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The Prism Method for Terrain Corrections Using 
Digital Computers 

By DEZS6 NAGY 1) 

Summary-  In the prism method of making terrain corrections, the topography is approxi- 
mated by a model consisting of right rectangular prisms. The vertical component of the gravita- 
tional attraction of each prism is calculated and the sum of these components gives the terrain 
correction. 

The prism method as programmed has no computational limitations. It can be used on all 
sizes of computers; it can be applied to a large area with any fine grid interval; it can be processed 
in a single run and yet provides complete flexibility for both research and routine computations. 
This has been achieved by breaking up larger areas into regions which fit into tile computer memory. 
The contributions of these regions are automatically summed up for each station. V~Thile processing 
each region, various controls may be used at each station to exclude the contribution of a distant 
part of the area, to use approximate expressions farther from the station, to print out details 
around the station. There is also provision to refine the model by using smaller prisms around each 
computation point. Thus full use of elevation control can be made to calculate the terrain correc- 
tion, the accuracy of which depends only on tile quality of the input data. 

The prism method has been used to calculate terrain corrections for 130 stations in the New 
Quebec crater area. For five of these stations terrain corrections were also calculated by using 
HASIMER'S template. The two independent sets of values differ by tess than four per cent. 

I. Introduction 

The purpose of this paper  is to present  the pr ism me thod  of calculat ing ter ra in  
corrections for g rav i ty  data.  This me thod  has been p rogrammed  for a digital  compute r  
and it lends itself easily to full au tomat ion  in the  da ta  acquisi t ion stage requir ing input  
over  rec tangular  grids. 

Since the g rav i ta t iona l  a t t r ac t ion  of i r regular  topography  can not  be expressed 
analyt ical ly,  ter ra in  corrections must  be calculated by  some method  of numerica l  

integrat ion.  Several  methods  employ  templa tes  based on cylindrical  coordinate  sys- 
tems by  which the area around the  g rav i ty  s ta t ion is subdivided by  concentr ic  circles 
and radial  lines into a number  of compar tments .  The grav i ta t iona l  a t t r ac t ion  of the 

compar tmen t s  are t abu la ted  as the  funct ion of e levat ion  difference be tween the s ta t ion  
and the compar tment .  The detaiIs of this me thod  are discussed by  HAYFORD and 
BOWIE [2] in connect ion  wi th  geodet ic  computa t ions .  To uti l ize the precision of mea- 
surements  in g rav i ty  prospect ing HAMMER [3] refined the procedure by subdividing 
some of the larger compar tmen t s  and calculat ing new tables. Some later  modif icat ions 

1) Dominion Observatory, Ottawa, Ontario, Canada. 
~) Numbers in brackets refer to References, page 39. 
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were made to increase the accuracy by either changing the radii of circles or further 
subdividing the region near the computation points. 

Recently computer oriented systems have been described by BOTT [1J, KaNE [4] 
and KARLEMO [51. In the methods presented by  BOTT and KANE the terrain correc- 
tion for the inner zone (about 2 kilometers square) must be calculated by other means 
(templates). The computer program calculates the terrain correction from the rest 
of the area. In the computations approximate expressions are used. These approxima- 
tions are adequate since the elements are not too close to the computation point. On 
the other hand KARLEMO includes the near region as well. In his method, based upon 
a cylindrical coordinate system, the computations are carried out in two stages: the 
input data are selected along eight symmetrical  radial directions from two quadratic 
nets ; the denser net is for the near zone and the coarser one for the more distant region. 

2. The prism method 

The principle of the method described here is very simple and it makes use of a 
closed expression to calculate the exact value of the vertical component of the gravi- 
tational at traction of a right rectangular prism as derived by  NAGY [6]. The actual 
topography is approximated by  a model consisting of prisms. The exact terrain correc- 
tion for the model is then calculated as the sum of the gravitational attractions of all 
prisms used to represent the topography. 

Some terms are defined now. Let R be the region of interest which is subdivided 
into area elements dA ~ dx dy by superimposing a rectangular grid over it. The 
vertical coordinates h of each element are provided by the estimates of the represen- 
tat ive elevation values. Then the vertical component of the gravitational attraction 
of a mass element (din = ~ dA h) provides the terrain correction at a point P due to 
that  element. This value is a function of the 'coordinates' of the element only. Desig- 
nating the terrain Correction for the mass element a s  (~gp one can write 

~gp = ~f(x ,  y, h) clA . (1) 

The terrain correction for the region, AgR, may be obtained by summing up the 
contributions of all elements over the region, that  is 

AgR = ~ ~f(x ,  y, h) dA =~ ~ dgp. (2) 
R R 

I t  is interesting to note that  in the template procedure the area element changes 
whereas in the prism method it remains constant. Using the template procedure a 
change of origin requires a new set of elevation values; on the other hand the prism 
method, with constant dA over R, requires new information only if a refinement of the 
model (see Refinement Control) around the station is required. By using an exact 
expression in the computations, the station is not restricted to be at the center of the 
area element. 

Some details of the prism method are presented now. Let D, tile domain of in- 
terest, be subdivided into n rectangular areas in ally desired manner (see figure 1) so 
that 

D = R1 + R2 + . - .  + R n .  (3) 

Then the grid spacing for each R, is defined separately and independently. 
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We also define a transform function T which, when applied to a given R,, gives 
the terrain correction due to that region. If D is subdivided, as indicated in figure 1, 
then two cases are possible: 

a) the computation point P is outside of the region under consideration (e.g. 
point P and say R2 in figure 1). This is the ordinary case, no speciaI treatment is 
necessary; 

b) the computation point is within the region (point P and R3 in figure 1). Since 
the original grid spacing may not represent the topography adequately around the 
station, a refinement of the model may become necessary. This refinement is done 
by using smaller and smaller grids as the computation point is approached. As a 
consequence of using an exact expression to calculate the gravitational attraction of a 
prism, no restriction is put on the degree of refinement of the model. The selection of 
the smaller grids is governed by the topography in the vicinity of the station. The 
refinement of the model for R~ is symbolically designated as 

where d is the degree of refinement. In figure 5 a possible model refinement (R3/2) is 
shown (explained in detail under Refinement Control in the Control Parameters 
section). 

In general one region, R~, will contain the station for which the above procedure 
will be applicable. 

The terrain correction may now be obtained simply by applying the transform 
function T to the domain of interest D, that  is: 

o r  

Ag --  T19  = T(R1  + R.~ + . . .  § R~ ] d + . . .  + R,,) 

Ag = T Z R, . (4) 
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It  remains only to define explicitly the meaning of T. Taking the region R~ as an 
example, it is clear from equation (2) that  the terrain correction due to this region is 

Ag = , ~  f(x, y, h) dA~ . (5) 
Rx 

that  is, T is a function of the coordinates of the element dAi. This dement  with height 
h (elevation difference) defines a right rectangular prism (figure 2). The vertical com- 
ponent of the gravitational attraction of the prism as derived by NAGY (op. cit.) is as 
follows 

X2 Y2 Z~ 

# g v = G e l l l  x l n ( y - L r )  + y l n ( x + r ) - z a r c s i n  (y%r)]/y~+~+z~ , , ,  . (6) 

Substituting the limits and simplifying by letting z~ = 0 and z~ = h, equation (6) 
takes tile form 

A g = G o  Ix2{1 n y2+]/~+y~ - - I n  y,- l-[ /~-t-y~ } 

+ y2 !in *2 + I /~  + y~ -- in ! . h e 

Jln x~ + 1/~ + y~ -- in y l  
t 

+ h arc sin (y2 + 1/~ + y~ + ~) 1/~ + h~ 

- -a rcs in  Y~ + h 2 + y 2 1 / ~ + y ~ + h 2  - -a rcs in  

+ arc sin (~ + F ~  2i- Y~ ~ hg) ] / ~ / ]  " 

/ 
, . + l / 7 + y ~  [ 

xl + g'x~ + yt 2 + h2 / 

y l  2 + h2 -1- y l  ~/~2 + Yl 2 -]- h~ 

(7) 

This is the transform function T which, when applied to all elements of D, produces 
the terrain correction. In other words equation (4) is an operator equation: T, the 
trartsform function, operates on D which contains n subsets R1, R2 . . . . .  Rn, which 
all in turn have dements dA1, dA~ . . . . .  dam on which T comes directly into play. 
Thus equation (4) summarizes in brief the procedure to obtain the terrain correction. 

3. Input data 

The preparation of input for the computation is simple: the input data for each 
region (R 0 consist of the elevation matrix, which may contain a single element, and 
station cards; for each computation point a station card is required which contains 
station and control parameters. The input data for the area consist of tile assembly 



Vol. 63, 1966/I) Terrain Corrections Using Digital Computers 3.5 

Z 
/ 

h 

P I/ I /~ 
/ I 

)(7 - -  

F i g u r e  2 
The right rectangular prism 

. Y 

of the input data of all regions put together in any order for the computation. If  none 
of the optional controls are used then the terrain correction using equation (7) is auto- 
matically obtained from the domain of interest for each station. 

The output  for each station comprises the station and control parameters, and the 
terrain correction. 

d. Optimum use of computer memory 

So far we have discussed the transform function T of equation (4), and also the 
possibility of subdividing D into smaller regions has been indicated. Subdivision 
becomes necessary if D contains more elements than can fit into the computer memory. 
In this case the regions are selected in such a way that  for each R~ the storage require- 
ment  should not exceed the available computer memory.  Usually the elevation values 
for a particular region are represented in matr ix  form in the computer. The size of this 
array, i.e. the maximum number of rows and columns, must  explicitly be given in the 
dimension statement.  Let the name of the elevation matr ix  be A with maximum 
dimensions M and N such that  M times N fits into the computer memory.  These 
values can be chosen freely, but once they are selected they cannot be changed by the 
program. This means that  if MI and N1 are the max imum dimensions for R,, then 
the data can be processed only if the two conditions M > MI and N > N1 are 
simultaneonasly satisfied. In figure 1, each of the regions R 1 . . .  Re was selected to 
require the same number of storage locations, say L. If only L locations are available 
then the computat ion for this particular subdivision cannot be carried out in a single 
run; either six runs are required, in which case the dimension statement  must be 
changed six times; or the subdivision must  be restricted to one single allowable dimen- 
sion, say tha t  of R1, and then the area must  be subdivided into 'strips'  similar to and 
not larger than R1. Neither of these possibilities is at tract ive and both can be over- 
come by  changing the two-dimensional array into a one-dimensional form. This 
procedure of subscript (or dimension) reduction is quite general but  it is shown here 
only for the above case. Let I and J be the index values of a particular element of A 
(see figure 3), then the index K of the one-dimensional array Call be calculated as 

K = N * ( I - - 1 )  + J .  
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Then if B is the name of the one-dimensional ar ray  with a max imum dimension of L,  
than all matrices representing R1, R2 . . . . .  R6 in figure 1 can be pu t  into this form, 
thus achieving single processing wi thout  restricting the subdivision. I t  is noted here 
tha t  the one-dimensional representat ion of a two-dimensional ar ray  is a built-in 
feature of the program. The user shall consider his arrays conveniently ill their two- 
dimensional form but  wi thout  any restriction on the ' form'  of the array. 

E Q U I V A L E N T  R E P R E S E N T A T I O N  

Two dimensional array : A (M, N) 

M and N are the maximum values for I and j r  

One particular element: A ([, J) 

M:3 ~ 78 17 128 

j!  3 N-4 

One dimensional array: B(L) 

L is the maximum value for K such that: 
L = M * N  

Corresponding element B(K) where 
N - N* (S -- 1) + j  

31 

---..i 
O I  

51 

81 
91 
701 
171 

t q2 12._J A(I, J) ==- B(K) 

Figure 3 
The relation between two and one dimensional arrays 

5. Control parameters 

Some specific features of the program based upon the method  summarized by  
equat ion (4) are described below. 

Area control." For  some stations contributions from only a par t  of D m a y  be needed 
for the computa t ions  (unshaded par t  in figure 1). Minimum and maximum for bo th  
subscripts representing the elevation matr ix  can be specified. For  example if M ---- 20 
and the controls 5 and 15 are specified this means tha t  the contributions from the 
first 4 rows and the last 5 rows of the elevation matr ix  will not  be included in the 
computat ion.  

Radius control: In  some applications the full accuracy of equation (7) m a y  not  be 
required all over the domain. In  this case a circle of radius R with centre at the stat ion 
m a y  be specified (see figure 4) ; then outside of this region an approximate  t ransform 
function m a y  be used. 

Slope control: An approximate  t ransform function m a y  be completely adequate,  
except for one or two compar tments  with large elevation differences. In  this case in- 
stead of using equation (7), it is possible to specify a max imum allowable slope, drawn 
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from the station to the compartment  (see figure 4). When the radius control is used 
the slope is evaluated for each compartment :  if it exceeds the value specified, then 
equation (7) is used instead of an approximate expression. 

Printing control: One may  want to learn some details of the computation in the 
vicinity of the station. For example if the station is close to water, what are the 
magnitudes of the contributions of water and land compartments  ? Or one may  wish to 
study the effect of subdivision of some compartment  on the computed value. The 
printing control may  be used for getting such details for 'square' rings around the 
station (arrays i • 1, 3 • 3 . . . .  etc., see figure 4). 

Refinemenl control: This is the most complex of all controls and its full under- 
standing shows the power of the system. First we describe this control in general, 
then its use is illustrated in an example. As the name implies, this control makes it 
possible to refine the model irt the vicinity of the station. Any irregular shape around 
the station composed of prisms, may  be obtained by  a process of two steps: First, a 
'regular'  structure (1 • 1, 3 • 3, 5 • 5 . . . )  around the station is excluded from the 
computation;  second the excluded part  is reinserted for processing with some elements 
further subdivided (refined) and the others unaltered. This will result in an irregular 
structure with finer subdivision. There is no limitation to the repetition of this proce- 
dure which allows any refinement of the model desired. 

An example of a refinement is outlined for R3 of figure 1 (for details see figure 5). 
First, a 3 • 3 array (numbered 1 to 9) is excluded from the processing. Parts of this 
are reinserted for processing without changes (i.e. two input matrices one with 

Print/rig 
control 

Redius control 
Figure 4 

Control parameters 
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elements 3 and 6 and the other with element 7, 8 and 9). Eactl of the elements 1, 2, 4 
and 5 are subdivided into four parts resulting in an input matr ix  with 16 elements. 
Another refinement is shown around the station excluding only the element contain- 
ing the station (point P) which is further subdivided into 16 parts. In this case two 
degrees of refinement are carried out for region R3. If  each set of input data is properly 
prepared, then they can be assembled for computation in any order. 

7 8 I s  

I I -  Z 3 

Figure 5 
Two degrees of refinement of region R3 

The controls described above are independent of each other in two ways, 

i) the use of a specific control is not related to other controls which may  or may  not 
be used for the same station; 

ii) any control may  be changed from station to station in any desired manner. 

The method and its implementation for digital computers as described in this 
paper can satisfy various requirements for both research, where accuracy is the 
main concern, and routine computations, where efficiency plays a more important  
role. In  order to achieve the latter an opt imum compromise ill the choice of the 
control parameters  is of great importance. Since no general rule can be set up, a 
reasonable approach is to use the data to obtain some estimates. One should then 
select a few representative points for the area and by  trial and error find sufficiently 
good values for the control parameters.  

6. Application of the prism method 

Using the program as outlined, terrain corrections were calculated for a number 
of stations in the vicinity of the New Quebec Crater. This area is ideally suitable for 
testing the prism method because of the highly irregular topography of its rim and 
the great water  depth. A new detailed topographic map of the crater area was used 
to estimate the input values. A ten square kilometer region around the crater was 
subdivided into 10 000 compartments  each 100 metres square. In the program provi- 
sion has been made to treat  one water covered area per region and to calculate terrain 
correction properly when either a station and/or a compartment  falls on water surface. 
Negative sign for the elevation indicates depth from the water  level da tum which 
must be specified on the station card. For comparison, terrain corrections for a few 
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stations were calculated also by using HAMMER'S template. The stations for which the 
terrain corrections were obtained by both procedures are listed in table 1. The selec- 
tion of a 100 meter square compareme~t proved to be sufficient for all but  one of the 
five points used to compare the template and prism method. At point 9814 the com- 
puter result was 3.14 milligals, differing by about 20% from the template value. 
Accordingly, an inspection of the neighbourhood of the station indicated that  a finer 
subdivision of two adjacent compartments (25 prisms for each) should improve the 
result. By this refinement the value, 2.44, for station 9814, as listed in table 1, was 
obtained. 

Table  1 

S ta t ion  Coord ina tes  Agmg~, 
Pe rcen t age  

S ta t ion  No. cp ~, h/ft. C o m p u t e r  T e m p l a t e  Difference 

2 61 -16 -32  7 3 4 0 - 3 7  - - 6 8 0  12.16 12.19 0.2 
4 61 -16 -37  73-39~r9  - - 7 1 0  14.19 13.95 1.7 
7 6 1 - 1 6 M 2  73-38~44 - -  780 13.07 12.62 3.4 
8 6 1 - 1 6 4 1  73-39-07  --  805 14.35 13.85 3.5 

9814 61 -16 -28  7 3 4 1 - 1 5  1925 2.44 2.46 0.8 

S ta t ions  2, 4, 7 and  8 h a v e  been  m e a s u r e d  on ice a t  an  e leva t ion  of 1620 feet. The  cor responding  
va lues  l is ted unde r  h are d e p t h  to t he  b o t t o m  of t he  lake. 

7. Comlusiol~ 

The prism method for terrain correction and its implementation as presented in 
this paper has no computational limitations. The basic elements are prisms which 
form a model of the terrMn. For the model exact values of terrain corrections can be 
calculated without any restriction. But the model is only all approximation of the 
actual topography. As the model becomes a better and better approximation to the 
topography, so the calculated terrain correction converges towards its true value. 

In conclusion it is emphasized that  the critical judgement of the interpreter is of 
vital importance. He must in each case interpret the results of his computation as a 
function of the input data: first he must construct a model that  provides an optimum 
approximation of the topography and subsequently, by evaluating the reliability of 
the elevation matrices, he must estimate the uncertainty of the computed values. 
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