only to a limited extent, 
turning away from the direction where they are subject to maximum stress concentra- 
tion at the tip, towards a closer alignment with the direction of the applied stress. 
If  it is accepted that this is likely to be a general property of crack propagation under 
compressive stress, two further features need to be incorporated before discussing a 
highly fractured, heterogeneous material such as rock. Firstly, we should take into 
account that not only the orientation of the crack, but also the strength of the material 
in the vicinity of the tip, and the extent to which the given crack is shielded from the 
applied stress by other cracks, will vary from crack to crack. Thus it is to be expected 

that some fractures will extend further and at lower applied stresses than others, so 
that a statistical treatment is needed (indeed a similar argument forms the basis of 
Scholz's statistical treatment). Secondly, one should incorporate the possibility that 
the initial extension so produced may encounter further cracks or flaws in the material. 
It is this latter feature which will play the key role in our discussion. We may idealize it 

by treating it as a ' Branching Process' of  the same general type used to describe the 
progress of a nuclear reaction in fissile material, and in many other contexts (a com- 
prehensive account of the range of applications and variants of the model is contained 
in the monograph by HARRIS (1963)). 

To specify the evolution of such a process - to be interpreted as an episode of crack 
coalescence - two component distributions are needed. The first of these, the 'offspring 
distribution,' to be denoted by p~; n = 0, 1 . . . . .  will be interpreted as the number of 
further cracks which may be encountered during the initial period of extension when a 
given crack is subject to an increase in the applied stress. We shall assume that the tail 
probabilities t~ = p~ + p~ + 1 + " " �9 of linking into more than a given number n of 
further cracks are increasing functions of the applied stress, other properties being 
held constant. An important corollary of this assumption is that the mean number of 

such 'offspring' cracks, which is a key parameter for the discussion, also increases 
with the applied stress, This follows from the fact that the mean can also be written in 
the form 

v = Z n p ~  = Z t ~ .  

The second distribution of importance concerns the lengths of the individual branches. 
We envisage the process of extension and coalescence as continuing through a series of 
movements, each of which consists in principle of two components, an initial extension 
from the tip of one crack, and the activation of the further crack reached by this 
initial extension. Of the two lengths, we presume it is the latter which will normally 



Vol. 114, t976) A Branching Model for Crack Propagation 713 

predominate. If  this is so, the distribution of branch lengths should reflect the dis- 

tribution of lengths of existing cracks when the process of coalescence is initiated. 
In any case we shall denote by F(x) the cumulative distribution function for the branch 
lengths, so that F(x) = Prob (branch length < x). 

For  simplicity, we shall also assume that the numbers and lengths of the branches 
are mutually independent, and that the distributions {p~}, F(x) are constant over the 
whole region considered. Both assumptions are clearly approximations; the former is 

unlikely to  critically influence the results unless the dependence is a very strong 
feature; the latter (in effect the assumption of statistical homogeneity) limits the range 
of validity of the discussion - we should not expect our conclusions to hold on a scale 
larger than that for which homogeneity was a reasonable assumption. 

The quantity with which we shall be concerned particularly is the sum of the lengths 
of all the branches which coalesce to form the new crack. We shall assume that this 

total length is proportional to the total energy emitted during the coalescence. The 
appropriateness of this assumption may well be queried in view of the variety of 
relationships which, depending on the shape of the crack and the applied field, may 
hold between the dimensions of a crack and the energy emitted during its formation 
even in a homogeneous medium. The assumption of proportionality asserts, in effect, 
that on average, taken over all possible configurations and orientations, a unit increase 

in the total length activated will produce a given increase in average energy emitted. 
In any case some simple assumption governing the relationship between crack-length 
and energy will be needed. Even if direct proportionality were replaced by propor- 
tionality between energy and the ~th power of the length, the net effect would not be 
worse than a multiplication of all b-values obtained by the constant a. However it is 

precisely the choice ~ = 1 which seems to lead to conclusions in best agreement with 
the observational evidence. 

2. Some properties of the branching process 

For the sake of completeness, and to establish results and notation for the follow- 
ing section, we sketch here the derivation of the basic formulae for the distribution of 
the total length. 

We assume that the process of crack coalescence starts from an initial crack of 
length L1, and denote by L2, L 3 , . . .  the sums of the lengths of the cracks up to 

2, 3 , . . .  links away from the initial crack. Thus L2 denotes the sum of L1 and the 
lengths of any cracks directly linking into the initial crack; generally Lk+l can be 
represented as Lk augmented by the sum of the lengths of any cracks linking into those 
of the preceding (kth) stage. Clearly L1 _< L2 < L3 < �9 �9 ". If the crack is finite the Lk 
reach a terminating value and then cease to increase; but mathematically it is con- 
ceivable that they increase indefinitely. The quantities L~, L2 . . . . .  are random variables 
in general, and we shall denote by Fl(x), F2(x),... the corresponding distribution 
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functions. The monotonicity of the sequence of random variables Lk is reflected in the 
corresponding property of their distribution functions; for every fixed x we have 
G(x) >- G(x)  >- G ( x ) " . .  Consequently, as k - +  0% the values G(x) converge to a 
certain limit function G(x). If the total length is finite with probability one, the limit 
function will be a proper distribution function (limx_.| G(x) = 1) and will represent 
the distribution of the total length. If  there is a non-zero probability that the total 
length is infinite, the limit distribution function will be improper, the value ~1 = 
l imx. | G(x) will represent the probability that the total crack length is finite, and the 
deficiency 1 - ~? will represent the probability that the crack propagates indefinitely. 

Further analysis is most easily carried through in terms of the Laplace (Stieltjes) 
transforms 

f*(s)  = f e-~XdF,(x) = E(e-~L,). 

Suppose for simplicity that the initial crack has the basic crack length distribution 
F(x) (so that Fx(x) = r(x), f*(s) ~ f*(s)). We can write 

N1 

Lk+l = L 1  + ~ L ~  ) 
i = l  

where N~ is the number of cracks directly linked to the initial crack and the L~ ) are 
the k-step lengths of the crack-systems emanating from those cracks directly linked to 
the first crack. Using the independence and homogeneity assumptions, each of these 
latter has the same distribution as L~, viz., Fk(x). Then from the independence again, 
and the multiplication property for the Laplace transform of a sum of independent 
variables, we obtain 

f*+ l(s) = f*(s)[f*(s)] NI. 

The RHS has, however, to be averaged over the different possible values of N1 (which 
also is to be treated as a random variable). If  we introduce the generating function 

:'(z) = = e(:) 

for the number of cracks linking into a given crack, the averaging process yields the 
recursive equation 

f*+~(s) = f*(s)POe*(s)). (1) 

Furthermore, as k--~ o% (note again there is a monotonic convergence) we find for 
the Laplace transform g*(s) of the limit function G(x) = lira F~(x), 

g*(s) = f*(s)P(g*(s)). (2) 

This equation for g*(s) is the basis of the further analysis. 
Now equation (1) shows that thef*(s) are the successive approximations which are 

obtained in finding an iterative solution of the functional equation 

x = z ? ( x )  (3) 
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in which z = f * ( s )  and the approx imat ions  are started f rom the trial value x0 = 1. 

As before, the successive iterates are monoton ic  decreasing. The resulting solution, 

say x = F(z), of  (3) has an interpreta t ion in its own right as the generating function 

of  the total  number of  cracks linked together  in the process of  coalescence; this will be 

finite if and only if the total  length is finite. Then  the solution to (1) can be written in 
the fo rm 

g*(s) = r [ f * ( s ) l ,  (4) 

the interpretat ion of  this equat ion being that  the total  length is the sum of  a r a n d o m  

number  of  independent  lengths each with Laplace t r a n s f o r m f * ( s ) ,  the number  in the 

sum having probabi l i ty  generating funct ion E(z). 

The  nature  of  the solutions to (2) and (3) can be determined by examining the graph 

of  the funct ion y = P(x) .  The critical pa ramete r  is the value of  the derivative P ' (1)  = 
Znp,  = v, the mean  number  of  cracks linking into a given initial crack. I f  v < 1 

(subcritical case) or v = 1 (critical case), the si tuation is as shown in Fig. 1. The  curve 

y = P(x )  lies everywhere above the line y = x for  0 < x < 1, and intersects the line 

y = x / z  (0 < z < 1) at a unique point  x = F(z) in the range 0 < x < 1. Fur the rmore  

as z -+  1 it is clear tha t  E(z) -+  1, so tha t  the corresponding distribution is proper .  

Thus  in the subcritical and critical cases the total  length is finite with probabi l i ty  1. 

In  the supercritical case, (Fig. 2), the curve y = P(x) ,  which is convex downwards,  

cont inuous,  and satisfies P(0)  = Po > 0, mus t  cut the line y = x not  only at x =- 1 
but  also at  a smaller  value x = ~ < 1. P(z) now lies in the range 0 _< x < 7, and as 

z ~ 1 we shall have P ( z ) - ~  7. We deduce that  in the supercritical case, there is a 

positive probabi l i ty  1 - ~7 tha t  the crack will p ropaga te  indefinitely. 
We have assumed that  the effect of  increasing the applied stress will be to increase 

the pa ramete r  v. As the stress is increased, therefore, we expect the system to pass 

through the subcritical stage and into the critical state. Once it passed beyond the 

critical stage however,  any m o v e m e n t  would have a non-zero probabi l i ty  of  propagat -  

ing indefinitely. Such an outcome would correspond in the physical system to the 

fo rmat ion  of  a fracture extending beyond the region for  which the initial assumptions  
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Figure 1 
Solution to x = zP(x) in subcritical case. 
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Figure 2 
Solution to x = zP(x) in supercritical case. 

could be considered valid. In the laboratory context it seems reasonable to identify 
such an event with the final rupture of  the specimen. On the tectonic scale the dis- 
tinction between major and minor events may not be so clear-cut. It is tempting to 

suggest that the geological features or stress inhomogeneities terminating a major 
episode of crack propagation on one scale of magnitude could serve themselves as the 
microscopic features governing crack propagation on a larger scale, the ultimate limit 
of this process being imposed by the finiteness of the earth's surface. It also seems 
reasonable to suppose that the majority of tectonic earthquakes occur in critical or 
near-critical conditions, on the simple ground that significant cracking episodes will 

be infrequent until the critical stage is approached, while no system is likely to survive 
long in the supercritical state. 

In the two sections which follow we shall try to augment this qualitative picture 

with quantitative estimates of the length (and hence energy) distributions. Section 
3 is concerned with the subcritical case and section 4 is concerned with the critical 
case. 

3. Asymptotic behaviour in the subcritical case 

We investigate the behaviour of F(z), supposing first that P(z) is analytic at z = 1, 
a condition equivalent to the exponential decay of the probabilities t. = ~k~. p~, and 
and implying the existence of all moments of the distribution {p.}. In the subcritical 
case, the solution pair (1, 1) is a simple solution pair of the equation (3) and it follows 
from standard theorems on the reversion of  power series that x = F(z) is also analytic 
at z = 1 and can be expanded as a power series in (1 - z): 

1 - r ( z )  = m 1 ( 1  - z )  - � 8 9  - z )  2 + . . .  ( 5 )  

where ml is the expected number E[Z] of cracks linked together, and the further 
coefficients on the right can be interpreted as the successive factorial moments m~ = 
E [ Z ( Z  - 1). �9 (Z  - k + 1)] of this total number of cracks. Expanding P(z) similarly 



Vol. 114, 1976) A Branching Model for Crack Propagation 717 

as a power series in (1 -- z), substituting both expansions in the functional equation 

(3), and equating coefficients, we find after some manipulation that the mean and 
variance for the total number of cracks are given respectively by the expressions 

rnl = 1/(1 -- v) 

v = ~ 2 / ( 1  - 0 3, 

where a2 is the variance of the underlying distribution {p~}. These expressions show 
clearly how the mean and variance of the total number of cracks approach infinity as v, 

the mean number of cracks per branching node, approaches unity. The assumptions 
we have made on the distribution {p~} in deriving the above results can be weakened to 
the existence of the first three moments. In general it seems reasonable to suppose that 
there will be no more than a small number of  new branches for each branch of  the 
crack, and hence that the distribution p= will be sufficiently well-behaved, for the 

above to be valid. 
T h e  situation is rather different when we come to examine the crack length 

distribution, for here the available evidence suggests that the distribution of lengths 

of existing cracks will frequently have a very long tail, i.e. with a small but non- 
negligible proportion of very long cracks. The results we shall need are, that if the 
Laplace t ransformf*(s)  of a distribution F ( x )  satisfies the condition 

1 - f * ( s ) ~ L ( s ) . s  ~ (s- ->0,0  < a < 1) 

then the tail of  the distribution function satisfies 

1 - F ( x )  ,~ L ( x ) x - ~ / F ( 1  - a) 

and conversely. Here L ( x )  denotes a slowly varying function, and F(~) is the gamma 
function, not to be confused with the solution of (3). Such Tauberian theorems are 
discussed, for example, in FELLER (1971) chapter XIII. Since we are not concerned 
here with a rigorous exposition we shall suppose simply that if 1 - f * ( s )  ~ cs  ~ 

(0 < a < 1), then 1 - F ( x )  ~ c x - ~ / r ( 1  - ~) and conversely. 
From equation (4) we have for the Laplace transform g * ( s )  of total length 

1 - g * ( s )  = 1 - r [ f * ( s ) l  = ml[1 - f * ( s ) ]  + 0[1 - f*(s)]  2 (6) 

This shows that in the subcritical case, the tail behaviour of the distribution of total 
crack length reflects the tail behaviour of the distribution of the lengths of preexisting 

cracks. In particular, it follows from (6) that if 1 - F ( x )  ,,~ c . x  -~  as x ~ 0% then 
also 1 - G ( x )  ~ d .  x -  ~' where c, d are constants. Intuitively speaking, if the existing 
crack lengths have a very irregular distribution, then this effect swamps the effect of 
branching. Even where a crack is formed from the coalescence of several component 
cracks, the total length is likely to be dominated by the length of the largest individual 
component. 

The parallel between the two distributions carries over to a degree even in the 
regular case when both P ( z )  andf*(s )  are analytic (at z = 1, s = 0, respectively) for 
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then the solution functions F(z) and g*(s) will also be analytic at z = 1 and s = O. 
Both distributions in this case would have exponential type decay at infinity, though 
the decay parameters in general would be different, and for moderate values of x the 
actual forms of the distribution might be very different. 

4. Asymptotic behaviour in the critical case 

As the system approaches criticality, the character of the asymptotic distribution 
changes, for then branching becomes a dominant feature of the process which cannot 
be ignored. Mathematically this is reflected in the fact that in the critical case, even 
when P(z)  is analytic at z = 1, the solution pair (1, l) is no longer an analytic solution 
pair for the equation (3), but corresponds to a branch point of order two. The solution 
F(z) then has an expansion in terms of (1 - z) 1/2 rather than in integral powers of 
( 1  - z), the first terms being given by 

1 - r ( z )  = ( 2 / / 3 ) ( 1  - z )~ t~  + o ( 1  - z )  ~t2 

where/3 = Zn(n - 1)p. is the second factorial moment of the distribution {p.}. This 
asymptotic form remains valid even under the weaker assumption that the {p.} 
distribution has the first three moments finite. 

Then in place of (6) we have for the asymptotic form of g*(s) 

1 - g*(s) = (2//3)[1 - f * ( s ) ]  1/2 + o[(1 - f * ( s ) ]  1/2. (7) 

Here there are effectively two situations to consider. If  the distribution F(x)  of existing 
crack lengths has a finite mean a, then 1 - f * ( s )  = as + o(s), and from (7) we obtain 

1 - g*(s) ~ cs ~12 as s --~ 0, so that 1 - G(x) ~ d x -  ~l~, where c and d are constants. 
On the other hand, if F(x)  has an infinite mean, and in particular if 1 - F(x)  ~ c x -  ~ 

(0 < ~ < I) as x ~ ~ ,  then we obtain from (7) that 1 - G(x) ~ ds -~12. In both 
cases the distribution is of power law form asymptotically, with exponent - � 8 9  or 
- ~ / 2 ,  whichever is the smaller. 

5. Interpretation in terms o f  energy distribution and b-value 

We now have to ask, to what extent are the observations from laboratory experi- 
ments and seismology capable of interpretation in terms of the above model? To 
provide the link between model and observation we make two assumptions. The 
first, to which we have already referred, is that the energy radiated during a given 
cracking episode is proportional to the total length of crack activated during the 
episode. The second is that the amplitude A of a signal observed at some distance r 
from the source is related to the radiated energy by an equation of  the type 

A ~- f ( r ) E  2j3. (8) 
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A relationship of the general form A = f ( r ) g ( E )  is needed to account for the fact that 
the same form of distribution is found both for the Ishimoto-Iida relationship, where 
the observed distribution of amplitudes is not weighted by a distance factor, and the 
Gutenberg-Richter relationship, where it is. That g(E)  has the particular form E ~/3, 
at least as a first approximation, is the essential content of the energy-magnitude 
relationship 

logloE = 11.8 + 1.5M; 

if we bear in mind that M is an amplitude weighted by a distance factor. It is of course 
debatable whether the latter relationship, derived from seismological evidence con- 
cerning tectonic earthquakes, should be postulated for laboratory experiments on a 
totally different scale of magnitude and using quite different instrumentation. The 
main grounds for such extrapolation is perhaps that the relationship (8) must represent 
a basic physical property of the attenuation. In any case we shall adopt both assump- 
tions faute  de mieux. 

Taken together, the two assumptions imply that if the distribution of total crack 
length has a tail of power-law type, 1 - G(x) ~ c x - L  then the observed distribution 
of amplitudes should have a power-law tail of the form 

1 - H ( A )  ~ dA-b  

where b = 3c~/2, and the constant d incorporates an integration over the volume 
through which cracking takes place. This is a relationship of Ishimoto-lida type, and 
in the seismological context the parameter b can be identified further with the 
parameter in the Gutenberg-Richter magnitude/log frequency relation. 

The main thesis of the present discussion is that cracking will take place according 
to a branching process operating in critical or near-critical conditions. The most 
persuasive evidence that this mathematical model reflects at least some part of the 
physical reality is the coincidence between the b-value predicted for this case, b = 
(3)(�89 = 0.75, and the b-values observed both in the field and in the laboratory. It 
should be noted that the b-value predicted in this way does not arise simply as a 
transformation of some plausible but equally hard to explain assumption concerning 
the distribution of some prior variable. For example, probably few would quarrel 
with the suggestion that if the lengths of existing cracks had a power-law form then 
the energies released when those cracks were activated would also have a power-law 
form; but this argument would simply shift the onus of explanation from the 
Gutenberg-Richter Law in its usual form to the law governing the distribution of 
existing crack lengths. It is at least one merit of the model we have described that it 
provides one mechanism by which a power law distribution of crack lengths can be 
initiated without requiring more than the most general assumptions concerning the 
component distributions. Indeed one may conjecture that it is only the simplest 
example of a large range of processes, all embodying some kind of aggregating or 
linking mechanism, which exhibit an approach to a critical state and a power-law 
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distribution for the sizes of the aggregates produced as the critical state is reached. 
Thus it is probably not necessary to insist on the precise branching mechanism we 
have described to obtain power law behaviour with parameter b near 0.75 as a critical 
state is approached. 

Nevertheless there are some features which are less easily explained by a model of 
this kind. Notable among these is the sharp dependence of the b-value on applied 
stress obtained by Scholz in his laboratory experiments. We are not altogether con- 
vinced by Scholz's theoretical reasoning, but we have no reason to doubt the experi- 
mental work on which it is based. At first sight the present model would seem to 
suggest that at low stresses the energies would be subject to a distribution of exponential 

rather than power law type, and that as stress was increased the distribution would 
approach a power law form with b = 0.75. 

However, this inference does not take into account, firstly, the possibility that even 
in the unstressed state, the distribution of existing crack lengths may have a power law 
form which would be reflected in the form of the distribution of energies; and, 
secondly, the effects of increasing stress on the mechanical properties of the medium. 

In a very broken up or porous type of material, cracking is likely to be more 
frequent, but the lengths of the segments linked together in a cracking episode are 
likely to be small. This situation will tend to produce a distribution approximating 

more to exponential form, or, if a power law form, then with a high b-value. The 
opposite tendency is to be expected in a hard material containing a few long cracks. 
Here the frequency of cracking might be lower, but the distribution of energies should 
have a longer tail, corresponding to a lower b-value. 

With increasing stress, cracks will tend to close up, and the strength of the material 
to increase, thus producing a move towards lower b-values. At still higher values of 
the stress, approaching the fracture stress, the phenomena associated with dilatancy 
will begin to appear. In terms of our model, this would correspond to the approach 
to the critical state. At this stage the linking of cracks becomes an important feature, 
and, irrespective of the initial distribution, the lengths of cracks produced by such link- 
ing episodes will tend to follow a power law form. But the cracks so produced do not 
disappear; they are available to serve as the individual segments of further cracking 

episodes. Thus the constancy of the segment length distribution, which was assumed 
in our previous discussion, is not really valid, but should be replaced by a progressive 
change towards longer cracks, and hence longer tails in the distribution, as the process 
of microfracturing continues. 

These two features together seem to offer, in terms of our model, the most likely 
explanation of the laboratory observations that, at low stresses, some materials show 
b-values as high as 1.5 or 2, while with increasing stress the b-values progressively 
decrease until near the fracture stress, b-values as low as 0.3 or 0.2 may be observed. 

The application of the model in the tectonic environment raises even greater 
uncertainties. New features need to be taken into account: the role played by pore 
pressure in determining the mechanical properties of the rock; the fact that the rock 
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may be subjected to high confining pressures and perhaps high temperatures also; 

the possibility of  large scale inhomogeneities in the medium; the effective unbounded- 

ness of  the medium, which blurs the distinction one can draw in the laboratory situa- 

tion between microfractures and catastrophic rupture of the specimen. At the time of 
writing it is by no means incontrovertibly established that the phenomenon of dila- 

tancy, which offers the most convincing evidence in favour of crack formation at high 

stresses, is a necessary or even a possible precursor of earthquake activity. 
As regards the role of  pore pressure, the simplest point of  view might be that this 

is an effect which enters towards the end of the process of  stress accumulation and 

crack formation, and possibly only on a localized basis. An increase in pore pressure 

following a dilatant period during which the pore pressure was below normal would 

have the effect of  suddenly lowering the strength of the material. This could be inter- 

preted in terms of our model as a sudden increase in the criticality parameter  v, 

transferring the system from a subcritical to a supercritical state. Or it could be that 

the main effect was in terms of friction across existing cracks without necessarily 

affecting the formation of linkages. The net effect of  the interaction with water might 

be to cause fractures to go off 'half-cock, '  in conditions which were just below the 

critical conditions for rock fracture in dry laboratory specimens. Such a feature, 
together with the more obvious point that little fracturing will be observed until 

conditions are nearly critical, might underlie the fact that the range of b-values ob- 

served in the seismic environment seems to be narrower than that obtained from 
laboratory experiments, rarely dropping below 0.6 or rising above 1.5. 

The observed convexity of  log frequency-magnitude plots is also naturally ex- 
plained in terms of a slightly sub-critical system. Perhaps the easiest way to illustrate 

this point, and also the analysis in the previous sections, is by way of a simple example. 
One of the few cases capable of  explicit analytic solution occurs if the distribution {p,} 

has a geometric form, say P(z) = (1 - p)/(1 - pz). Substitution in equation (3) leads 

to a quadratic equation for P(z), to which the relevant solution is 

P(z) = 1 - [1 - 4p(1 - p)z]l12/2. 

The individual coefficients 7~ in P(z) can be found by expansion and are given by 

(2n - 3)(2n - 1). .-3.1 1 (0/2)" 
7~ = n.t- 2-p 

I 
~ l / l - a l 2 0  n 

2p 

where 0 = 4p(1 - p) = 1 - 4(�89 - p)2. The criticality parameter v -- Enp,~ is here 
equal to p/(1 - p), so that the critical case corresponds to p -- �89 In the critical case, 
therefore, 7, "~ c. n -  312 and ~k -_, 7~ ~ d- n -  l/z, in accordance with the conclusion of 

our general analysis that in the critical case the tails decay according to an inverse 
power law with parameter �89 The notable feature, however, is that even in the sub- 
critical case the distribution approximates closely to a power law form for a consider- 
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able range of values ofn.  Thus, for p = 0.45, we find v = 0.82, which is already quite 
some distance from criticality, but 0 = 0.99 so that the deviation from the power law 
form would not become appreciable until after the first hundred terms or so. In this 
case a graph of log frequency versus log n (corresponding roughly to magnitude) would 
show a considerable straight line portion, then a final section steepening downwards 
as the geometric term became dominant. A similar qualitative behaviour would be 
expected from the energies. 

6. Comparison with Scholz's analysis 

The analysis given in the preceding sections starts from a similar general picture - a 
medium with random flaws or inhomogeneities - to that of Scholz in his BSSA article 
(ScHoLZ, 1968a), but differs both qualitatively and quantitatively in the form of its 
conclusions. In this section we shall try to support our belief that the major reason for 
these differences can be traced to a faulty assumption in Scholz's analysis, and that 
if this fault is corrected, the two models lead to substantially similar qualitative 
conclusions. 

The major difficulty we find is with the argumentation leading to equation (4) in his 
paper. Keeping to Scholz's notation this equation reads 

g(A)dA = 1 - F(S, ~) dA. (9) 
A 

There is some difficulty even over the definition of the quantities g(A) and F(S, ~) 
appearing in this equation, but we understand that g(A) refers to the conditional 
probability g(A)dA = Prob (crack terminates when its area lies between A, A + dA, 
given that its area at least reaches A), while F(S, ~) denotes the probability that the 
local stress will exceed the average local strength S when the overall applied field has a 
value ~. If  these interpretations are correct, then g(A) is nothing other than the hazard 
function for the distribution of the area of the crack, and can be written in the form 

g(A) = h(A)/[1 - H(A)] 

where H(A) = (~ h(a)da is the cumulative distribution function of total crack area. 

Substituting this expression in (9) and solving the resulting differential equation for 
H(A) yields 

1 - H ( A )  = A -  t l -  F(s,~)~ 

i.e. a power law form for area distribution. From this point assumptions similar 
to those used in our own analysis suggest that this result may be considered equiva- 
lent to a Gutenberg-Richter frequency-magnitude relation with parameter b = 

[1 - r ( s ,  ~)]. 
We do not quarrel with this part of  the analysis, but with the form of  equation (9) 

itself. It is only consistent with the whole tenor of the discussion that the net local 
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stress (the difference between the local stress and the local strength) should be con- 
ceived of as a quantity 6P(x) which varies randomly, but according to some specified 

probability laws, from point to point of the medium. (More precisely, the family 6e(x) 
constitutes a random field.) Presumably also the crack will only cease to spread when 
the local stress exceeds the local strength at all points x on the boundary ~A of the 
crack. But the calculation of this probability involves the consideration of the joint 
behaviour of the whole family 6#(x) for x c ~A, and we do not see how it can be reduced 
to the right side of (9) where no joint distributions are involved. Indeed, the calculation 
would appear to be a formidable problem in general, involving not only the area of 
the crack, but also its shape, and not only the distribution of 6P(x) at a single point 
but also the continuity properties of 6e(x) as x varies round the boundary. 

Some indication of a more likely form for the right-hand side of (9) can be drawn 
from the analogy with high-level crossings for a stationary stochastic process (see, 
for example, CRAMER and LEADBETTER (1967)). Under wide conditions it is known that 
such crossings can be approximated by a Poisson process. The probability of no such 
crossings would therefore be given by an exponential with parameter proportional to 
the length of interval considered. This suggests that, if anything, (9) might be replaced 

by an equation of the form 

g(A) = exp I-AlkAli (10) 

where I~A[ refers to the length of the boundary, and )~ is a positive constant represent- 
ing the average number of times the local stress exceeds the local strength along a line 

of unit length. Even this approach cannot be considered fully satisfactory, however, 
for it cannot be continued without introducing some further assumption concerning the 

shape of the crack, while in fact the shape will be determined by the same probabilistic 
mechanism governing the rest of the process, and so should not be treated as an 
independent aspect of the problem. Nevertheless, some conclusions can be drawn 
from (10), and in particular it follows from that equation that the crack cannot grow 
in a self-similar manner. For  if it did we would have (assuming a plane crack) 
[~A Icc A 1/2, and the right hand side of (10) would be an integrable function, corre- 
sponding to a distribution with a positive probability of taking an infinite value. Thus, 

no matter how small the applied stress, if cracks grew in a self-similar manner the 
medium would always be in a '  supercritical' state in which every crack, once initiated, 

had a positive probability of  growing indefinitely. 
Conversely, since only the form g(A) oc A -  1 leads to a power law distribution for 

the total area, any model leading to such a law must evolve in such a way that 

g(A) = E(e -xleAI) ~ e/A 

where the expectation is taken over all shapes having total area A and weights them 
according to their relative probabilities in the evolution of the crack. It is this ex- 
pression which seems to us to come closest to embodying in a more rigorous form the 
idea behind equation (9), but it is not easy to see how the asymptotic relation could 
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be deduced from first principles, nor how the constant c could be related to the 
probability structure of the process. In a very approximate sense, it suggests that for a 
power law to emerge, the boundary should grow roughly according to the logarithm 
of the area. 

Another method of gaining insight into the likely behaviour of the model is to 
formulate the analogous discrete model, following the general precept that proba- 
bilistic arguments are often easier to handle in a discrete setting. For example, we 
could consider the material as represented by a family of nodes lying on a square 

lattice. We consider a crack propagating from node to node, and suppose that it can 
link from a given node to a node adjacent to it with probability p, where p corresponds 
to the quantity F(S, 6) in Scholz's analysis, and could be interpreted as the probability 
that the local stress along the link exceeded the strength of that link. As a first approxi- 
mation, it would be natural to suppose that the individual links were independent. 
Then the probability that the crack will terminate after linking a total number N of 
nodes will be peN, where ~N is the number of links leading from nodes within the 

crack to nodes outside it, clearly, this relation provides the discrete analogue to (11). 
We may~ however, proceed further in the discrete case, for the process we have 

described is nothing other than a 'percolation process' developed by HAMMERSLEY 
(1957) and other writers as a model for the percolation of fluid through a porous 
medium. The problem we have been concerned with, of finding the total area of the 

crack, corresponds in the percolation process context to the problem of finding the 
total 'wet area'  when liquid is introduced at one point in the medium. Unfortunately 
the percolation processes are more intractable analytically than the branching pro- 
cesses we discussed earlier. Nevertheless, some facts are known. For  example, it is 
known that there exists a certain critical value Pc of the probability p, determined by 
the type of lattice structure, such that for p < Pc the total crack size is finite with 
probability one, and for p > Pc there is a positive probability that the crack will 
propagate indefinitely. I have not been able to ascertain whether the asymptotic 
distribution of crack size follows a power law form in the critical case, but by analogy 
with the branching process model one might conjecture with reasonable confidence 
that it did, and even that the index would be - �89 corresponding to a branch point of  
order 2 in the generating function. 

7. Conclusions and acknowledgements 

(i) From a qualitative point of view, perhaps the most important feature which 
emerges from the analysis is the likelihood of a critical stress state beyond which any 
small rupture may propagate catastrophically. The existence of such a critical state is 
not a feature confined to the branching process model, but can be expected in a wide 
variety of  processes of agglomeration. 

(ii) For  the branching process at least, the asymptotic distribution of  crack sizes 
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when the critical state is approached follows a power law form which, under simple 

assumptions relating the size of  the crack to the energy emitted and the amplitude of 

the observed signal, leads to a Gutenberg-Richter relation with parameter  0.75. 
(iii) A possible limitation of the model is that it does not predict a direct depen- 

dence of b-value on stress, but rather a dependence of b-value on the stress history, 

insofar as fissures produced at earlier stages in the process become available as elements 

in the development of  a larger fissure. This difference with Sct4OLZ'S (1968a) results is 

attributed to an unjustified step in Scholz's analysis rather than to a fundamental 

difference in the models. 
(iv) The analysis does not go far enough to provide information about the dynamics 

of  crack propagation. Indeed, the 1-dimensional cracks envisaged in the discussion 

should be regarded as a schematization of the physical picture rather than an attempt 

to model it realistically. The point is that any model of  crack propagation in which 

coalescence and branching play dominant roles is likely to lead to similar qualitative 

results concerning the distribution of energies of  individual cracking episodes. 

(v) The possibility of relating the Gutenberg-Richter law to a branching process 

mechanism was raised in a tentative fashion in my review paper (VERE-JoNFS, 1975) 
presented at the 10th Symposium of Mathematical Geophysics. I am grateful to a 

number of colleagues, particularly to Dr. Colin Atkinson at Imperial College, London, 

for discussions which encouraged me to follow up this idea and relate it to the results 

of laboratory experiments on rock fracturing. 
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