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Propagation of Love Waves in Layers with Irregular Boundaries 

By BARRY W o L f  1) 

Summary - A study is made of the scattered field which results when a Love wave is incident on 
a layer having an irregular surface. It is shown that for the class of boundaries treated the scattered 
field may be described by the superposition of a finite number of Love waves. As an illustrative 
example the result is applied to determine the reflection from a triangular notch. 

Introduction 

For  the interpretation of  geophysical data it is impor tant  to unders tand the 

mechanism by which waves are propagated in layered media. The current work is 

concerned with the propagat ion  o f  Love waves in the earth. In a first approach  to 

the problem the author  has considered an earth model  consisting o f  an elastic layer 

having an irregular boundary  overlying a rigid half-space, WOLF [5] 2). The current 

work  treats the same problem using the more  realistic earth model  in which the half- 

space is elastic. 

Discussion of problem 

We consider the field which results when a horizontally polarized shear wave, 

propagat ing in the plane por t ion of  an elastic layer, is incident on the irregular por-  

tion, as shown in Fig. 1. 

X=O X=L 
Z=_/4 J ~ l  

Inciden?~. 
wsvg 

lz 
Figure 1 

The interface between the layer and half-space is given by z = 0  and the upper 
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boundary may be described by z = z  B where 

z B = - H + b h ( x ) ,  h ( x ) = O  for x__<0, x=>L  
h ( x ) = f ( x )  for 0 _ < x < L  

and b is the maximum amplitude of the boundary irregularities. For physical reasons 
we require that the scattered field have only outgoing waves at x = +_ oo and at z = oo. 

Assuming a harmonic time variation e ~ the equations of motion become 

a2v' a2v  k?v, o,  =1,2 (l) + + _-  

where the subscripts 1 and 2 refer to the layer and half-space respectively, and 

ki=co/ci, the c~'s being the shear wave velocities, and the Ve's the displacement com- 
ponents in the y direction. 

The boundary condition on the traction free upper boundary may be written 

dh 
8V1 . . . .  b h '  8 V 1 = 0  on z = z B ,  where h ' =  . (2) 
8z 8x dx 

The displacement and stress continuity on the lower boundary yields 

and 
V I = V 2  on z = 0  (3) 

where /q  and #2 are material constants. 

Method of  solution 

The incident wave which exists under the flat boundary may be written in the form 

Vl,i. = A cosfi ,(z + H)  e -i~'~ 

V2, in = A e -&~ cosfil H e -i'x 

with ]~1 = ( k 2 - - ~ 2 )  1/2, /~2 = (o~2--k2) 1/2 and ~ is a root of  

(4) 

,/'/2 /~2 
tan fil H = - - .  (5) 

~l/71 

Since we are only concerned with propagating disturbances, we will consider only 
roots of  (5) for which :~ is real, such roots exist only if k~ >k2. 

In order to arrive at the scattered field described qualitatively in the problem 
discussion above we assume a solution, which satisfies the wave equations (1), in the 
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form of a contour integral in the complex v plane given by 

V1 . . . .  t. = f [B(v) e 'r + C(v) e -*~'=] e -'v~ dr ,  with ~, = (k 2 - v2) '/2 

c 

V2 . . . .  t. ---- f D(v) e -r e -~x dr ,  with {z = ( vz - k~) 1/2 

c 

where the contour c is shown in figure 2. 

(6) 

plane 

IntegroSan ceetau; 
-R, 2 e ~ ,x 

"2 /c 2 /r 

Figure 2 

Substituting (6) into the boundary conditions (3) it is found that the functions 
B(v), C(v) and D(v) are related by 

C ( 7 - ~  22 
- (7 7 B ,  D = 7 +  1 B (7) 

where 

i Pl {t 
7 -  

/*2 {2 

Using (7) in (6) an expression for the total displacement fields in the layer and half- 
space may be written 

Vl = Vl , in  + Vl . . . .  t. = A cosfll(z + H) e -~x 

2 B(v) [7 cos r z -- i sin ~, z] e -/V~ dv 
+ J 1 + 7 (8) 

c 

f 2  Y B(v) e-  r e-  ivx dv. V2 = V2'in + V2 . . . .  t" = A e-P~= c~ H e-i=~ + l + y  

c 

These expressions for the displacement field satisfy the wave equation and the bounda- 
ry conditions (3), it remains to determine B(v) such that the boundary condition (2) is 
satisfied. Accordingly, inserting the first of (8) into (2), we arrive at the following 
form of the boundary condition (2), 

A e-i~x( - fll sinfll b 17 + i e b h' cosfl, b h) 

_ .]  1 + ? {~1['/ sin e , ( -  H + b h) + i c o s { l ( -  H + b h)] (9) 

c 

+ i v b h ' [ y c o s ~ l ( -  H + b h ) -  i s i n ~ l ( -  H + b h)]} e -~vx dv = O. 



Vol. 78, 1970/I) Propagation of Love Waves in Layers with Irregular Boundaries 51 

The solution to this integral equation is quite formidable, however if we restrict 
ourselves to boundaries having small irregularities, that  is b ~  1, we may apply a 
perturbation procedure to evaluate B(v). 

To carry out  this perturbation we assume a series solution for B(v) in the form 

B(v) = ~ B,,(v) b". (lO) 
n = l  

Inserting (10) into (9) and expanding the resulting equation in powers of b we obtain 

A e - i e x {  - fll[fll b h + ...] + i c~ b h'[1 - (fl, b h)2/2 + ...]} 

- .(  [2/(1 + 7)] (S~(v) b +...)  {[7(41 b h +.  

c 

+ i(1 - [41 b h]2/2 +. . . ) ]  4~ cos4~ H -  [7(1 - [41 b h]2/2 +.. .)  

- i(4a b h + . . . ) ]  41 sin~l H -  i v b h'[i(~l b h + . . . )  

- ~(1 - [41 b h]2/2 + . . . ) ]  cos4a H -  [i(1 - [41 b h]2/2 + . . . )  

+ 2;(41 b h + . . . ) ]  s in4,  H} e-~Xdv = O. 

(11) 

To first order in b we obtain 

h') - ~ [2/(1 -t- "~)] Bl(V ) (i COS ~1 U - -  '~ sin 4t H) 41 e -i~x dv = 0 A e - l a x ( _  fl  h + i 
. I  
c (12) 

which may be inverted to yield 
QO 

B~(v) = [A(1 + 7)/4 ~z 41(i cos~l  H - 7 sin ~ H)] _I (i c~ h' - f12 h) e i(~-~~y dy.  (13) 

-oo 

Inserting (13) into (8) we obtain expressions for the displacement field to first order 
in b, these may be written 

V 1 = A c o s f l l ( Z  -J- H )  e -i~x + b f 

-oo 

c 

V2 = A e -&z cosfl2 H e -i~x + b 

xf 
c 

(A/2 n) (i c~ h' - fl~ h) e -i~' 

COS ~1 Z - -  i s i n  ~1 Z e~(y_~) 
~1(i  c o s  ~1 H ~ -  f f G ~ ; H )  d v d y  

i (A/2 n) (ic~ h' - fi~ h) e -'~' 

--~21: 7e 
e '~(y-x) dr dy .  

~1(i cos ~1 H -- 7 sin ~1 H) 

(14) 



52 B. Wolf (Pageoph, 

Since the integrands for the contour integrals in the v plane, appearing in (14), 
are not single valued, the contour c must be chosen to lie on the sheet which will yield 
the form of solution described in the problem discussion above. Accordingly, the v 

plane is cut as shown in figure 3 with the contour lying on the sheet which maps into 
the right half  ~2 plane under the mapping 42 = ( v 2 -  k2) 112. To evaluate these integrals 

the cases y > x and y < x are considered separately. 

Consider first the integrals 

7 cos 41 z - i sin 41 z e i~(y-x) d v  

41(i cos 4, H - 7 sin ~l H) 
c 

and 
f ~ e- ~2z 

4i(i cos 41 H - 7 sin 41 H) ei~(r-x) d r ,  with y > x.  (15) 
c 

To evaluate these integrals, the contour c is closed by arcs at infinity in the left and 

right upper half plane connected by a contour around the branch line, as shown in 

figure 3. 
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Figure 3 

The singularities of the integrands in (15) within this closed contour are poles 

which exist at the zeros of  

icos41 H -  y sin41 H = 0. 

For  the sheet chosen all of these zeros, denoted by v,, ,  lie on the real v axis and satisfy 
- k l  <= Vm < - -  k23). Furthermore, if this relation is written in the form 

~z 42 
tan 41 H - (16) 

/~i 41 

3) See Appendix. 
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a sketch of the functions on the right and left hand side reveals that there exist N 
such zeros, where N is the integer part of the number 

If we let 

and 

(15) may be written 

and 

- z4)  ' /2  H/ 3 + 1. 

Gl(v) y cos 41 z - i sin 41 z , 

= e~V(y-  x)  

~ ( i  cos ~ H - 7 sin ~1 H) 

Gz(V) ~ e-~2" = eiVO '-x) 
4~(i cosr H - - ~ s i n ~ i  H) 

f G,(v) d v = 2 7 r i ~ R e s G ~ -  f Gt(v) d v -  [Gt(v) 
c Branch cm 

line 

f G2(v) dv=2zci ResGz- f f 
c Branch c~ 

line 

(17) 

The residues of  G, and G2 at the poles v= are given by 

Res G 1 = COS r + z) ei''(Y-X)/Vm H ] 
and } m =  1 , 2 . . . N .  (18) 

Res G 2 = e - & ~ z  c o s  ~ l m  H ei""(Y-~)/v,.H J 

Where ~1,, and ~2,, are r and 42 evaluated at Vm- 
The asymptotic approximation of the integral around the branch line in the first 

of (17) contributes to order 1Ix 3/z. In the second of(17) it contributes to order 1Ix 3/2 
independent of z, and to order e-k2z/z a/z independent of x. Therefore, if we restrict 
our attention to solutions far from the irregular portion of the boundary the contri- 
bution of the branch line integrals in (17) are small compared to the contribution of 
the residue term. 

Furthermore, since the integrals over the arcs at infinity in (17) vanish, we obtain 

f G,(v) dv = 2 rc i Z cos ~I~(H + z) ei~"(r-X)/v,,, H 
c 

and 

f N G2(v ) dv = 2 rc i 
m = 1 

c 

e -r cos 4a,, H eiV"(Y-~)/vm H 

(19) 

with the zeros v,, < 0. 
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Similarly, for y < x we may close the contour in the lower half plane and proceeding 
as above we obtain 

f N Gl(v) dv = - 2 n i E 
m = l  

c 

G2(v )  d v  = - 2 ~ i E 
t t l = l  

C 

with the zeros v~ > 0. 

cos ~I,.(H + z) ei~'(r-:')/v., H 

e -r cos ~1,. H ei~(r-x)/v., H 

Inserting (19) and (20) into (14), one obtains the displacement fields 

V, = A cosfl~(z + H) e -'=x 

h - i b A e -ivmx (i o~ ,8 2 h) e i(v''-~)~' dy 
v m H 

m=l -oo 

._}.. e i . . . .  ~ ( i o~ h ' - fl2 h) e-i(v" + ~')Y d y ]  , v,,, > 0 
. 1 , . . . I  
x 

and 

V2 = A e -a~ cos/~e H e -i~x 

- i b A e - ' ~ ' x  ( i  o~ fl~ h)  e '(~''-~')y dy 
Vm H 

m=l --~ 

+ei~m~ i ( i o : h ' - f l ~ h )  e-i(v~+~)Ydy 1, v , ,>O .  

x 

Since the upper boundary of the layer is given by 

h(x) = 0 for x < ~ O , x > L  
h(x) = f ( x )  for 0 ~ ~ _< C 

then 
L L 

f f ' ( x ) e - i p X d x = i p  f f ( x )e - ipXdx .  
0 0 

/ncieent ~ ' - . . . .  . . '~'~l b l 
---~ I t~ WSV8 I I 

IZ 

Figure 4 

(20) 

(21) 

(22) 



Vol. 78, 1970/I) Propagation of Love Waves in Layers with Irregular Boundaries 55 

With the aid of (22), the solution (21) may be written 

V 1 = A cosfll(z + H) e -i '~ 
N L 

- i b A ~ c~ + z) " f 
Vm H e . . . .  (e % - k 2) f ( y )  e -i('+~'~)' dy 

m = l  0 

V2 = A e -~2~ cos/~2 H e -~x 

N L 

e - ~  . . . .  C O S ~ l m H e i v m x ( ~  k21)ff(y)e_i(~+v,.)Ydy - i b A  Vm-- 
Vm H 

m = I 0 

for x < 0, and 

V~ = A cos /h (z  + H) e -i~x 
N L 

_ i b A ~ c ~  + z )  - ,  f " v,, H e . . . .  ((z Pm -- k2)  f (Y)  e-~(~-""~ dy 
m= 1 0 

V 2 = A e -p~-" cosfla H e - i ~ x  

N L 

i b A ~ e-r c~ H - i  . . . .  (0~ k21) f f (y) e-i(~-v')Y dy 
- -  e v m -- 

v m H 
m=l 0 

for x>> L. 

(23) 

Illustrative example 

As an application of the above solution we will determine the reflected field which 
results in a layer when a Love wave is incident on a boundary irregularity in the shape 
of a triangular notch as shown in figure 4. 

For this boundary 

f ( x )  = 2 x /L,  0 <- x <- L/2 
f ( x )  = 2(1 - x/L),  L/2 <_ x ~ L.  

In particular we consider a layer in which only the first mode can propagate, that 
is, as given by the relation following (16), the layer thickness is such that the integral 

r~v2 v2~1/2 H/n] is unity. In this case the reflected field in the layer, which part  of  1 + LV~ - ~ 2 j  

is given by the sum in the first of  equations (23), contains only the first term. Further- 
more, since vl = e and 411 =il l ,  the reflected field may be written 

V ~ ,  r e f L  - -  

L/2 L 

O L/2 
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or, after integrating 

g l ,  refl. - -  - -  
i b A fi2 (sin ~ L/2) 2 ei~ cos fll(H + z) 
2 ~ 3 H  L 

It is interesting to observe that the amplitude of this reflected wave depends on 
the length of the notch as (sinc~ L/2)2/L. This implies that for a given notch depth 
the amplitude essentially decreases as the notch length increases, that is, there is less 
reflection as the slope of the notch decreases. This result is expected, a more interesting 
observation however, is that there is no reflection when sinc~ L/2=0.  Since c~=2 ~z/2, 
where 2 is the wave length, this result implies the absence of a reflected field, to the 
order of approximation of the current work, when the length of the notch is an integral 
multiple of the wavelength. A similar result has been observed in the case of acoustic 
waves propagating in a conduit of variable cross-section. 
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Appendix 

To show that on the sheet in the v plane which maps into the right half ~2 plane, 
equation (16) 

t a n ~ H - P 2 4 2  where ~ 1 = ( k z - v 2 )  1/z and C z = ( v z - k 2 )  ~/2 (16) 
~a ~1' 

has only real roots Vm, m= 1, 2, 3..., and these roots lie either in the interval 

k 2 ~ vm~k I o r  - k  1 ~Vm~ - - k  2. 
We may demonstrate this by showing that the roots of (16) in the right half ~2 

plane exist only for real ~2 which satisfies 0 < ~2 < ( k2 - k 2 )  1/2. 
To do this let ~. H = ~ . + i  ft., n =  1, 2. Equation (16) then becomes 

tancq + i tanhfi 1 ]A2(~ 2 + i fia) 
- ( A - l )  

1 - i tan~l tanhfll  #l(cq + i ill) 

and the real and imaginary parts of (A-l) yield 

tan~l = [(/22/#1) ~2 -[- fll tanhfi l ] / [el  - -  ( # 2 / / 2 1 ) / ~ 2  tanhfil]  (A-2) 

tan el = [(#2/#,) fi2 - cq tanh fil]/[/31 "~- (#2/#1) ~2 tanhf i , ] .  (a-3) 

Equating (A-2) and (A-3) we obtain 

[(#2/#1) c~2 +/31 tanh/31]/[-cq - (#2/#1)/32 tanh/31] ] 
= [(#2/#2) B2 - ~1 tanh/31]/[/31 + (#2/#1) a2 tanh/3~] J (A-4) 



Vol. 78, 1970/I) Propagation of Love Waves in Layers with Irregular Boundaries 57 

Fur thermore ,  since v 2 = k  2 -  4~ and v2=  4 2 - k ~ ,  we may  write 

k 2 _ ~2 = r _ k 2 (A-5) 

the real pa r t  o f  which yields 0(1 fil = - 0(2 fi2. 
Eliminating 0(1 between (A-4) and (A-5) the result may  be writ ten 

f12[(fi2/]/1) 0(2 ~- fll tanhfil]/[0(2 + (P2/#I) f l l  t a n h f l l ]  t 
= - fl2[(#2/#1) fi, + 0(2 t a n h f i l ] / [ f l l  + (/~2/#1) 0(2 t a n h f i l ] .  ~ (A-6) 

F r o m  the expression (A-6) it can be seen that  if 42 is not  real, tha t  is, if f12r 
there exists no 0(2 =>0 which satisfies (A-6) since the left and right sides are always 

positive and negative respectively. Thus  roots  o f  (16), on the sheet of  interest, exist 
only for  42 real. 

"~" f b 2  /I2]1/2 that  is, for  It remains to show that there are no roots for real 42 / \t,~ 1 --*'~21 , 

fi2 = 0 and 0(2 > ( k ~ - k 2 )  ~/2 H. This can be seen by observing that 42 = 0(2 > ( k2 - k 2 )  a/z 
implies Iv] > k l  or 41 is pure imaginary, that is, a 1 =0,  and 41 H = i  fla. Equation (16) 
becomes 

['/2 0(2 
tan i f i l  - . 

l #a fla 
or  

- /~1  fil t anhf i l  = ]/2 0(2- (A-7) 

Since the left and right sides of (A-7) are negative and positive respectively, no roots 
exist. 

Thus the only roots of (16) on the sheet of interest must satisfy k2<vm<k l  or 

- -  k 1 <= v m <= - k 2. These are in fact the roots of the characteristic equation in the classical 
Love Wave problem. 
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