
105 

The Propagation of Surface Waves in Elastic Mediums 

with Slightly Curved Boundaries of Sinusoida! Type 

By MRINAL K. PAUL ~) 

S u m m a r y  - The  effect of s l igh t ly  curved  boundar ies  (free surfaces  and  interfaces) of t he  Mastic 
m e d i u m s  on t he  c o m p o n e n t s  of d i sp l acemen t  of a par t ic le  in a m e d i u m  due  to the  p ropaga t ion  of 
t he  sur face  waves  ha s  been  inves t iga ted  in th i s  paper .  I t  h a s  been  found  t h a t  a long wi th  t he  u sua l  
d i sp l acemen t  c o m p o n e n t s  for s t ra t i f ied  boundar i e s  (des ignated  here  as p r i m a r y  componen ts ) ,  
the re  exis t  s econda ry  d i sp l acemen t  c o m p o n e n t s  ar is ing f rom the  presence of c u r v a t u r e  in t he  
boundar ies .  T h e y  are cons t i t u t ed  of d i f ferent  h a r m o n i c  c o m p o n e n t s  wi th  the i r  amp l i t udes  propor-  
t ional  to t he  p a r a m e t e r s  wh ich  m e a s u r e  t he  e x t e n t  of c u r v a t u r e  of t he  boundar ies .  The  wave  
n u m b e r s  of t hese  h a r m o n i c  cons t i t uen t s  are re la ted  to those  of t he  p r i m a r y  c o m p o n e n t s  in a defi- 
ni te  w a y  decided b y  t he  shapes  of t he  boundar ies .  

Because of its closeness to the most of the natural situations, the study of the 
effect of the non-planer boundaries on the propagation of surface waves in elastic 
mediums has gained much of its importance. 

As the analytical t reatment  of the irregularities of the surface in general encounters 
formidable mathematical  difficulties, the most of the investigators concentrated their 
efforts with considerable successes in considering the cases of slightly curved surfaces 
of different types. While SATo [612) studied the propagation of Love waves in a layer 
with an abrupt  change in thickness, DE NOYER E21 considered the same in a layer over 
a half-space with a sinusoidal interface and Kuo and NAFE [41 investigated the pro- 
pagation of Rayleigh waves in a similar model. 011 the other hand MAL ~5] and ABUBA- 
KAR [1 ! also considered the effect of the curved boundaries in the presence of buried 
line sources. All these investigations were led to the development of the frequency 
equations of the corresponding wave motions. We, however, propose to examine the 
problem from a different stand point, viz., to consider the effect of the curved bound- 
aries on the displacement components. We anticipate that  the displacement vector 
at any point in the medium shall have two parts. The first one is the same as that  in 
the case of plane boundaries while the other corresponds to the additional effect due 
to the presence of non-zero (but small) curvature of the boundaries. Naturally the 
standard frequency equation of the stratified situation will be associated with the 
first type of displacement. Thus, what remain to be determined, are the amplitudes 
and the wave numbers of the additional displacement terms. I t  will be found from 
the analysis that  follows that  they depend on the aforesaid frequency equation and 
the geometrical shape of the curved boundaries apart  from the physical parameters 

1) 23, K h u d i r a m  Bose Road,  Ca lcu t t a -6 ,  India .  
2) N u m b e r s  in b racke t s  refer to References,  page  117. 
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(densities and elastic constants) of the mediums concerned. This idea has been for- 
warded by  HANDEL~aAN [3], a l though the working out of the problems in the parti-  
cular cases of our consideration differs in some respect from the same suggested by  him. 

The proposed analysis is as follows: 
Referred to a rectangular  Cartesian sys tem of co-ordinates (x, y, z), let 

z = ~ / ( x )  (1) 

be the equat ion of a slightly curved surface (of cylindrical type) where e is a small 
quan t i ty  of a first order and f(x)  is finite in - -  o0 < x < oo. 

Then O, the angle tha t  the tangent  line to the surface lying in the x-z plane makes 
with the x axis, is given by  

0 ~ tan0 = e f ' ( x )  (2) 

assuming, of course, tha t  f1(x) remains finite in --  oo < x < oo. 
Now we assume x'  axis in the direction of the tangent  and z' axis at right angles 

to this in the x-z plane. 
Then the stress-components of our interest, referred to this new set of axes, are 

related to those referred to the old set of axes as 

Z~, = sin~0 X~ + cos20 Z~ - -  2 sin0 cos0 Z~, 

Z~, = sin0 cos0 (Z~ --  X~) + (cos20 - -  sin~0) Z~, (3) 

1 Zy = cos0 Y, --  sin0 Xu ,  

where the notations convey their usual meanings. 
Now as is evident from (2) tha t  0 is a small quan t i ty  of the first order, the relations 

(3) reduce to 

z;, = z ~ -  2oz~ ,  i 
I 

z ; ,  = o(z~ - x ~ )  + z ~ ,  } (4) 
t 

z~= Vz-OX~. I 
For considering Rayleigh waves, we have 

0u 3w 
oy - ~ = ~ = 0 ,  (5) 

(u, v, w) being the displacement components  of a particle in the medium. 
Then we have 

Ou Ow 
x ~  = (~. + 2 #) 7 7  + 2  ~ - ,  

Yu  = 2 \ O, + T2/  ' 

o~, (6) zz = ).~xx T 

Z,  - - #  7 7  + TT-, 
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and  hence 

Surface Waves in Elastic Mediums 

Z 2 , = X ~ + ( X + 2 r 1 6 2  ~ + ~  , 

f 
Zy = O. 

S imi lar ly  in the  case ot Love  waves  we have  

and  hence 

and  

Ov 

X .  = Y y  = Z~ = Z .  = O,  

by 
X v  =- F 7 7  ' 

Y*  - -  # 7 - ;  

z;, = % = o ,  

z ; = ~  ~ 7 -  0 7 7  

107 

(7) 

(s) 

(9) 

be the  free-surface of a homogeneous  elast ic  half-space with  o and  # as i ts  de , ts i ty  and  

modulus  of r ig idi ty .  
Compar ing  (11) wi th  (1) and  mak ing  use of (2) we find t ha t  in this  case 

and  hence 

0 = s m costa x (12) 

Z~, = 2 7 7 + ( ; t + 2 # ) ~ - 2 e m c o s m x  ~ + ~ -  , 

Z',, = 2 e m # c o s m x  ~ z  bx + # \ O z  + ~ - x  ' 

! 
Zy  = 0 .  

(13) 

Case 1 ." Rayle igh  waves  in a half-space wi th  a s inusoidal  free-surface. 

Le t  
z = e sin rn x (11) 

We shall,  herefrom, consider s epa ra t e ly  the  following two cases in some deta i l s :  
1. Ray le igh  waves  in a half-space wi th  a s inusoidal  free-surface.  
2. Love  waves  in a layer  wi th  a s inusoidal  free-surface and  a s imilar  in terface  be- 

tween  the  layer  and  the  under la in  half-space.  

(10) 
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Now the equations of motion of a particle for the propagation of Rayleigh waves 
are given by  

b2u b~u 32u b~w ] 
o - ~ -  = (4 + 2 ~) ~ + ,u - ~  + (4 + /~ )  ~ ~ ' [ (]4) 

) 

Let us assume 
(u, w) ~ Exp{v  z + i(oo t -- k x)}.  (1.5) 

Then substituting in (14) we get 

{~  ~o -~ - (4 + 2 ,**)/~ + / ~  ~2} u - i k v(,t + ~,) w = 0 ,  ] 

I i k ~(4 + /~ )  ~ - {~o ~~ - / ~  k2 + (4 + 2 ,~) ,2} ~ = o ,  

whence eliminating u/w we get 

(16) 

{~  o~  - (4 + 2 ~) k~ + ~, .~}  {~o ~2 _ r k~ + (4 + 2 ,~) .~}  + k ~ ~,~(;. + ,.)-~ : o ,  (~7) 

which yields four roots for v, viz., • vl, -~ v2, where 

.2 k 2  o e) 2 
2 + 2 t *  ' 

o 

tt 

(l.s) 

Thus the general solutions for u and w become 

u = i [ k ( A  e ~'~ + B e -',~') - -  ~2(C Y - -  D e -~ ' ) l  e '(~ , x ) ,  

w = E -  ~,~(A e ~''~ - -  B e - ~ )  + k ( C  e ~'~" + D e-~:~)! e ~<~ k~) 
(19) 

Now if we measure z positive in the downward direction (i. e., within the half- 
space), then from the condition of surface waves (i. e., the vanishing of the displace- 
ments at an infinite depth) we shall have 

u = i l k  B e . . . .  + v2 D e ~Q e i(~ 

w = [Vl B e . . . .  q -  k D e -~z] e i(~~ , 
(2o) 

where vl and v2 are the positive roots of the corresponding equations given by (18). 
The boundary conditions which are to be satisfied by  the displacement com- 

ponents are the vanishing of the stress components given by  (13) at the free-surface. 
These yield the following equations 

2 ~ + ( 4 +  2/~)-yz - - 2 e m # c o s m x  7 7 +  jz]  = 0 ,  

~-x + ~. - - 2 e m c o s m x  Ox = 0  

a t  z = ~ S i l l ~  x ,  

(2]) 
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which, correct upto first order of e, are the same as 

109 

bat  Ow 2-Ux + ( 2 + 9 # )  = 0  

0W 0/,t 
ax + -~ -z  - - 2 e m c ~  

Ou 0w ) 
Ox *)z 0 , 

at z - - e s i n m x ,  (22) 

If  we devetope TAYLOR'S expansion of (22) in the neighbourhood of z = 0 and 
then preserve terms correct upto first order of e, we shall then have 

Ox + (2 4-, 2/~) Oz-z + e s i n m x [ 2 ~  ? (2 - ] -2 ,u )~T-zz  / = 0 ,  

( Ow 0~ / 02w 0~u ~ Ou 
-OT + TT + e s i n m x / 0 x ~ - z  -}- 0 z 2 j - - 2 ~ m c ~  ~, ~ = 0 ,  

at z = 0 .  

(23) 

Let  us now assume 

u = uo + e u~, / 
(24) [ W ~ WO -~- s W l  , 

where (Uo, Wo) are Rayleigh wave-displacement components  in the case of a half-space 
with a plane free-surface (i. e. e = 0) and (ul, w~) are the per turbat ion terms in the 
displacement components  due to the presence of small curvature  of the free surface 
(i. e. e @- 0, but  small). 

Ev iden t ly  (Uo, wo) satisfy the differential equations 

02~~ (2 + 2 #) 02uo a2~o 0-~wo 

02~~ = (2 + #) b2*~~ 0"2~~ a~-w~ o ~  ~ + # ~ + ( 2 + 2 # )  Oz2 
(25) 

and also the boundary  conditions 

2 0~o ~ awo 
a .  ~ - ( 2 + 2 # ) T 7 = 0 '  

<)Wo __ 0Uo 
- -  0 . 0x ~a 

at z --  0 .  (26) 

The expressions for uo and wo are readily obtainable. They  are 

k 2 - -  V,~ #-vaz g~(o~t-kx) , (27) 

wo __ vi Bo [e_,,,z 2k2 ] 
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(k 2 + v~)z - - 4  vi v2 k 2 = 0 (29) 

as the frequency equation of the corresponding motion. 
Now substituting (24) in (14) and making use of (25), we obtain the differential 

equations to be satisfied by ul and wl only, which are 

~ %  = (`1 + 2 r ~ o~.~ a ~  

0 ~  ~ + ~ + ( , t + 2 # )  a~  �9 

(30) 

Similarly the boundary conditions to be satisfied by u~ and w~ can be developed 
by substituting (24) in (23) and then making use of (26). They are 

OUl Owl r 02uo bewo ~ ] 
`1~;-+ (`1+ 2 # ) ~ 7  + sinm x/'~ ~ - +  (̀ 1 + 2 # ) a~  J = 0 '  I 

ax + ~  + s i n m x  \~--T~z + az2 ] - - 2 m c ~  ~z ~x - - 0 ,  } 

at z = 0 ] 

correct upto first order of e. 
Now corresponding to u0 and w0 given by (27) and (28), let us assume 

(31) 

ul  = i[(k + m) Bi e ..... + vi2 Die  ..... ] d ('~ 

+ i [ (k - -  m) B~ e -,i'` + v;2 D~ e ""~] d (~ ...... ), 
(32) 

Wl = [Vll B1 e ..... @ (k + m) D1 e ..... ] ei(~ ' ! 

where 

2 = (k + m)2 ~o 0)5 
~ii ( ~ , +  2 # )  ' 

co ~ 
vn'2 = /~w -- m/~ (Z + 2 ~,) 

'P122 : (k -~  ~/4) 2 0 0) 2 
# 

,2 (k - -  m) 2 0 0)~ T'12 tt 

Evidently (32) and (33) satisfy the differential equations given by (30). 

(33) 

(34) 
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T h e n  s u b s t i t u t i n g  (27), (28), (32) a n d  (33) in  (31), we o b t a i n  the  e q u a t i o n s  

{(@2 + k + m ~ ) B l + 2 ( k + m ) ~ ' x ~ D ~ } e  -~ .... 

+ { (,,;~ + ;~ - , . , )  B~ + 2 (k - -  ,~) ~ D~} ~ ..... (35) 

= Bo(vl -- v~) (k ~ + v~) s i n m  x ,  

+ {2  ~;~(~ - ,~) ~ ;  + (~;~ + ~ - m~) D ; }  ~' ..... (36) 

r 
2 ~ t ,,~=7~ ~ ( ~ ~  - - ~  

! 

to  ho ld  for  al l  x 's.  
There fo re ,  w h e n  we e q u a t e  s e p e r a t e l y  t he  coeff ic ients  of e - * ' *  a n d  din* of t he  r igh t  

h a n d  s ides  a n d  the  lef t  h a n d  sides,  we o b t a i n  f rom (35) a n d  (36) t he  fo l lowing  four  
l i nea r  e q u a t i o n s  : 

i Bo (v, - -  v~)(k ~ + v~) (37) { ~  + (~ + .,)~) ~ + 2 (~ ~ .~.) ~ D~ = ~ -  

{,,;~ + (~ - ,~)-~} B; + 2 (~ ,~) ,,;, D; ~ "~ (,,~ - ~) (U" + ,'8 (3S) 2 

2 Vl,(~ + .~) ~,  + { ~,., + (~ ~ ~)~} DI = ~ ~, Bo i(~, -- ~) -- 2 ~ ~7,(~7rr (39) 

[ [ ~ - ,r~tl 2r;~(k--m)  B~ +{v ;~ -~(k  m ) 2 } D ; = - - k v ,  Bo i ( v l - - v 2 ) +  2 m \ 7 ~ - l ~ j ]  j (40) 

so lv ing  which  we get ,  

B1 = g o  

2 v12(k + m) { re(k4 - ~24) i 

4 Pll '/)12(]? @ 1~t) 2 {Y122 @ (k 1- m)2} 2 
(41) 

B~ = Bo 
2 v~2(k - m) 

.~(~4 _ ,~) 

2 v~ k } ] 
4 r l l  v { 2 ( k  - -  m )  e - -  { v j ~  + (k - -  m)2} ~ , ~42) 

[Vll(/}@ ~ Z ) ( V l -  Y2)( k2 ~-V2 ~) + { i  ~74(]~ 4 --Y 4) } ] 
D1 = i Bo 2~2-~ /~ pl(yl - v2) {v122 @ (~ -- f/g)2} 

v .  v12(k + m)~ - (v}2 + (k + m)2}2 (43) 

[ } ] 
4 % vh(k - m)2 - {.i~ + (k - .~)2}2 

(44) 

These  enab l e  us to  d e t e r m i n e  ul  a n d  wl c o m p l e t e l y .  
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The above analysis indicates that  the propagation of Rayleigh waves is possible 
in an elastic half space whose free-surface is of sinusoidal type of small amplitude. 
Corresponding to a given frequency co, the primary wave propagates with the same 
wave number k as in tile case of plane free-surface. But along with the primary waves, 
there travel two other secondary waves with their wave numbers equal to k - -  m and 
k + m. Thus the frequency-wave number curve for the primary wave can also be 
used for the secondary wave by appropriate shifting of the origin along k axis. The 
phase velocities of the different secondary waves will, no doubt, be different from 
that  of the pr imary waves, but the group velocities will remain unaltered. 

Case 2." Love waves in a layer with a sinusoidal free-surface with a similar interface 
between the layer and the underlain half-space. 

Let 

z = el sinm~ x (45) 

be the free-surface of a homogeneous layer (medium 1) with (#1, its) as its density and 
modulus of rigidity, which is underlain by a homogeneous elastic half-space (medium 2) 
with (~2, it2) as its density and modulus of rigidity, The interface between the mediums 
is given by 

z - - H +  e s s i n ( m 2 x + 6 ) .  (46) 

Comparing (45) and (46) with (1) and making use of (2) we find that  in this case 

Ol -- s ~/~i COSV/r X , 

0~ = ~ m~ cos  (m~ x + 6) , 
(47) 

by 
(Z; ) I  --- /~ ~-g 

, / ~  
(z~)~ = # / o~ 

- -  - -  ~21 ~/q4 C O S ~ / , 1  X ~ - X  ' 

-- - -  s ~ 2  c o s ( m 2  X + ~) , ) v [  
Oxl  ' 

(48) 

where the suffixes 1 and 2 in 0 and (Z~,) refer to the free-surface and the interface 
respectively. 

Let vl and v2 be the Love-wave displacements in the media 1 and 2 respectively, 
satisfying the equations 

b2yl [ a~vl b2v2 ~ (medium 1) O 1 - - ~  ~ ~tl \ 0X 2 @ ~2 2 ] 
(49) 

b2v2 { O2v~ ~)~v2 ~ (medium 2) 

Solutions of these equations in the case of plane boundaries (i. e., el = e~ = 0) are 
readily obtainable. They are 

vlo ~- Alo cosvlo z �9 e i('t-kx) , ] 

v2o ~ Alo cosvlo H �9 d ~~ ~)+i(,,b k.,i ' i (50) 
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with v~0 and ~20 being the real positive roots of the equations 

2 ~1 co z k2 ] 
Yl0 - - -  #I 

.~ o2 eC 
~2o = kz #2 } 

The frequency equation of the corresponding motion is given by  

(515 

t a n v l o  H - -  r V2o 
,Ul Vlo 

Let  us assume that  correct upto first order of smatl quantit ies el and s2 

(52) 

vl  = r i o  @ e l v n  @ e 2 v 1 2 ,  

?J2 ~ v20 @- ~1 ~)21 @ s2 v22 , 

(53) 

where v,~, vr~, v21 and v22 satisfy the equations 

oi Ot~ \ 0x2 + Oz2 /' 

02V12 ( 0~)V12 027512 
o~ e?to - r \ 0 .  2 + 0z~ 7 '  

02~521 ( 027521 0 2/J21 
02 bt~ --,u2\ ax 2 + 0z~ ! '  

(545 

Then the relations (53) satisfy the equations (49) respectively. 
Now using the relations (48) we find tha t  the boundary  conditions to be satisfied 

by  vt and z,2 are 

~75~ ~v~ (55) 0z e~m~cosm~x ax-  = 0  at z = e ~ s i n m ~ x ,  

/ 

{075l 0751 
/z] ~ e2 m2 cos(m2 x + 6) ~ l  at 

0~2 / f 075~ (*~2 + d) -aT/ = f~ [ ~ 7  e=, m2 cos x 

z = H + e2 sin (m2 x + b) . (56) 

If  we develope TAYLOR'S expansion of (55) and (56) correct upto first order of el 
and s2 and then make  use of (53), then we find tha t  it will be sufficient if the solutions 
of (54) satisfy the following boundary  conditions: 

6vn b2vlo bvlo 
az + s i n m * x  Oz2 m l c o s m i x  a x - - - - 0  at z = 0 ,  (57) 

Vll ~ 7)21 | 

0v~i c)v2~ / at z = H (58) 

8 PAGEOPH 62 (1,~6.-,/!II} 
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(59) 

~vlO v r , + s i n ( m ~ x + d ) ~ z z  = v = + s i n ( r n ~ x + 6 )  Ov2o 
c)z ' 

F1 I[ Ov,~Oz + sin (m~ x + 6) ~%o0~ m2 cos (ms x + b) aVl0 / - - -  7 V /  

a ~  a2~o av~o / = #z [ c~z + sin (m~ x + (~) ~ m2 cos (m2 x -}- 6) -~x / 

at z = H .  

(60) 

Now, corresponding to vlo and v20 given by  (50) let us assume 

V l l  = (All cosvll z + Bll  s invn z) e i(o)t k+ ..... ) 

~- ( A l l  COS'P11 Z -@ B l l  s inv~ l  z )  e i(~'*-e . . . . . .  ) 

and 

vm = A21 e v~'(H-z)+i(~ot-k+m*u) + As e 6~(H-zI+i(~,t k-.,~x) , 

(61) 

! 1 where v~l, vl~, v21 and v21 are real positive roots of the equations 

, 1 , , ] 1  - -  

Vll - -  /*1 

"P21 

,2 (k - ml)  ~ 0~ ~ V~I = #2 

(62) 

Evident ly,  the equations (61) satisfy the first two equations of (54) respectively. 
Then subst i tut ing (50) and (61) in (57) and (58) we obtain the equations 

, ( ! G{mlx 2 f l l  B l l e  -~: . . . . .  ~- vii B]l = Ato(vl0 sinml x + i k ml costal x) 

(Alt cosvn H + Bn  sinvlt H) e ~ ..... + (All cosy;1 H -k B;1 sinv;t H) J ..... 

= A 2 1 e *  ..... + . 4 s  ..... , 

/~1[v11(.-- Alt  sinvll H + B n  cosvlz H) e -i ...... 

@ f~l(-- A;I sinv[t H @ B~I COSV21 H )  e imlx] 

! imzx 7 = - -  ,a2[A ,e l  v21 e - i  ..... + A ~ I  v,21 e j 

(63) 

to hold for all x's. 
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There fo re ,  w h e n  we e q u a t e  s e p a r a t e l y  t he  coe t f ic ien ts  of e i ...... a n d  e r ...... b e t w e e n  

t h e  r igh t  h a n d  sides and  the  le f t  h a n d  sides we o b t a i n  f r o m  (63) t h e  fo l lowing  six 

e q u a t i o n s  

~11 B l l  - - -  i d l o  v~~ -- k ml 
2 

' B '  = - - i A l o  " ~ 0 - ~ m l  
~ll 11 2 J 

A u  cosy11 H + t311 s i n v n  H = / t 2 1  , (64) 

/1;1 cos~L H +/3~, sin& H /1;~, 

/~i ~11(Al1 s inv l l  H -- B n  cosy11 H)  = / ~ e  v~l A21 , 

/~1 v ~ l ( A ~ l  s i n v ~  H --/3;] c~ H)  = ,u2 ~;~ A ; 1 ,  

wh ich  do no t  i n v o l v e  x. 

T h e  so lu t ions  of these  e q u a t i o n s  in t e r m s  of A~o h a v e  been  found  ou t  as 

Bl l  = iA10 ("~o- -kml)  
2 Vll  l 

/3~1 = - i ~ 4 , o  (V~o+kml)  
2 & ' 

i A10 (~11 Yll COSVll H - r  /A21 P21 s i n v l l  H )  (v~o -- h m l )  
A l l  ~ - - -  

2 (#i vH sinvi1 H -- /~2 v21 cosvH H) v~ ' 
(65) 

! - -  i A10 (~1 Vii COSV~I H + I*~ V~l sinv~z H) (v~o + k m D 
311 = 2 (H1 Vn sinv~l H -- ,U2 V~l cosY61 H) "v~' 1 ' 

i-4~o ,,l(V~o - k ml) 
3 2 1  - -  

2 (~1 Vll s i n v l l  H - -  [22 v21 c o s v l l  H )  ' 

As 1 = -- i A~o m(V~o + k ,~) 
2 (l*z v~i sinv[1 2/ -- pz v6l cosv~l 2/) ' 

T h e s e  enab le  us to  d e t e r m i n e  v~  and  v~z comple t e ly .  
S imi l a r ly  we a s s u m e  

vp) = A1 cosv~2 z e i(~ ,e+ ..... } @ A ;2 cosv;~ z e i(~ ..... ) 

U22 : /122 COS~'12 Z gi(we k-c . . . . . .  ) 4- As CO81's Z e i{;t-k-m=x) , (66) 

e 
where  v~2, v~e, v2.~ and  ve2 are  rea l  pos i t i ve  roots  of t h e  e q u a t i o n s  

t'*z 

(67) 

'P22 - -  - , Pz 

/z2 

E v i d e n t l y ,  the  e q u a t i o n s  (66) sa t i s fy  las t  two  e q u a t i o n s  of (54) r e spec t ive ly .  
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Fur the r  the last equat ions of (66) satisfies the bounda ry  condit ion (59). 
Then  subs t i tu t ing  (50) and  (66) in (60) we obtain 

Ar~ cosvr~ H e -~ ..... + A[2 cosvl~ H # ..... - -  v~o Ato sinvlo H sin(me x + d) 

= A22 e -i . . . .  + As e i ..... - -  v~o A i o  cosvlo H sin(rn~ x q- 6) , 

f - ! gim~x #l[Aie vr2 sinvle H e -~ .... + A~e V12 slnvl~ H 

+ A~o cosvto H {v~o sin(m~ x + d) - -  i k m~ cos(m2 x + d)}l 

= #2[A22 v22 d -i ..... @ As ~)22 ei ..... 

- -  A~o cosvlo n {V~o sin(m2 x + 6) + i k m2 cos(m2 x + 6)}1 

(68) 

to hold for all x ' s .  

Then,  on the basis of similar a rguments  as offered in the previous case, we obta in  
from (68) the following equat ions 

AI~. COSVl~ H - -  A ~  - -  
i g-id / 

Alo(VlO s invlo  H - -  v~o cosvlo  H )  / 
2 

i e~*~ Alo(v lo  sinv~o H - -  v~o cosrlo H )  

cll~ #a ~i2 s inv l2  H - -  A22  #2 ~2~ 

i e - ~  2 2 
A i o  c o s ~ l o  H [ ( ~ I  vlO @ ~2  "P20) - -  i k m 2 ( # l  - -  /s , 

i eid 

2 
2 , 2 

- -  - -  Aio cosvlo H!([~l  rio v-  ~ ~2o) + i h rn~(pi - -  # ~ ) ]  , 

(69) 

which do not  involve x. 
The solutions of these equat ions in terms of A~o have been found out as 

i e  i3 
Ai2 --  AlO cosvio H 2 

[t~(V~o - k ms)  + ,ui #2(v~o - v2o v22 + k m~.) - p~ v2o v2~] 
X jul(#1 VI2 sinv12 H -- #2 v22 cosvl2 H) 

2 Alo cosvlo  H 

X #i(#l  vie sinv~_2 H -- #2 v~2 cosy{2 H) 

i e-i6 
A~2 = - y -  Aio cos~io H 

[vl2 v~o([~i - m)sin v12 H - { (#1 ~o 4 ,u~ ~o) - k m2(m - #2)} cosa2 HI 
N (/li rig sinvl2 H -- ~2 v22 cosvi2 H) 

X 

- -  i ei~ 
- -  Alo  cos 'r io H 

2 

Iv{2 v20(#z - #z) sinv{2 H -- {(#1 v~o + /12 v~o) + h m2(lq -- #2)} cosy{2 HI 
(#i v{2 sinv~2 H -- #2 v~2 cosr{~ H) 

(70) 
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These enable  us to de te rmine  v12 and v22 completely .  
The above  analysis  indica tes  t ha t  the  p ropaga t ion  of Love  waves  is possible in a 

two layer  m e d i u m  when its free-surface and  the in terface  are of s inusoidal  types  of 
smal l  ampl i tudes .  Corresponding to a given f requency  co, the  p r i m a r y  wave  p ropaga tes  
wi th  the  same wave number  k as in the  case of hor izonta l  s t ra t i f ica t ion.  But  a long 
wi th  the  p r i m a r y  waves,  there  t r ave l  four different  secondary  waves  wi th  thei r  wave  
numbers  equal  to k + m l ,  te - -  m l ,  le + m2 and  k - -  m2 where ml and  m2 are pa ra -  
meters  as involved  in (45) and  (46) respect ively .  Thus  the  same f requency  curve for 
the p r i m a r y  wave  can be used for the  secondary  waves  b y  app rop r i a t e  shif t ing of 
origin along k axis. Phase  velocit ies of the  different  secondary  waves  will, no doubt ,  
be different  f rom tha t  of the p r i m a r y  waves,  but ,  the  group velocit ies will remain  
unal tered .  

This ar t ic le  has been p repa red  under  k ind  help  and guidance  of Professor B. SEy 
of Vi swabhara t i  Univers i ty .  The  au thor  remains  gra teful  to  him. 
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