185

Gravitational Coagulation of Charged Cloud Drops

in Turbulent Flow

By Lev M. LEVIN and YURI S. SEDUNOVY)

Summary — Gravitational coagulation of particles in turbulent flow is investigated with respect
to the electrostatic forces. As turbulence mixes particle trajectories at large distances, its account
reduces the consideration of drawing particles together till some definite distance. Taking into
account hydrodynamical forces of interaction, series converging faster than HockING's one and
their more exact values are obtained. For electrostatic forces series with better convergence are
also obtained. Equations of moment were solved numerically on electronic computer BESM-2.
Results of collection efficiency computation are given.

Studying the mechanism of cloud drop formation is very important for an under-
standing of physical processes leading to cloud formation. Numerous investigations
of this mechanism showed that at present it is very difficult to explain the formation
of a wide droplet size spectrum (with diameters 4 from 1 to 30 — 40 y) at a compara-
tively short period of time (about 20 -+ 30 minutes). The point is that the growth of
drops by condensation must have brought to the appearance of a narrow droplet size
spectrum as such a growth rate of drops rapidly decreases with the increase of their
diameters.

Theoretically growth of drops by coagulation either impossible for drops with
d < 30 =~ 40 yu (purely gravitational coagulation; [1, 2, 3])2) or effective only for
drops with d <. 5 = 7 p (electrostatic coagulation at mean values of drop charges
existing in clouds at the initial stage of their development: [4]). A number of investiga-
tors studied effects of turbulence on coagulation of cloud drops. They obtained the
value of growth rate by coagulation with an accuracy to unknown constant coeffi-
cients [5, 6, 7, 8, 9. Lately one at the authors made accurate calculations of mutual
velocities of aerosol particles in the turbulent flow [10, 11, 12]. On these grounds
precise coefficients of turbulent diffusion were determined [10, 11]. Calculations of
cloud drop growth rate by the known turbulent mechanism of acceleration and by
turbulent diffusion confirmed once more that velocities of cloud drop spectrum
formation observed in nature could not be due only to these growth mechanism [12].

In particular, this is connected with the fact that at small distances between drops
turbulent diffusion is small (it is effective at long distances) while the picture is quite

1) Hydrometeorological Service of the USSR, 12 Pavlik Morozov Street, Moscow, D-376,
USSR.
2) Numbers in brackets refer to References, page 196.
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the contrary for other coagulation mechanism—they are little effective at great
distances.

In the present paper we tried to estimate the joint effect of turbulent, gravitational
and electrostatic coagulation on cloud drop growth rate. This estimation was carried
out for two-layer model. The space beyond the larger of coagulation drops is divided
into two parts by the sphere the surface of which is away from the drop at a distance
equal to turbulent free path length /). Beyond the sphere the main mechanism of
approach is turbulence. It provides fast approach of small drops with comparatively
large relative velocities to this sphere. Within the sphere movement of particles
relative to one another takes place under gravity, electrostatic and hydrodynamical
interactions. As movement occurs within the sphere, when the distances between
drop surfaces A are comparable with drop sizes. expressions for the given above forces
must be thoroughly considered for correct formulation of the task.

Figure 1
Bispherical coordinate system

To describe electrostatic interaction between two charged drops let us introduce
bispherical co-ordinate system in which surfaces of both drops correspond to the co-
ordinate values

po=p and  po=pe(m >0; us<0).
Then
2rRichum =+ R — R}, 2vrRachus=1r*— R} + R2,

where 7 is the distance between drop centers {r = Ry -+ Rz + 4).
For coefficients of capacity ¢;» connecting the drop charges ¢1 and g2 with their
potentials V1 and V3 by the formulas

2
k=1

3) By free path length we mean a distance at which drops must disperse in the flow lest their
relative velocites in the initial and finite moments should correlate. Value I; ~ 1.5 (R; + Rp)
where Ry, Ro—the radius of the larger and smaller drops [12].
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the following expressions take place [4]:

= 1 — o2 ydm-1

Cz'i — Rz(l . vf)”ﬁ‘;.’ (7)3 %zﬁzﬂ)m (T—:U—%-MZT)OTW)— (7/ = 1, 2) s (2)
Ry Rs o0 1 — y4m+3
Cio=Can = — - — %“‘)wé wiEm8m (1 — u?mH2) (1 — y2mtl) 2

where
=iy ~! .
vy = 6" vy = gl g = s

Electrostatic force of interaction of two charged spheres — F, can be represented by
an equation of the form (4):

Fo=22flr a, 1), (3)

where

flr, %) = 1+ hir, a) + % b{r, ) + — (7, a)

. 2 dé‘]_z y2 d522 1 2 dSn (4)
=" +x7 ar ¥ 2 ar
Here a = Ro/Ry < 1; x = — ¢2/q1; Sir-coefficients of induction determined by
2
szZSlkqh (1:1,2) (5)
e |
From the equation (1) and (5) we obtain
1 1 ‘611 C12
su=¢2d,; Sw=-cud;; Si2z= — (2 5;1 =s21; Oc= : (6)
Co1 Coz

Computations showed that the series (2) as well as the series for dSix/dr (by these
series (2) and with the help of (6) the derivatives dS:x/dr entering the (4) should be ex-
pressed) converge very fast even at the distances between drop surfaces 4 ~ 0.01 R»%).

This allowed us to program effectively expressions for electrostatic forces on the
electronic computer BESM-2. Examples of values of functions /; computed by the
above method are given in table 1.

We consider aerodynamical forces acting on drops in the Stokes approximation
because according to our task we shall deal with the drops having Ry << 20 - 30 p
and at A << 2 = 5 R;9).

In the Stokes approximation aerodynamical forces fi and f» acting on drops are
linearly related with velocities of drops moving relative to the air. We shall consider

4) For example, to compute /; with an accuracy to0 0.1% at 4 = 0.01 Ry it is necessary to take
allin all 6 to 7 terms of the series (2) and their derivatives.

5) The second condition is very essential because Stokes approximation is true not only when
the REYNOLD’s number 2 Ry v/v is small but also when 2 #, v[v is small [16]. Here v is the drop
velocity, v the kinematic viscosity.
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drop movement on the vertical plane. Then in Cartesian coordinates connected with
center line (axis 0 #-along the line of center, axis 0 #-normal to it) the relation f; to v;
can be expressed as
Jin = <di1,n Vi + @a Vgu) 6 7T 9 Ry, .
(t=1,2), (7)
S = (@, vy F @y, 09) 6T Ry,

where a; , and a;;, -functions of », R1, Ra, y-viscosity of the air.,

The purpose of a great number of theoretical papers and some experimental works
was devoted to find 4, , and a;;, ,. {13, 14, 15, 17, 20, 21]. For the case when movement
takes place along the line of center v1, = van = 0) the task has axial symmetry and
the exact solution is obtained for it. This task was first solved for the case vi; = v2; by
STiMsoN and JEFFERY [15].

For arbitrary values of vi; and vs: PSHENAY-SEVERIN obtained 4, , {17] which
can be represented in bispherical coordinates by the following way®):

an,t:%shmi’z‘lm{Z @m—1) @m+3) (exp[— @m + 1) pa]
—expl— 2m 4+ 1) ]) — 22m + 1) 2m + 3)
< sh{(m+ ) (o — pa)] exp— (m — 3) G + o]
—22m 4 1) @2m—1)
1

X sh [(m — 7) (1 — Mz)] exp [—— (m + %) (w1 + ,uz)]} ; (®)

fyy, = % sh Mlg A {16 exp [f (m + %) (m — MZ)]

X sh[(m + %) (g — Mz)] T+ (2m 4 1)2 sh{ur — po)

[((2m + 3) exp(u — p2) + (2m — 1) exp(— tu -+ ue)]

L @m1)2mt3) @m—1) (sh2M2—sh2/.L1)},

where

A, - m(m -+
" (

@m+3) (2 ; ) {4 sh? [(m + %) (ur — Mz)] — (2Zm + 1)2 sh?(u — #2)}_1 )

m

Functions as, , and a,; , are obtained from a4y, , and a5, respectively by substituting
w1 for — us and wa for — w1 . For case when vs, 7 0 a number of authors obtained the
following series for functions a;,, and ay, , [3, 20]:

©o

Ry Ry
Z 1 ,,y_}_yz - (9)

6) 1t’s a queer thing that just the same solution of the task was published in 3 to 5 years by
BRENNER [18] and MauUDE [19].
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In particular, HockiNG [3] obtained expressions for a4y , and a; , accurate to the
terms O(r—7) (9). We compared results by HockING with the exact formulas by
PSHENAY-SEVERIN,

For this purpose coefficients a,, ; were computed from the formulas (8) and from
Hocking's series. These computations showed that at small 4{4 << 0.5 Ra). HOCKING's
expressions led to essential errors in determination of a4y , (figure 2 and table 2). This
is connected with slow convergence of series (9). At the same time we noticed that
when determining vy, and vi; from the system (7)

vin:(b JL+6 ~—fz-n—),]

v 6 gn R i2n g x Rs
T i (=12, (10)
S (b- _he Ly _f%’_)
i Lt 6 g Ry TRt 6 R )

functions &, , and &, , can be obtained for which series of (9) type converge signifi-
cantly sooner than for a; , and a,,. This allowed us within the limits of the same
approximation that HoCKING obtained (0(r-7) to find expansion in series of (9) type
for by, , and by, ;:

3 RyR} 17 Ry RS _
b=l =gt g e T 00,
3 Ry | RZ(RZ—Q—RZ) 3 RIRE _
“hua=g T gm T gy 1007,
15 R; R} Ry R 15 R} R} (11}
1 1 R3 5 ; _
— by =1— gt -2t 0,
3 Ry Ry(R?LR) 75 R3 RS _
by =5 — 553 + T 0

Functions by, ¢ and by, 4 are obtained from b,y ¢ and 0y, £, respectively by transposition
of Ry and R;.

Hence we obtained expressions for a; ;7).

Ay = bgzz 6:—1; Aips = — blz,z 521;] ‘ by, bm,zg ‘
Js = | | . (12)
gy = — b21,; 5;1} Aoy ¢ == bll,t 5;1 . ‘ b21,t b22,t]

Functions a,, , obtained from formulas (12) approach to the exact solution of (8)
at small values of the distance 4 better than that obtained by Hocking. This is due
to the fact that in formulas (12) we compute determinants ; and §, substituting there
values of by ¢ from (11) while HockinG when computing these determinants limited
himseli to the terms 0 {#-7). Calculations showed that the obtained approximation
proved to be much better for drops of comparable sizes (Rz/R; > 0.5). This illustrates
m figures 2, table 2. The values of 4 = (@1 ; + @1y,) are given in table 2, for the case
when two identical drops move along the center line at one and the same velocity .
The values A characterizes the relation of the force acting on one of these drops to the

) Functions a;; , are expressed by by, ,, from the formulas similar to (12),
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force acting on any of these drops (when it is considered isolated) moving at the same
velocity. As it is seen from table 2, at 4 << 0.1 R the force estimated from HoCKING's
formulas is 1.5 to 2.5 times less than the exact value while the value obtained from (12)
differs from the exact one by 49,.

Table 2
AR 0 0.1 0.2 0.5 0.8 1.0
A (exact) 0.645 0.655 0.660 0.675 0.692 0.705
A (HOCKING) 0.257 0.440 0.525 0.636 0.675 0.695
A (formulas (12)) 0.617 0.630 0.642 0.670 0.688 0.705

As it was demanded by the task stated in the beginning of the paper we considered
a system of dimensionless equations of movement for drops with electrostatic, aero-
dynamical forces and gravity act upon (the coordinate system is shown in figure 3):

dwy o gl — xt z2fi) .
I 7 1 —— t a5 (13a)}
duy . xlh + 26 3 x flr) |
I-—dT = ———‘7 + as o o ; (13b)
dw 2ly — xty zf{r) .
I d: =1— 2,127 — P (130)
dug xla+ 2tk % flr) |
17 - aty e (134)
d
79; = Up — Uy ; (13e)
d
-‘g:wz——wl; (13f)
where
4 dzi

2= 29— 41, X=X — x1, ¥2= 4«2+ 22, u;= LW =

d dt

%1, %1, %2, %2 Cartesian coordinates of drop centers (0 z is vertical), @ = Re/R1 < 1:
I = 4 g% R? g/81 5 is an analogue of the Stokes number8). « = — g1 ¢2/6 7 1 R3 a® v1s
is a parameter characterising the relation of electrostatic forces to aerodynamical ones,
o is the drops density, g the gravity acceleration, vis = 2 g R2 g/9 9 the sedimentation
velocity of the larger drop.

8) It is easily noticed that I = 11 v1s/R1 where 11 = 2 ¢ R$[9 5 relaxation time for the larger
drop. The Stokes number is k = 7a(v1s — vss)/R1, where 72 = 2 g R}[9 #-relaxation time for the
smaller drop, ves = 2 g RE g/9 1 = v15 - a®-sedimentation velocity of the smaller drop. As
Tg = a? Ty, Stokes number x = I a?(1 — a?).



192 L. M. Levin and Y. S. Sedunov (Pageoph,

Functions
i ==y ay,— w4y, {(14a)
= — %nl aﬂ,n - Mng aiZ,n , <14b)
"y, = % (i x + wiz); (14¢)
Uy = iz —wix); (=12, (144)

where a,, , and a,, , are determined by (12} and (11).

8y a2 ,5
i R 2~ 15k,
gxact valug
~~~~~ HocKinG
' ~ — = — (18 gpproximarion

4 L
3
2t
i

i A . .y
y 2 7 15 A

Figure 2

Dependence of coefficients a;x ; on the distance A between drop surfaces

This system of equations (13) was programmed for the electronic computer
BESM-2 and was solved under the following initial conditions:

at t=0; x=1x; z2=12;, Wio=1; wwo=0; we =a?, 1w =20. (15)

The grazing trajectory of gravity center of the smaller drop tangent the sphere 0
with its center in the larger drop center and with its radius » = Ry + Rs (in dimen-
sionless values » = 1 + a) was determined for the given values of 1, a, z0. For this
purpose the trajectory of drops was determined at some arbitrary value of the initial
impact parameter xo = x,4. If this trajectory of the smaller drop went past the
sphere 0, the impact parameter two times decreased. If the next trajectory went past
the same sphere, the impact parameter two times decreased again., And this was
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repeated until the trajectory intersected the sphere. Analogous to this if the initially
taken trajectory of the smaller drop intersected the sphere, the impact parameter two
times increased.

If the next trajectory intersected the same sphere, the impact parameter also two
times increased. This was repeated until the trajectory went past the sphere 0. After
several of such trajectory computations we obtained two values of the impact para-
meter (xo = %, ; and %o = %4 ;).

At one of these values the trajectory intersected the sphere and at the other it
went past the sphere. After it a trajectory was calculated with xp = x5 ;.7 = 1/2
(%0,i1 + %o ;). And then out of these 3 trajectories a pair was chosen one of which
intersected the sphere and the other went past it. Such an operation continued until
Xo,i41 — %p,; did not become less than some value given beforehand by the necessary
accuracy of collection efficiency calculations.

Having found in such a way the impact parameter for the grazing trajectory
— %y we determine the collection efficiency E of smaller drops by greater ones
according to the formula

E=ux,. (16)

Figure 3
Geometry of the considered problem

The collection efficiency was calculated for three cases. When calculating trajectories
for the first case we assumed the impact parameter 2o of drops very high (z = 50)
and determined the collection efficiency of gravitational coagulation £, which was
calculated by a number of authors including Hockineg. To determine E.q of turbulent
gravitational coagulation on the base of the two-layer model described in the beginning
of the paper it was assumed

Zo=1It+ R+ Re=25 (Rl + Ry) (17&)

or in dimensionless values
20 =25(1+a). (17b)

On the base of the same two layer model the collection efficiency Eiey of turbulent
electrostatic gravitational coagulation was determined. For its calculation electro-
static interaction of opposite charged drops took into account.

13 PAGEOPH 64 (1966/11)
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Calculated values of collection efficiency are listed in table 3 and figure 3. Collec-
tion efficiency values calculated by HockING and LANGMUIR are also given for com-
parison®).

Calculations were made at the following values of parameters: ¢ =1 ¢ - cm3;
g =980 cm -sec?; 5 =18 -10"4P (R = 25and 20 u: [ = 23.3 and 11.9, respecti-
vely). To calculate the mean value of the parameter o == «, characterizing electrostatic
interaction of particles the values of ¢1 and g2 charges were assumed equal to the mean
value of cloud drop charges determined by [4]:

lg|=104R (in CGSE).

Table 3
Ry=25pu;1 =233 Ry =20pu; 1 =119
EQ’
ajk Ey E, £, LaNe- afE gy E, Etog
(20 = 50)  HOCKING MUIR (50 = 30} (x = a)
0.25 < 108 < 10-3 10-3 0.05 045 < 10-3 < 104 0.02
0.30 0.27 0.033 0.059  0.16 0.50 0.089 <104 0.10
0.40 0.79 0.29 0.33 0.34 0.60 0.24 ~ 104 0.25
0.55 1.29 0.61 0.66 0.47 0.70 0.10 < 104 0.12
0.70 1.49 0.69 0.80 0.51 0.75 < 1073 < 104 0.02
0.85 0.79 0.19 0.44 0.46
0.88 0.26 < 104 0.26 0.41
0.90 < 104 0.38

From table 3 and figure 3 the following conclusions can be drawn:

a) Refinement of expressions for hydrodynamical forces carried out in this paper
is essential at small values of 4(R < 20 ) and it slightly changes the values of the
collection officiency in comparison to these calculated by HoCKING if £y is higher than
0.3 to 0.4.

b) The collection efficiency E;, for turbulent gravitational coagulation is signi-
ficantly higher than E,. But values of critical parameters a = Ra/R, beyond the
limits of which (¢ > @mar and a < amis) coagulation is impossible (E == 0} are not
changed by turbulence. It means that critical sizes of cloud drops obtained taking
turbulence into account are so that drop growth by coagulation must occur only for
drops with the diameter & > 40 . Thus, the account of turbulent does not take off
the problems which were put in the beginning of the paper.

c) Due regard for electrostatic forces does not change the situation. Electric
charges mean in magnitude in fact do not effect!0). Charges 3 to 10 times higher the

9) Several calculations made by us from Hocking’s formulas gave values of E, which agree
reasonably well with £, values reported by Hocking.

LaNGMUIR's calculations are given by us as functions of and & due to the fact that the Stokes
number k = I a?(1 — a?).

10) The case when g is very close to 1, demands additional consideration. But even now it is
clear that it cannot change the given conclusion.
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mean ones (x == 10 & and o == 100 «) are necessary for significant increase of E to take
place (E¢eg is considerably larger than ;). However, the appearence of such charges
in non-thunderstorm clouds is very unlikely1).

Summarizing all this the following can be said. In the considered model at the
assumed boundary conditions turbulence provided approach of drops to each other
at small distances with relatively high velocities.

Therefore results obtained with the help of computations based upon this model
allow to conclude that turbulent diffusion even together with gravitational and
electrostatic coagulation cannot provide growth with R < 18 — 20 y by coagulation.

[t 2, ~25(1+a), a0

17} S—— 7, ~25(1+d), @G

— ==~ LANGMUIR .
o g ~250+a)a- 10
o 3 -25(%6) - 1006

a5y °
/’,//'\ \\\\
s .
//@/‘ \A@ \\
Il L Y 1 z V7 L \AA
0 o1 42 83 04 05 08 47 08 09 d
a) R1=20y‘
£ 2,-25(1+8); =0

— - ~—HGCKING; 7, =50

Bl —z50
——~——[ANGMUIR
10
05¢
y /

0 L P4 1 L I L .

o ar 0z 03 04 45 48 07 g
b) Ry =25
Figure 4

Dependence of collection efficiency on the ratio a of drop radii

11) In thunderstorm cloud drops are so large that various kinds of coagulation and purely
gravitational one among them are possible in them.
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We think that formation of rather wide spectrum of cloud drops and appearance

of large cloud drops (with R > 25 to 30 p) are connected with condensation processes
occurring under of fluctuation of main parameters: flow velocity, temperature and
supersaturation. This demands special investigations.
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