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The Propagation of Surface Waves in Elastic Mediums
with Slightly Curved Boundaries of Sinusoidal Type

By MrinaL K. Paur?)

Summary — The effect of slightly curved boundaries (free surfaces and interfaces) of the elastic
mediums on the components of displacement of a particle in a medium due to the propagation of
the surface waves has been investigated in this paper. It has been found that along with the usual
displacement components for stratified boundaries (designated here as primary components),
there exist secondary displacement components arising from the presence of curvature in the
boundaries. They are constituted of different harmonic components with their amplitudes propor-
tional to the parameters which measure the extent of curvature of the boundaries. The wave
numbers of these harmonic constituents are related to those of the primary components in a defi-
nite way decided by the shapes of the boundaries.

Because of its closeness to the most of the natural situations, the study of the
effect of the non-planer boundaries on the propagation of surface waves in elastic
mediums has gained much of its importance.

As the analytical treatment of the irregularities of the surface in general encounters
formidable mathematical difficulties, the most of the investigators concentrated their
efforts with considerable successes in considering the cases of slightly curved surfaces
of different types. While Sato [612) studied the propagation of Love waves in a layer
with an abrupt change in thickness, DE NoYER [2] considered the samein a layer over
a half-space with a sinusoidal interface and Kvo and NArE [4] investigated the pro-
pagation of Rayleigh waves in a similar model. On the other hand MAL [5] and ABUBA-
KAR [1] also considered the effect of the curved boundaries in the presence of buried
line sources. All these investigations were led to the development of the frequency
equations of the corresponding wave motions. We, however, propose to examine the
problem from a different stand point, viz., to consider the effect of the curved bound-
aries on the displacement components. We anticipate that the displacement vector
at any point in the medium shall have two parts. The first one is the same as that in
the case of plane boundaries while the other corresponds to the additional effect due
to the presence of non-zero (but small) curvature of the boundaries. Naturally the
standard frequency equation of the stratified situation will be associated with the
first type of displacement. Thus, what remain to be determined, are the amplitudes
and the wave numbers of the additional displacement terms. It will be found from
the analysis that follows that they depend on the aforesaid frequency equation and
the geometrical shape of the curved boundaries apart from the physical parameters

1) 23, Khudiram Bose Road, Calcutta—6, India.
2) Numbers in brackets refer to References, page 117.
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{densities and elastic constants) of the mediums concerned. This idea has been for-
warded by HaxpeELMAN [3], although the working out of the problems in the parti-
cular cases of our consideration differs in some respect from the same suggested by him.
The proposed analysis is as follows:
Referred to a rectangular Cartesian system of co-ordinates (x, y, 2), let

= e f(a) M

be the equation of a slightly curved surface (of cylindrical type) where ¢ is a small
quantity of a first order and f{(x) is finite in — 0o < x < oc.
Then 0, the angle that the tangent line to the surface lying in the x-z plane makes
with the x axis, is given by
0 ~tanf = & f'(x) (2)

assuming, of course, that f'(x) remains finite in — co < x < co.

Now we assume #’ axis in the direction of the tangent and 2’ axis at right angles
to this in the x-z plane.

Then the stress-components of our interest, referred to this new set of axes, are
related to those referred to the old set of axes as

Z, = sin? Xy + cos?0 Z, — 2 sinf cosB 7 ,
2, = sinfl cosl (Z, — X4) + (cos?f — sin2f) 7, (3)
Z, = cosf Y, —sinf X, ,

where the notations convey their usual meanings.
Now as is evident from (2) that f is a small quantity of the first order, the relations
(3) reduce to

Z =27, — 282, |
I
7, = 0(Z, — Xa) &+ Zs, : )
i
Z, =Y, —0Xy. |
For considering Rayleigh waves, we have

ou dw -
o ==y =0 ©

~o

(u, v, w) being the displacement components of a particle in the medium.
Then we have

Xz:(l+2,u)%—j—2%—lj,
ou dw
Yo=1(5+ 5
Zo =2 % itz %, (6)
Xy=Y, =0,
ou 0w
Zx :‘LL (35‘+ —a—x—)
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and hence
z, —l——(—(l—i—Z,u ——20 (bz 1 M)
. dw  du du | ow 7
Ze=20u (57— 57) T (5 +50) )
Z;:O. J
Similarly in the case of Love waves we have
u*%: 0 (8)
and hence
Xx-—Yy:Zz: J.LZO,
v
Xy =55 9)
v
Yz__lll,y
and
ZL=27,=0, 1
10)
;L ov ov (
Zy=ul5 —05) J

We shall, herefrom, consider separately the {ollowing two cases in some details:

1. Rayleigh waves in a half-space with a sinusoidal free-surface.

2. Love waves in a layer with a sinusoidal free-surface and a similar interface be-
tween the layer and the underlain half-space.

Case 7: Rayleigh waves in a half-space with a sinusoidal free-surface.

Let
z = gsinm x (11)

be the free-surface of a homogeneous elastic half-space with ¢ and x as its density and

modulus of rigidity.
Comparing (11) with (1) and making use of (2) we find that in this case

f = emcosm x (12)
and hence
Z;,:),%—J—(Z—Q—Z,u)«—Zemcosmx(%Z—}—%;i), ]I
Z,’,:Zsm,ucosmx(—b(%—%)+M(%+%§), ( (13)
|

Z,=0.
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Now the equations of motion of a particle for the propagation of Rayleigh waves
are given by

02 ‘ 02 02 02w
05 = V20 G g + 0 )
02 24 02w 02w (14
w 2 | U
Q%E = (44w )bxbz-i—MWJr(;LTZ’u) 022’
Let us assume
(,w) ~Exp{vz+itlwt—kx)}. {15)
Then substituting in (14) we get
{ow?— A+2wWrR +uvtu—1tkvd+uww=0, 6)

thydA4+pu —{ow® —pukt+-A+2u1r2w=0,
whence eliminating «/w we get
o — (A 2u) B w2} {gw? — w ke + (A4 20) ) + B2+ 0 =0, (17)
which yields four roots for , viz., + v, 4 v, where

9 w?
l+2u’

vi = k2 —

0 w?
21

Thus the general solutions for # and w become
uw = 1[k(A & 4 B ™) — wa(C ¥ — D e7™)] " | (
| 19)
w = [ﬁ Vl(A 61112 — B e—vlz) + k(c i + D 64/22)3 gz(wl—kx) )

Now if we measure z positive in the downward direction (i.e., within the half-
space), then from the condition of surface waves (i.e., the vanishing of the displace-
ments at an infinite depth) we shall have

w =ik B e 4y D ¢ R l
: (20)
W —= [1)1 B e—vlz + k D ewﬂ} Ez(wt/kx)

bl

where »1 and vz are the positive roots of the corresponding equations given by (18).

The boundary conditions which are to be satisfied by the displacement com-
ponents are the vanishing of the stress components given by (13) at the free-surface.
These yield the following equations

ou du

l%+(ﬂ+zﬂ)%~28mMcosmx(a_Z”_+ ()M):O,
(%_’_Q)—Zemcosmx(ﬁ_ )

.
P21
,‘

at z=¢sinm x,
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which, correct upto first order of ¢, are the same as

PO +20) 5 =0, 1
a [ at z = esinm x . (22

W Ou 3 ow
+——28mr‘osmx(ax ()Z)fO,

If we develope TaYLOR’s expansion of (22} in the neighbourhood of 2 = 0 and
then preserve terms correct upto first order of ¢, we shall then have

01 . ow | . 02 .
Z%#— (2 —{—Z,u)Tf~;- .ssmmx{)hjx—g;—i— (A -+ 2w 022}:—- 0,

[ 0% W}_ , @zwﬁﬁ_ (23)
()z -+ b +asmmx1() Py + 352 2emcosm x Y 5 =0, l
at z2=20. J

Let us now assume

u o= Uo + €U,

W= wy -+ £ w1,

where (1o, wo) are Rayleigh wave-displacement components in the case of a half-space
with a plane free-surface (i.e. & = 0) and (1, w1) are the perturbation terms in the
displacement components due to the presence of small curvature of the free surface
(i.e. & # 0, but small).

Evidently (uo, wo) satisfy the differential equations

()2140 () Uy . Ozwu
0 e = (2 S u S ()
02w0 ()2%0 ()'Zwo ()271/0 (25)
03 = (4 + u) % Dz + @ FY%] + (A +2u 972
and also the boundary conditions
A ()auo -+ (A—!—2/L) wy :O,l
at z=0 (26}
()”LU() e ()ﬂ o O
ox ' 0z 7
The expressions for uo and wy are readily obtainable. They are
: 3 Zriy ~vpz | T(wt-kx
ugzszo[e ~k2—j_—;ge ]g(ik)’ (27)
~Py4 242 —vo2 | i(wi-kx
wO:leo[e *me-]g( k) (28)
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with
(B2 + 222 —4dpp k2 =0 (29)

as the frequency equation of the corresponding motion.
Now substituting (24) in (14) and making use of (25), we obtain the differential
equations to be satisfied by #; and w; only, which are

0 Y 2 Py
0 Se =2 S+ uSa + 0+ 055
(30)

02 Wi ()2741 02 W1 ()21?11

YN _(l_l— )()x()z +MW+M+2M) 0z2

Similarly the boundary conditions to be satisfied by #: and w: can be developed
by substituting (24) in (23) and then making use of (26). They are

Oul - 1
20 a2 {AM SRR P } 0, l
ow ()M]_ 02w0 I)ZM[) ()74[) ()ZU() __ 31
7)71+ +smmx(W+—az~2—)—2mcosmx(y—v)~O, } (31)
at z=0 }

correct upto first order of &.
Now corresponding to #o and wo given by (27) and (28), let us assume

= ’L[(k + 1’”) Bl g—vuz + Y1 Dl E_V”Z} ei(wt—k+mx)

, o et (32)
+ l[(k . WL) Bll P -+ IV{Q D{ e—vﬂq gi(wt—k—nu’) , J
W) = ['Vll B ot -+ (k + ’WL) 1)1 6—1}122} 6i(wt—k+mx) , 1 ( )
o 33
+ [vl/l B{ e—v’nz + (k o WL) D{ e—vQZZJ gz(wt—k—mx) , J
where
9 9 0 w?
= kg
2
vii = (k —mp — 22—,
L+ 24
v M) (34)

0 w?

V§2:(k+m)2__\ﬂ ;

o w?
"

v = (b —m)* —

Evidently (32) and (33) satisfy the differential equations given by (30).
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Then substituting (27), (28), (32) and (33) in (31), we obtain the equations

{0+ kF %) By + 2 (k + m) vz Di} ™
+ {5+ %k —m?) B{ + 2 (k — m) v{y D[} &™* (35)

= Bo(v1 — 2) (B2 + 3) sinm x ,

{Zvulk 4+ m) By + (v 2+ &+ m2) D1} e

T {2 vi,(k — m) By + (v3 + & — m2) D{} i 36)
:2}“'130[(1)1 — ) sinm x — ZWL( g;gz)cosm x}

to hold for all #’s.

Therefore, when we equate seperately the coefficients of e~im and eim= of the right
hand sides and the left hand sides, we obtain from (35) and (36) the following four
linear equations:

i BO

{9l + (k + m)2} By + 2 (k -+ m) v12 Dy = 5 {(v1 — v2) (B2 + 93, (37)

34 (h—mPy Bl 420k —m) oy Dl = — 200 60 w2 1), (39)

2yn(k 4 m) B+ {4, + (k—m)2} D1 = kn Bo [z (v — v2) — 2m (iZ:_/*_)] . (39)

v3 + k2

14 / ' Iy | 9 / 3 — /22
29y (k — m) B + {1+ (h — m)2} D = — km Bo[ (1 — wa) + 2m ( fgsz)] (40)

solving which we get,

4 g ;
[2 alk + m) {%’i kv — vz)} — o U (e w2} 00— ) ] + k2)]
Bl:BO 4 v11 v12(k + m 7{1/ + (R + m)? }2 ’
[2 viglk — m) {—T(%——Tv%- + i kvi(vys — 1/2)} — L {vi3 + (& — m)2} (v1 — v2) (v + /22)]
I 2
By = Bo ofy vipk — m)2 — {712 + (& — m)2) ’
: [”““‘ +om) (1 = we) (k2 4 98) + { : M(Zk;_l; s m}{v%z - (k- m)z}]
D1 =18 491 v19(k + m)? — {vd, + (R + m)2)2 ’
[~ vy (ke — m) (v1 — ve) (R2 + v3) + lli(zl‘ai—%@ < kvi{yi — v9) }'{”12 + (& — m)2 ]
D{ =1 By 2

vy viplk — m)2 — {vi + (b — m)2}?

These enable us to determine #; and w) completely.

(41)

(42)

{43)

(44)
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The above analysis indicates that the propagation of Rayleigh waves is possible
in an elastic half-space whose free-surface is of sinusoidal type of small amplitude.
Corresponding to a given frequency w, the primary wave propagates with the same
wave number £ as in the case of plane free-surface. But along with the primary waves,
there travel two other secondary waves with their wave numbers equal to £ — » and
& + m. Thus the frequency-wave number curve for the primary wave can also be
used for the secondary wave by appropriate shifting of the origin along % axis. The
phase velocities of the different secondary waves will, no doubt, be different from
that of the primary waves, but the group velocities will remain unaltered.

Case 2: Love waves in a layer with a sinusoidal free-surface with a similar interface
between the layer and the underlain half-space.
Let

z = g sinmy x (45)

be the free-surface of a homogeneous layer (medium 1) with (p1, ) as its density and
modulus of rigidity, which is underlain by a homogeneous elastic half-space (medium2)
with (gz, us) as its density and modulus of rigidity, The interface between the mediums
is given by

z=H + g sin(me x + 9) . (46)

Comparing (45) and (46) with (1) and making use of (2) we find that in this case

01 == g my1 cosmy x,
(47)
B2 = &9 ma cos(ma x + 0)

(Zgr=u (% — &1 M1 COSHL X %) ,
/ f v oo (48)
(Z)a=p Vor — & ma oS (ma % -+ 0) ﬁ} )

where the suffixes 1 and 2 in 6 and (Z,) refer to the free-surface and the interface
respectively.

Let v; and v2 be the Love-wave displacements in the media 1 and 2 respectively,
satisfying the equations

027}1 ()22)1 ()27)z .

01 = (__sz 5 ) (medium 1) , ] o)
2y J2vg D2y .

02 -b; = Ug (——Mz + 5 ) (medium 2) . i

Solutions of these equations in the case of plane boundaries (i.¢e., e1 = &2 = 0) are
readily obtainable. They are

v10 = A1p cOSvI0 2 * &R
(50)

va0 = A10 cosvig H - gralt—2)+ tlat-kz)
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with »10 and vee being the real positive roots of the equations

; 2
VI)O = %;C:' —— k‘Z > 1
(51)
2 02 W2
e kz . x= J
Yay s
The frequency equation of the corresponding motion is given by
tanwig H = £2220 (52)
U1 V1o
Let us assume that correct upto first order of small quantities ¢ and &
UL = Ui 1 €1 Uu + &2 V12, l
(93)
V2 == Ugo + &1 Va1 -+ &2 Vo2, J
where v13, v12, var and ves satisfy the equations
o Q%1 ’ ( vy + 027}11) ’
= o2 0x2 022
()21/12 . ()21)12 s ()21112
o o ﬁbl( a2 T o ) )
(54)
0%va1 (fﬂzl + 02021)
Q5 T M\ Ty 02 )7
()2022 . ()27122 ()27]22
02 Y R /“2( JA° + dz8 )

Then the relations (53) satisfy the equations (49) respectively.
Now using the relations (48) we find that the boundary conditions to be satisfied
by v1 and vs are

%”Zl — & My COSHIL X —gi;« =0 at z= g snm x, (55)
vy = U2
1 {%”Zi — &2 m2 cos(me x + 8) %7%} tat z=H -+ easin(ma x -+ J). (56)
= 1ia {%;i — &2 mp cos{me x + §) %}

If we develope TAYLOR’s expansion of (55) and (56) correct upto first order of &
and &z and then make use of (53), then we find that it will be sufficient if the solutions
of (54) satisfy the following boundary conditions:

ov11 : 0%ug Ov10 =
S s % gz T M COSHL X~ = 0 at z=0, (57)
11 = Va1
duns ey at z=H (58)
My =3 = e —

8 PAGEOPH 62 (1465/111}
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and
0v1g
5 =0 at 2=0, (59)
. v . 0020
v12 + sin (me x + 6) 5, — vt sin {(ms x + &) ¥l
0 : 0? 0t
4t { :)]22 + sin(ms ¥ + 9) az;o — g coS (mz % + &) ;;0}
(60)
. Jvgg . 0%ugq dvg0 |
— MZ{ 5, Hsin(mex + d) S — e Cos(mz X - d) 3 )
at z=H.
Now, corresponding to vip and vz given by (50) let us assume
P11 = (All cosviL 2 + B sinyn Z) ei(wt—k+1711x) ) l
+ (A1, cosvyy z -+ By, sinwy, 2) gHot-k-miz)
(61)
and
vey = Am 61;21(H—z)+i(wtfmlx) + Al ev'ﬂ(H—z)-i—i(wl—mlx)
where v11, #];, va1 and »,, are real positive roots of the equations
vy —awt (B + my)?
11 P 1)
2
i = _Ql;: — (k —m)?,
2 (62)
3 02
2=k g Y
vy = (k + m) T
2 (b o) — 29
Va1 = ( 1) 2

Evidently, the equations {61) satisfy the first two equations of (54) respectively.
Then substituting (50) and (61) in (57) and (58) we obtain the equations

yin Bu € 4 9l By ¢ = Aro(vi, sinm x -+ 1 k ma cosmy x)

(A1 cosviy H 4 Bu sinvn H) e% + (A], cosvy; H + By, sinvy; H) ™
— A21 8—imlx + A%] eimlx ,

M1 [1/11(,— Aqsinyn H + By cosyi H) ™%

+ v (— Ay siny); H + B{; coswj; H) ¢™7]

T ~1 / ’ iy X
— /[/LZ LAZl 1}21 é 1 X + A21 ,VZI 6‘”’)1111

to hold for all x’s.
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Therefore, when we equate separately the coefficients of % and ¢”* between
the right hand sides and the left hand sides we obtain from (63) the following six

equations
v}y — B omy

vi1 B = ¢ Ao 5 y

vy By = — 14w o+ R ;k -

A1 cosviy H 4 Businvgy H = Aa

Aj;cosv), H ++ By siny, H = A4},

f v (A sinyn H — Buy cosvir H) = ps va1 Ao,
(1 vy (A4 sinyyy H — By, cosyy, H) = pa vy Ay,

which do not involve x.

The solutions of these equations in terms of 419 have been found out as

Bll . Z ./‘1]0 . ('V%O — k Wll)
2 Y11 ’
;o —tdw | (3o + & m1)
1 z 1 '
411 o i Ao i (pe1 v11 cosviy H + pey ey sinwyy H) (11%0 — kmy)
y = : X
z {1 vir sinvyy H — g wor coswin H) vir §
4/ _ = i Ay (pavygcosvyy H 4+ pg vy sinygy H) (03 + & omy)
< —_— T i . ,‘/
1 2 (ta vy sinwyy H — us vy, cosvyy H) vy,
4 o v A0 ‘111(1)%0 — & ml)
Aol = o~ : )
2 (,l,l,l Y11 811 vy H — U2 V21 COSV11 H)
qr i Ao A ,ltl(?/’lzo + & my)
20 T T 5 T S S S

’ T ’ T ’
2 (p1 iy sinvyy H — ug vy coswy; H)

These enable us to determine v11 and vz completely.
Similarly we assume

wi-h—m ;x)
,

j(wi—k+ 11, %)

v12 = A1 cosvz 2 ¢ + A/, cosy]y z €

B Wi~k x)
)

i(wi—k+ nyx

v2e == Ass COSVI2 Z € ) L A}, cosv e

where 12, ¥, ve2 and 74, are real positive roots of the equations

2 _ erw? 2
Yig = " (k + me)?,
g2 @o? (b — mo)?

12 — 1 2)7

2 . 5 02
Vyo = (B + mg)? — = ;

2

v gz Qaw?

Voo = (R — mi2) el

Evidently, the equations (66) satisfy last two equations of (54) respectively.
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Further the last equations of (66) satisfies the boundary condition (59).
Then substituting (50) and (66) in (60) we obtain

Az cosyia H ™% 1 A{, cosvyy H €"* — v1g Ao sinwie H sin(me x + J)
= Agg " | A2/2 e"* — pap A1o cOsv10 H sin (WLz x -+ 6) s

. i ’ . ;
ui[A1z vi2 sinvie H e + AL, vy, sinvy, H ¢™*

(68)
+ Auo cosvio H {3, sin(me x + 0) — i k ma cos(ma x + 8)}]
= pa[A2e vao g 39 ¥ 2 Gax

— Aio cosvio H {vy, sin(mag x + 8) -+ i & mg cos(ma x -+ 6)}]

to hold for all x’s.

Then, on the basis of similar arguments as offered in the previous case, we obtain
from (68) the following equations

1 et .
Alz COS V12 H — Azz = 7 Am('no Sinvio H — P9g COS V10 H) R
11, cosvly H — Al — — 272 dyo(vio sinvio H — v coswio H)
Al 12 99 = 2 10{¥10 Sl 710 20 10 ,

A1z pa viz sinvie H — Az piz vee

i e=id 69)
[t 9 . 4 .
=3 A1 cosvio H[(M]_ Vip T U2 vﬁo) — ik WLQ(ILLl — ,Mz);! 5
Aiy 1 vy, sinwyy H — Aso piz voe
i et I 2 .
= —— A cosvio H[(ur 1y + p2vy) + ¢k ma(in — )],
which do not involve x.
The solutions of these equations in terms of 410 have been found out as
ieid
Alz = — 7 Alo COSv10 H
X [uB(v3y — & ma) + w1 us(vdo — veo ez + & wma) — U3 vag ves]
/,Ll(/,tl Vig sinye H — e Vag COSV12 H) ’
4 g8
Ay = 5 Ao cosvio H
< [U0¥g + & me) + pa pa(vBy — veo ¥y — k ma) + U3 va0 ¥3,]
’ p{pn vip sinviy H — po vje cosviy H) ’ (70)
) e—10
Agz :lZ A10 COSWloH
% 1z veolper — ae2) sinvig H — {{p1 v + pavdy) — k2 malpy — o)} cosvip H]
(1 viz sinvie H — o vap cosviz H) ’
i eid
'1_;2 = N Am COS7v10 H
o Lo veolp — pe) sinvip H — {(u1 vfo + p2v3y) + kmo(pn — pe)} cosviy H]
(i1 vig Sinwjy H — iz voq cOSTp H)
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These enable us to determine vz and ves completely.

The above analysis indicates that the propagation of Love waves is possible in a
two layer medium when its free-surface and the interface are of sinuscidal types of
small amplitudes. Corresponding to a given frequency w, the primary wave propagates
with the same wave number % as in the case of horizontal stratification. But along
with the primary waves, there travel four different secondary waves with their wave
numbers equal to & 4+ m1, & — my, & 4 mg and & — me where m; and me are para-
meters as involved in (45) and (46) respectively. Thus the same frequency curve for
the primary wave can be used for the secondary waves by appropriate shifting of
origin along £ axis. Phase velocities of the different secondary waves will, no doubt,
be different from that of the primary waves, but, the group velocities will remain
unaltered.

This article has been prepared under kind help and guidance of Professor B. Sex
of Viswabharati University. The author remains grateful to him.
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