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The Theoretical Model of the Drop Spectrum 
Formation Process in Clouds 

By L. M. LEWN and Y. S. S~DUNOV 1) 

S u m m a r y  - In this paper the theoretical model of cloud spectrum formation process is built in 
which spectrum formation and its development are followed by and these observations find no 
contradictions, beginning with air ascent containing condensation of nuclei and up to large drop 
formation falling out off the cloud~ Both the obtained results of velocity spectrum formation and the 
form of distribution function corresponds to the direct observations. The model does not use any 
empirical relations and empirical regularities; it is free from arbitrary suppositions and assumptions 
which are not examined by experiments, and the number of parameters in it is limited by ones 
(vertical velocity Uz, turbulent diffusion coefficient K~ and two parameter distribution function of 
nucleus condensation with super-saturation). First in the developed theory the principal contra- 
dictions not allowing till now to connect together condensational and coagulation stages of cloud 
spectrum development are overcome. 

Processes taking place in clouds are within wide range of scales beginning from 

transition of condensation nuclei about 10 .5 cm in size into drops and to cloud 

system formation with characteristic scales of about 10 7 cm. In connection with this 
physics of clouds in its approach to investigation of a phenomenon operates with 

various methods and is naturally subdivided into a number of sections the most 

significant of which is physics of macroprocesses and microprocesses in clouds. As 

microprocesses characterize changes occurring with separately taken drops, investi- 
gation of drop aggregate behaviour is determined to a certain extent by rnicroprocesses 

and, on the other hand, it apparently can give interesting additional information on 

macrophenomena connected with precipitation, change of visibility, icing and etc. 
Behaviour of drop aggregates to a certain extent is related with intermediate scales 

and serves as a bridge which connects micro- and macroprocesses. For theoretical 

description of drop aggregate behaviour regularities the so-called kinetic equation is 
usually used which defines behaviour of  the partiCle size distribution function. 

However, it should be noted that at present there is no satisfactorily developed 

scheme for calculation of precipitation formation. It is caused by a number of funda- 
mental contradictions which are not yet eliminated and not by the difficulty of solving 

this problem from the mathematical standpoint. 
In this paper the theoretical model of kinetics of cloud spectrum formation is 

1) Institute of Applied Geophysics, Joliot Curie 18, Obninsk, Kaluzhskaya Obl., USSR. 
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offered. The development of this model was presented in a series of our papers. Analysis 
of equations describing drop growth by condensation and by coagulation showed 
that improvement of the theory did not lead to considerable increase of velocity 
of drop radius change [112), and turbulent coagulation [2, 3, 4] and electrostatic 
coagulation [5] even together with gravitational one [6, 7] did not introduce any 
substantial corrections in our motion of drop growth by coagulation and of existence 
of critical size below which impacts do not occur. 

Since cloud spectrum formation is determined in the first place by the amount 
of drops taking part in the process, let us consider first of all kinetics of condensation 
nucleus transition into drops. 

I. The theoretical model o f  condensation nuclei 

Following JUNGE let us consider that the function of dry nucleus size distribution 
(differential one) can be given in the form 

n( r0 )  = a r o v .  (1) 

According to notions developed in [9, 10], nucleus activity can be expressed as a 
function of ro ; 

C = b ro z(l+~) (2) 

where b and ~ are some parameters whose value is determined by the composition 
and physical chemical properties of the nucleus. Then the function of nucleus size 
distribution can be obtained for any value of supersaturation 6o: 

a __(B~ (1 -v)/2(1 +~) 

n(rl6~ - (1 + ~ ) \ b )  r-(~+~)/(1 +~) 

x 1 ( 1 2 ~ o )  B r 1 2(1_~5o) B r . 

Knowledge of the distribution function (1) and the relation between C and r o (2) 
allows us to obtain the function of limiting supersaturation distribution which is very 
important for investigation of kinetics of drop formation. It should be noted that by 
limiting supersaturation we understand maximum supersaturation at which a nucleus 
of a given size r o or a given activity C has possibility of unlimited growth. According 

to [91 
a (4  B 3,~(1 - v ) / 2 ( l  +~) 

n(6o) = 1 + ~ \ 2 ~ )  (1 - 60) ('+2+3~>/(1+~)60 ('-2-~)/(1+~) = P ~ .  (4) 

In (3) and (4) B =  2 a M/~ w R T where a is the coefficient of surface tension, 0,~ is 
density, M is the molecular weight of water, R is the gas constant, T is absolute 
temperature. 

2) Numbers in brackets refer to References, pages 334/335. 

21 PAGEOPH 69 (1968/I) 
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Knowledge of distribution of (3), (4) type is of great importance because using the 
r distribution function it is possible to study fluctuations of visibility in the atmosphere 
and some other processes and on the base of (4) type distribution the process of drop 
formation can be investigated. However it should be said that (3) and (4) have been 
obtained under the assumption that there is equilibrium between nuclei and their 
environment. But if environmental conditions change with time, some lag from 
equilibrium may take place. Let us estimate significance of this effect by considering 
the characteristic time when drops come to in equilibrium. The equation of drop 
growth can be given in the following form: 

d r  0 Z~) 
- -  = D - -  - -  g ( r ,  g o )  ( s )  
d t  Ow r 

;g(r) characterizes corrections for growth velocity, ,o is density, D is the coefficient of 
vapour diffusion and 6 is supersaturation above the drop surface which can be pre- 
sented as 

g(r, g o ) = 6 0 -  - 7 3  . (6) 

Under equilibrium conditions g = 0 and dr~dr = 0. When supersaturation, go, changes, 
the nucleus equilibrium radius r e changes as well, g becomes different from 0 and the 
particle changes its size according to changed conditions. Let us assume that a particle 
is near the equilibrium point where g (re, go)= 0. Then in the first approximation 

Q 2 C ~ ( r - - r e ~  (~ 1 ) A r  g(r'g~ g~ J \~r -J  =2B - r  - ; -  

where 

(7) 

where 
4 Ow re rb rb 

- - T -  ( 9 )  
2 B D 0 Z (re)  rb --  re rb - -  re 

T highly depends on the nucleus radius. Estimations show that for re~10 -s cm, 
T ~  4.10-2 sec and for r e ~ 10-4 cm, T~  5 sec. Nevertheless, since the variable part of 
the nucleus spectrum is, as a rule, within this size range, T is sufficiently small and it 
is reasonable to suppose that changes of the spectrum, in general, follow changes of 
environmental conditions which have time scales of the order of tens of seconds and 

1 3g o 
A r = r - r e ,  - - ~  - - - .  

r b 2 B 

It should be noted that that linear approximation over A r  can be used as the upper 
value of the characteristic time since linear dependence (7) results in underestimated 
values of supersaturation in comparison to (6). Substituting (7) into (5) and z ( r ) / r  z 

for Z(re)/r2e it is possible to obtain the following solution: 

r = r e q- (r 0 -- re) e - ' /~  (8) 
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higher. As z is also det erminedby the factor rblr b - re, notice that for 3 o < 0 (rb < 0) this 
factor is less than 1 and z < T, and for 6o > 0 it is higher than 1 and z > T. At positive 60 
the value of r=rb separates the area of nuclei from that of drops [9] and with the 
approach to this boundary characteristic time z tends to infinity. When considering 
transition of nuclei into drops it is very important to estimate the width of size range 
for which characteristic time is higher than that of the process. Using the super- 
saturation distribution function the zone width characterizes the aggregate of  particles 
which lag behind in growth and have no chance to follow 6 change. As drop formation 
takes place mainly on nuclei with the radius of the order of 10 .5 cm and during the 
time of about several seconds, equating z,~ 10 sec it can be majorized the total amount 
of particles which lag behind. 

From (9) we have 
re - rb 4" 10 - 2  

_ - ~ 4 . 1 0  - 3 "  
r b "c 

For a spectrum of JUNGLE'S type (n = a r-~) the ratio of the amount of particles lagging 
behind to the amount of particles which have already transited into drops, N, is 
determined by: 

AN Ar 
- - ~ v -  ~ v4 .10-3  ~ 1. 
N r 

Thus, as estimations show, use of distribution function in accordance with the assump- 
tion of equilibrium existence should not lead to significant errors. 

2. Kinetics of the initial stage of drop spectrum Jbrmation 

Let us consider the process of drop formation from condensation nuclei. According 
to [11 ] this process is described by the following system of equations: 

~f 0 d3 o 
"~ ~rr ( f i r )  ~- H((~O) d t -  (~1 (?" - rb) (10,1) 

t ~ = D 0o Z~)  ~5o (10,2) 
~o w r 

~ - = ( 1 - d o )  1 C, M z T J p  d t - 4 r c D q o l  l + ~ - C ~ T ~ o z  6 0 (lO,3) 

@ 
- -  ~ - g .01 U ~  ( 1 0 , 4 )  
dt 

(701 = f X(F)U(F,  t) dr (10,5) 
rb 

Here n(6o)= the function of  nucleus distribution over limiting supersaturation which 
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is determined by (4), 0o, ~ol, o~,,, = density of saturating vapour, air and water, respec- 
tively; L = condensation heat; Cp = specific heat of air; Uz = vertical air velocity; 
g = gravity acceleration; M 1 = the molecular weight of air; z(r) = the function which 
for the transitional area between kinetic and diffusion regime of condensation can be 
presented in the form: 

r 2 

x(r) - (11) 
{ + r  

where 
4~  

3~ 

2=free  path of molecules; e = t h e  condensation coefficient (era0.036). In (10,1) 
51 (r-r,)  is the delta function. Substitution of (10,4) and (10,5) into (10,3), integration 
of (10,2) and writing of formal solution for (10,1) lead the problem to the following 

form: 

? 

y"(t) = K1 - K2 y'( t)  ~ [(2 + y(t) y(to)] 1/2 y'l(to) y"(to) dto 
0 

~ (12)  

f ~o~ Yn(t~176 + y(t) -- dr~ + 2 K 2 r 3/(t) Y" (to) Y"(to) dto - K2 r y'( t)  [ ~ / ( ~  
Y(to) 

0 

f (r, t) P 510-1 (tO) r 
- ~r + 0 Ka 

where 
to = to(r, t) is the integral of (10,2) 

t 

y(t) = ~ 6o(t) dt 
0 

and 

dSo(to) 

dt 

K~ = T ~ Uz 

K2 = 2D0w j "4nDP I + R T  Cp T 

K3 = D Oo 
Ow 

{t t < t M }  y"(tM) 0 
t M t > t M 

X / 2  K3  

7, is the adiabatic gradient. 

(13) 
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The equation (12) which characterizes change of supersaturation values with time 
can be considered independently in the form it was obtained. The similar type of an 
equation was obtained in papers [11, [12, [13, [14]. It should be noticed that (12) 
was obtained under the assumption that the effect of the initial radius of particles 
can be neglected. 

It is not difficult to take r o into account and it can be done in the way analogous 
to [11]. But since estimations and some calculations [11] carried out by us show that 
the effect of r 0 is insignificant, we considered it possible to neglect this effect and 
further to investigate the equation of the (12) type which in the form it was written 
down allows decreasing the equation order. Integration of (12) and transformation 
of the variables, y = f l  z, t = y  r, lead to the form: 

2 f z '  = - + - - z " ( % )  

0 
T: 

2 a  / ' , ,  2 a  
+ l-4-~-1 (z (ro)f +2 dz o + 1 + i (z' (zM)) z+l E z (z) - z (rM) ] 0 (z - zM) (14) 

0 

- 2 a 2 [" {[a 2 + z(z)  -- z(%)] '/2 -- a} (z'(Zo) f z"(ro) dzo 

0 
where 

~t ~( K3/2+I K2) 1/(3+l) 

N/# (2K1K3) 112 

fl = K I (K~/2+I K2)-2/(3 +') 

Y = (K~/2+' K2) -1/(3+0 

0={0 I 
"C > 'C  M . 

The equation (14) was solved numerically on the electronic computer Minsk-2. The 
function z' for various values of  a and t=  1 is given in Fig. 1. Comparison of obtained 
results with those of [11] shows that regard to correction for ~ does not break the 
character of the process though increases the time of reaching the maximum and 
the value of maximum supersaturation. As all these changes are of no particular 
significance, the results obtained in (11) remain valid and must be corrected for a 
certain factor the value of which is of the order of 1. The dependence of super- 
saturation on main parameters remains in the same form because additionally intro- 
duced parameter, a, changes very little. On the base of obtained results it is easy to 
calculate the number of formed particles, the time of  reaching the supersaturation 
maximum and using (13) to obtain the distribution function f ( r ,  t). These problems 
are considered in detail in [11], therefore here we shall give only the main results. 
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1. a=3 ;  2. a = 2 ;  3. a 1 

The number of  formed drops N is described by 

p (K~/2 ']  a+~)/<f+3) 
N = l + 7  / [z '+ (15) 

The maximum supersaturation reached in the process 

= (K~/2x] I/(3+0 
5~ \ ~ - z , ]  Z'(ZM). (16) 

The time of  reaching the maximum supersaturation is defined by the formula 

tM = (K(la +20/2 K2)-1/(3 +1) zM " (17) 

The difference between maximum and minimum drop sizes 

[ K 1 K 3  1 t / 2 ~  (t+',/2 
,,o,,,x t~ t_l/3 (18) 

The calculation results of  N, 5o, tu and rm, x -  r,,i, for typical parameter values of the 

process are given in Table 1. 
The following conclusions can be drawn basing on the results of  calculations. The 
initial stage of condensation takes a short period of time (in comparison to the cloud 

Table 1 

U~ [cm/secl N [cm -a] 5 o ~  [%] tM [sec] 

1 6.1- t0 1,4-10 .2 35.9 
5 2.2.102 2.6.10 -2 12.8 
10 3.2.102 3.2.10 .2 8.5 

p=100Omb; T=283~ P=0.65.101~ /=1  
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life duration) and small space scale U~ t M (in comparison to cloud sizes). Dispersion 

of the drop size distribution function is small and decreases with time. These facts as 
well as stability of the kinetic equation solution relative to variations of the initial 
distribution function (in accordance with the numerical calculations carried out) 
allow us to take use of the following simplifications when considering the problems 
on cloud spectrum formation. It is possible to assume that initial stage determines only 
the number of formed drops, and distribution of the delta-function type (or rather 
narrow distribution) with the average radius of about 1 micron can be used as an 
initial distribution function. Regular rate of drop formation within the cloud may not 
be taken into account. At the cloud boundary where entrainment of fresh portions of 
air takes place it is necessary to take into consideration the action of the surface source 
of drop formation the intensity of which is determined by relations obtained from 
calculations for the initial stage. Drop formation within the cloud occurs owing to the 
fluctuation mechanism, and disappearance of drops takes place due to zero boundary 
conditions at r = rb, r b can be regarded equal to zero. 

3. On fluctuations of  meteorological parameters in clouds. 

Stochastic condensation 

Before considering the kinetic equation of cloud drop growth let us discuss the 
important  problem of meteorological parameter fluctuations in the cloud taking place 
as a result of turbulence. This question in application to the atmosphere was inten- 
sively studied in the recent years in connection with the problem of electromagnetic 
wave propagation [15]. The nature of such pulsations considered for the first time 
relative to temperature [15] is conditioned by turbulent transport of air elements to a 
certain level from other levels at which the values of this or that parameter are 
different. Thus, turbulence mixes elements of the air and smoothes mean values of 
parameters, sharpens locally gradients, and increases fluctuation intensity of these 
parameters at a certain level. For the clear atmosphere these questions were investi- 
gated well, but when applied to clouds they were considered not long ago [16], [17]. 
From the standpoint of processes taking place in clouds it is more interesting to 
know pulsations of a certain value not at some point of the space but appropriate to 
a certain element of the air volume moving in the space. Under such consideration 
which can be called Lagrangian it is possible to study pulsations of not only such 
values as temperature, velocity, humidity but also pulsations of the values character- 
istic of clouds (liquid water content, vapour density, supersaturation). Since investi- 
gation results of all these problems are presented in [17], we shall consider here only 
pulsations of supersaturation. As supersaturation, 6o, is determined by the relation 
do = 1 - 00/0, then taking into account that 

dt = d T  \ R T } d-t = \ R  T dT R T2J  c[T = T \ R T  - J dt ' 
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and keeping in mind that 

do o M1 dp 0 dT 
- - =  4 n  D q~l(0o - 0 ) +  dt O~ R T dt T dt 

we shall obtain 

l d 6  o R (CRM 1 _  LM) ldp ( L M L ~ ) 6  o (19) 
1 - 6 o  dt -CpM 1 R-T p d t - / /  I + R T  CpT 

w h e r e / / = 4  7~ D ~0 r (For the cases, when cloud formation occurs owing not to move- 
ment but to radiation processes 60 change can be easily related to the temperature 
changes). Further simplifications are connected with the following assumptions. 
Estimates show that the value of 6 o is always much lower than 1 and therefore it can 
be taken 1 - 6  o ~ 1. For the same reason Q in the second term of the right part of (19) 
can be substituted for 0o. 

Further:  

dp 3p 
- - ~ - - -  U~g01 (20) dt ~t 

(z-axis is directed from the Earth's surface). The equation (19) has a stochastic sense 
because in the right part of it there are random variables @lOt and Uz. The process 
of 6 o change is of relaxational character with relaxation time 1//3 of about several 
seconds. The order of magnitude of @/at can be evaluated if to use measurement 
results of pressure micropulsations in the atmosphere [18], [19]. It can be assumed 
(taking into account that the regular part of 3p/6t is small) that 

~,, = o)2 F(o)) do) (21) 
L\ /J 

0 

where F(o)) is spectral density of pressure fluctuations. Using the data given in [18] 
it is possible to calculate the integral (21) which is equal to ~0.2  a v where o-p= 
(7.5 _ 1.4) dyne/cm 2. Thus, @/cgt ~ (1.5 _+ 0.3) dyne/cm z sec. Taking into consideration 
that for the atmosphere Uz (here U~ is mean and pulsational component of velocity) 
is of the order of several tens of centimeters, it can be concluded that contribution of 
@/tVt to the total derivative dp/dt does not exceed 7-10~.  Thus, in the first approxi- 
mation it is possible to consider that pulsations of 6o occur due to velocity pulsations 
and to investigate the equation more simple than (19): 

where 

d~i o 
- b  U z - c 6 0  (22) 

dt 

b =  7a; 
T c=4nD(Pl I + R T  Cp T �9 
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In the quasi-stationary approximation 
b 

a0 = uz.  (23) 
C 

This relation is widely used for the case when Uz is the mean value of vertical velocity, 
and in this sense the equality (23) is beyond any doubt. When considering the pulsa- 
tional component of c5 o, validity of (23) is determined to a considerable extent by the 
frequency characteristic of U.. Let us present U~ in the form of Fourier's integral: 

cO 

Uz = t(c~ coscot + a sincot) do). 

0 

Then considering b and c constant we shall find the corresponding expansion Of So. 
We have 

cO 

b~ = t (y cos (-0 t + 2 sin (-0 t) do). 

0 

Using (22) it can be easily obtained 

C O: - -  CO ~ co  c~ q -  c a 
y = b  2 = b  

0 )  2 -}- C 2 ' (2)2 A r- C 2 

Let us introduce Lagrangian spectral function for vertical pulsations of velocity Fv ((-0). 
2 ((-0) + ((-0) 

Fu (co) = 
T1 

where T 1 is a rather long period of time determining the interval of time averaging of 
the process the sense of which will not be discussed here. get us introduce the spectral 
function of supersaturation in an analogous way: 

b 2 
Fa(co) (-02 + c2 Fv(co) = Z(co) Fv(co) (24) 

where Z(co) is the transitional function characterizing change of 6o spectrum at a 
known spectral function Fv(co ). Thus, for example, if to take that Eagrangian cor- 
relation function of vertical pulsations of velocity RL (t)= e-t/~ then 

"C 
Fu(co) = 2(U,) 2 o02 2 and Fa(co) 

~z 1 +  
can be easily found 

F (co) = u 
7"C ((-0 2 "~- C 2) (0)  2 t 2 -~ 1)"  

Thus, pulsations of 60 in general form can be easily investigated. However, it should 
be noted that the value offl is of the order of 1 sec-1 therefore the high-frequency end 
of the spectrum with characteristic time less than several seconds smooths (the cor- 
responding estimations can be easily made with the help of relations given above). 
In principle high-frequency pulsations do not effect drop growth. Taking this into 
account it is possible for simplicity to use the equality (23) assuming that U z charac- 
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terizes both the mean value 0 z and the pulsational part U~. A principally new idea 
of equality (23) will consist in this. Further discussion will be trivial. If 6o is a random 
variable, the equation of drop growth acquires a stochastic sense and describes so- 
called stochastic condensation 

dr2 0 D ~ b 
- -  = 2 D - -  6o = 2 U~ = A Uz. (25) 
dt Ow Ow c 

If to consider that q~l slightly changes with time, then it is very easy to integrate the 
obtained equation 

r 2(t) - r E = A [0~ t + z ' ] .  (26) 

Supposing that change of the vertical co-ordinate z' (in conformity with ideas some- 
times being assumed in the problem of turbulent diffusion of aerosols) satisfies the 
normal law 

(z') = (4 ~ Kz t) ~/~ exp 4 K~ t] 

the distribution function for r can be easily obtained 

. { } q) (r) Oz A 2 ~2~ 0 ./2 exp [r 2 - rg - 0~ A t] 2 - - 4-32-K~- t . (28) 

Thus, regard for the fact that a 0 is random results in the distribution function of (28) 
type with dispersion increasing with time. It is very important because this process 
leads to appearance in the volume of some amount of large drops, coagulation for 
them being permitted. It should be said that within the limits of (25) it is impossible 
to take into consideration other mechanisms of particle growth and transport. There- 
fore this equation has a limited sense by itself. Next part  of our paper will be devoted 
to working up the mathematical apparatus which would allow to account all the 
factors determining drop behaviour. 

4. The stochastic kinetic equation of  cloud drop growth 

Let us write down a kinetic equation for the distribution function f(o-) for the 
elementary volume [o- = r z] : 

Ot ~x i + ~ ~ ' f  = H ( f , f )  + qs(o-, ~J) (29) 

where H ( f , f ) = i n t e g r a l  of collisions 

1 f o-1/2 H = 5 (o-3/2 _ o-~/2),/a fl(o-3/2 _ 031/2 ' o-3/2) n [(o -3/2 - o-~/2)2/a, ~, t ] n ( #  1, t) do- 1 

0 
o0 

- n(o-) o-U) n( l, 0 
0 
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fi(~, ~a)=the function characterizing probability of collisions of drops with sizes 
o- and a~, v = sedimentation velocity of a drop, d~/dt = A U=, and @ (a, ~) = the function 
characterizing formation of new drops. Since there are random variables in (29) let 
us make averaging analogous to that made by Reynolds with equations of movement. 
Taking into account t h a t f i s  not conservative in approximation of the semi-empirical 
theory of turbulence in accordance with [20], [21] let us write down 

f '  u) = - K,j + A 61z f ,  (30) 

where Kii= tensor of turbulent diffusion coefficients. Keeping in mind that f -~  

f U' = ~ u' = f '  ~7 = 0 and regarding that drop formation due to regular rise of air takes 
place only at the boundary and is taken into account with the help of initial distribu- 
tion we shall obtain 

+ H( f~ f )  + H ( f ' , f ' )  + Y~'. (31) 

Deriving (31) we neglected fluctuations of A. Let us also reject H ( f ' , f ' ) ,  because 
at the present state of knowledge it seems to us impossible to take into account 
fluctuations in integral of collisions. Having omitted the bar which denotes averaging 
let us finally write down 

• +  - ~xi+ A Uz &r= + A 6iz &r Kij + A 6J:3a f 

+ H ( f , f )  + eb. 

(32) 

For a homogeneous infinite cloud at condensation stage of development the equation 
(32) will take the form 

-~/r A U Of. = A2 K 02j (33) 
3t &r &r 2" 

Solution of this equation when initial distribution is the delta-function under the 
assumption that A is constant results in the distribution (28). This shows that in (32) 
the effect of stochastic condensation is taken into consideration. Refuse from so strong 
simplifying assumptions leads to very complicated solutions. Some results are given 
in [20], [21]. Analysis carried out by us showed that change of A (A is determined by 
(25) with the help of integral) could significantly effect the distribution functionf.  As 
in this case and also when H is taken into account the equation becomes nonlinear 
and integral-differential, the analytical methods of solution are rather limited. To 
investigate in principle possibilities of using a kinetic equation of (32) type for making 
concrete calculations we considered solution of the equation taking the model of 
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infinite homogeneous cloud with consideration for variation of A 

A = 
2 D ~o o T 7" 

4 n D o ~  1-t R T  CvT 
0 

and with regard to integral of collisions. The difference equation for the function 
(p (r, t) of drop radius r distribution was written down in the form: 

(r, ) ( r i )  
q) i+ l  - -  (Pl ( r i  - -  / ' i - 1 )  - -  ( / ' i+1 --  /~i) ~0i - -  - - q ) i - 1  KA2 At r i+  1 r i - 1  r 

L ~ + 4 ~f ~ + ~  - ~) (~ - r~_ ~)~ 

- 4 r 2 (ri+IK A 2_ riAt- 2) rl-t  r~-1-1 (Pi+I - -  Pi-1 2(ri -- ri_l) r i (Pi -- --ri_l @i- 1 
oo r/2~13 

--  e l  K ( r , / ~ ' )  qo (F ' ,  t)  dF '  q- (?,3 _ F,3)2/3 K ( (  F3 - 1"'3)1/3, F')  

0 0 

x ~ ((r 3 - ~'3)'/~, ;) ~ (r', ;) d," / 
t -  1. 

(34) 

The value of A and integrals in the right part of the equation were computated numeri- 
cally by the trapezoid rule. Step of r change was chosen equal to Ar= 3" 10-5 cm, step 
of change of time was chosen from conditions of computation stability. The results of 
capture coefficient computations obtained in [22] were used for K determination. 
An example of computations carried out is given in Fig. 2. Delta-shaped function 
with the mean drop radius of 10 .4  cm and the initial number of drops N ~  103 cm- 3 
was used an initial distribution. K~ = 5.104 cm2/sec, U~ = 10 cm/sec. To save the com- 
putation time integral of collisions was taken into account in computations two hours 
later the beginning of computation, therefore for t < 2  hr purely condensational 
development of spectrum is shown in the figure. Even with idealization which took 
place the obtained results qualitatively correspond to present ideas of spectrum 
development in stratus. In Fig. 2 we see, probably for the first time, the picture of 
transition of initially narrow highly disperse drop spectrum into a wide spectrum with 
availability of large drop fraction which captures small drop fraction (for t > 2 hr) 
and leads to a remarkable decrease of particle number in the system. Thus, in the 
closed form widening (and not narrowing) is obtained, possibility of rather large drop 
appearance during comparatively short period of time is shown, a satisfactory value 
of concentration of these drops is obtained and possibility of small drop existence in 
spite of pumping up vapour to the system is shown. Large drop distribution is shown 
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in Fig. 2a. Unfortunately,  possibilities o f  the chosen model  are rather limited because 

appearance of  new drops and also falling drops out  of  volume is not  taken into account  

in it. Nevertheless, with the help of  this model  computa t ions  show once more  that  
main contradict ions in the theory of  cloud spectrum format ion which existed up to 
the present time are overcome. 

The main contradict ion of  well-known schemes of  cloud drop spectrum format ion 

lay in existence o f  a size range which was impossible to get over because o f  coagulat ion 
prohibit ion in this size range. This did not  allow to connect  condensation and coagula-  
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tion stage of drop growth. Considerations of stochastic condensation bore a qualita- 

tive character since during its description some random not tested by experiment 

assumptions were made, therefore these considerations could not be used for calcu- 

lational schemes. It seems to us that in this paper for the first time the closed scheme 

of cloud drop spectrum formation is given which includes drop formation from 

nuclei; describes the initial stage of condensation, is based upon stochastic condensa- 
tion, takes into account regular condensation and processes of coagulation and 

transport. The obtained kinetic equation does not contain random parameters and is 

determined by a small number of constants and functional relations, in general, allow- 

ing experimental test. 

At last some words should be said about relation between the kinetic equation and 

equations of thermohydrodynamics of the cloud. Apparently, in many cases liquid 

water content of the cloud is not so high as to be necessary to take into account its 

influence on dynamics of movement. If  we manage to describe radiation processes by 

some averaged values which do not require detailed knowledge of distribution func- 

tion, then in this approximation the system of general equations allows splitting and 

then the kinetic equation and equations of thermohydrodynamics can be considered 

independently. We think that it is in the way that our further investigations should 

continue. 

The obtained results permit to proceed to creation of the quantitative theory of 

precipitation formation. 
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