
E R I C D I E T R I C H

S E M A N T I C S A N D T H E C O M P U T A T I O N A L

P A R A D I G M IN C O G N I T I V E P S Y C H O L O G Y

ABSTRACT. There is a prevalent notion among cognitive scientists and philosophers
of mind that computers are merely formal symbol manipulators, performing the actions
they do solely on the basis of the syntactic properties of the symbols they manipulate.
This view of computers has allowed some philosophers to divorce semantics from
computational explanations. Semantic content, then, becomes something one adds to
computational explanations to get psychological explanations. Other philosophers, such
as Stephen Stich, have taken a stronger view, advocating doing away with semantics
entirely. This paper argues that a correct account of computation requires us to
attribute content to computational processes in order to explain which functions are
being computed. This entails that computational psychology must countenance mental
representations. Since anti-semantic positions are incompatible with computational
psychology thus construed, they ought to be rejected. Lastly, I argue that in an
important sense, computers are not formal symbol manipulators.

1. INTRODUCTION

In From Folk Psychology to Cognitive Science (1983), Stephen Stich
argues that there is no scientifically respectable method for attributing
semantic content to psychological states. Because of this, he advocates
the radical position of rejecting semantics and semantically interpreted
states (such as propositional attitudes) from cognitive psychology.
Cognitive psychologists, on his view, ought to construe cognitive
processes purely syntactically. If Stich is correct, future cognitive
scientists will have theories that do not countenance mental states with
content, i.e., theories that do not countenance mental representations.
For philosophers such as Fodor and Pylyshyn, who advocate
representational theories of the mind, this would be catastrophic.1

Stich's view, however, is much more sweeping than it first appears.
If he is correct, then not only will representational theories have to be
rejected, but, I claim, all of computationalism will have to be rejected
as well, because computationalism - the thesis that cognitive capaci-
ties are best explained in terms of capacities to compute certain
functions - requires us to posit and semantically interpret mental states
and mental processes. A success for Stich is thus much more than a
disaster for Fodor and Pylyshyn. Rejecting computationalism would
affect all of cognitive psychology. Psychologists in fields as diverse as

Synthese 79:119-141, 1989.
O 1989 Kluwer Academic Publishers. Printed in the Netherlands.

120 E R I C D I E T R I C H

problem solving, perception, imagery, memory, language understand-
ing, and developmental psychology would have to completely change
their methodology. 2

In this paper I will argue that computationalism does in fact require
us to posit and interpret mental states and structures, and I will present
a strategy for doing this, the "computational strategy". This strategy is
used in both the computational and cognitive sciences. In practice,
therefore, computer and cognitive scientists attribute semantic content
in the course of producing scientific explanations. (In my opinion, this
is a good prima facie reason for being skeptical about arguments such
as Stich's.) I will argue that the computational strategy is used because
it provides cognitive scientists with a scientifically respectable method
for attributing contents of computational, psychological states. If my
argument is correct, then there are good reasons for embracing
semantics and remaining computationalists, and we may reject current
arguments to the contrary.

My view, however, is also more sweeping than it first appears. The
necessity of semantic attribution within the computational paradigm is
not generally acknowledged. The main reason for this, I think, is that
computers themselves are widely regarded as formal symbol manipu-
lators or syntax machines, manipulating symbols independently of
their content. If my argument is correct, then to understand computers
we must ascribe contents to their internal functioning. This means that
computers cannot be understood as formal symbol manipulators.
Therefore, in my view, not only is Stich wrong in claiming that there is
no scientifically respectable method for assigning contents to mental
states, but the dominant view of computers is also in error. 3

In Section 2, I present two of the problems Stich sees for coun-
tenancing representational mental states. My primary concern is not
these problems per se, but rather the general intuition they are
intended to foster that semantic attribution is scientifically suspect. My
arguments that semantic attribution is scientifically respectable and
necessary for computationalism is presented in Section 3. Finally, in
Section 4., I discuss the consequences of my argument for the view
that computers are formal symbol manipulators.

.

Stich sees two fundamental problems with attributing semantics to
mental states. The first is that a scientific psychology must generalize

S E M A N T I c s A N D T H E C O M P U T A T I O N A L P A R A D I O M 121

over contents ascribed to mental states. This requires picking out
identical contents across individual subjects or systems. But according
to Stich, there simply is no viable notion of content identity; rather,
contents are more or less similar (1983, pp. 85-87). Moreover, Stich
claims that judging contents to be similar essentially involves the
person doing the judging and the context in which the judgments are
made. This makes such judgments so vague and context sensitive that
they will not support scientific theorizing (pp. 128-148). Hence, we
ought to forego ascribing semantic contents to subjects.

The second problem Stich sees is that in the case of a particular
subject or system, the referential components of the semantic contents
attributed to it will depend on causal relations between it and external
referents. Changing external referents changes the content ascribed to
the subject. However, such changes need not (and typically will not)
change the states and processes of the subject that are relevant to
psychology. Hence, it cannot be the case that referential content is
important to psychology. Again therefore, we ought to forego ascrib-
ing semantic contents to subjects (1983, pp. 164-170). 4

Each of these problems can be construed as an argument that a
certain strategy for semantic attribution is inadequate for scientific
psychology. I will call the strategy associated with the first problem the
similarity strategy, and the strategy associated with the second problem
the causal strategy.

A. Problems with the Similarity Strategy

The similarity strategy is the strategy Stich claims we use in our folk
psychology and everyday ascriptions of content (1983, pp. 73-110).
On Stich's view, when we ordinarily attribute content to the mental
states of others we compare them to ourselves, exercising a sort of
'empathic' capacity. This comparison amounts to the claim that ano-
ther is in a mental state similar to one which would normally be the
central cause of our assertion of the content sentence. We would think
that someone else is in a mental state similar to one we might have if
we judge that person's circumstances, networks of beliefs and desires,
and specifi c behavior in the circumstances to be similar to our own.
Thus if someone's situation and mental life seems similar to our own,
then we can successfully ascribe contents to his or her mental states by
comparing them to ones we might have were we in his or her situation
(1983, and 1982). 5

122 E R I C D I E T R I C H

To attribute content in this way we have to understand, at least
partially, the other individual and his or her situation. Hence, we
cannot consider subjects nor their mental states in isolation. Instead,
we must consider the entire subject, its network of interconnected
mental states, the set of circumstances in which it finds itself, and the
context in which we are making the attribution. Stich discusses this
understanding at length (1982, 1983). He argues that it resolves into
various kinds of similarity judgments. These judgements assess the
similarity between the mental contents of the subject and the ascriber
along certain dimensions, the main ones being functional similarity, or
similarity of causal potential, ideological similarity, and similarity of
reference (pp. 88-90). 6

According to Stich, the dependence of content ascription on
similarity judgments (and 'empathic' or 'projective' understanding, in
general) explains an interesting phenomenon of our everyday ascrip-
tions of mental content: as subjects become less and less like us, or as
the situations of subjects become less and less like those of our
everyday experience, we become less and less able to attribute beliefs
or other content-full mental states to them (1983). Stich provides
several interesting examples of humans who are so different from us
that we cannot comfortably ascribe contents to their mental states
using the similarity strategy. This does indeed suggest that in our
ordinary life we use something like the similarity strategy to ascribe
contents to mental states. Unfortunately, the similarity strategy cannot
be used to scientifically ascribe content, and hence should not be used
in psychology, or so Stich argues (1983).

Consider the nature of similarity judgments. Judging that X is
similar to Y is always context dependent and relative to the one who is
doing the judging. According to Stich, context dependency and
observer relativity make similarity judgments inappropriate for psy-
chology because whether a given psychological generalization applies
should not depend on the theorist doing the research or on the setting
the theorist is in (1983, footnote p. 139). If psychologists were to use
the similarity strategy then they would be hindered in their efforts to
develop psychological theories of very young children, primitive peo-
ples, and victims of strokes, retardation, and schizophrenia, none of
whom are similar enough to the psychologists themselves for semantic
content to be successfully ascribed. The science of psychology, as
opposed to our folk psychology, should apply to all humans, not just
ones like us.

S E M A N T I C S A N D T H E C O M P U T A T I O N A L P A R A D I G M 123

The conclusion is that the similarity strategy for ascribing contents
to mental states is inadequate for use in scientific psychology. Though
the strategy may be used in our folk psychology and day-to-day
judgments, it cannot work in our scientific psychology.

B. Problems with the Causal Strategy

Stich's second argument is that some components of semantic contents
(e.g., the referential ones) essentially depend on causal relationships
disallowed by the autonomy principle. According to Stich, the
autonomy principle is so fundamental that it cannot be rejected, hence
semantics must be rejected, along with all psychological theories that
ascribe semantic content to mental states.

The autonomy principle claims that "states and processes that ought
to be of concern to the psychologist are those that supervene [only] on
the current, internal, physical state of the organism" (1983, p. 164). 7
This entails that "any differences between organisms which do not
manifest themselves as differences in their current, internal, physical
states ought to be ignored by a psychological theory" (p. 164).
Consequently, if some aspect of a subject's environment on history
might have been different without affecting its internal states, then
that aspect is psychologically irrelevant (pp. 164-165).

Evidently, referential components in semantic interpretations of
mental states are just the kind of environmental aspect rendered
psychologically irrelevant by the autonomy principle. To make this
plausible, consider this example (due to Stich, 1978). Imagine that I
had an exact duplicate made of me yesterday. According to the
autonomy principle, all psychologically adequate theories will posit
properties and relations that are true of both me and my duplicate,
since we are physically identical. Moreover, only properties and rela-
tions true of the both of us are genuine, explanatorily useful psy-
chological properties and relations. (Stich says, "If the principle is to
be observed, then the only properties and relations that may legiti-
mately play a role in explanatory psychological theories are the
properties and relations that a subject and its replica will share"
(1978).)

By definition, my duplicate and I share physical descriptions of our
internal mental states. However, we do not share semantic descrip-
tions of our internal states. I have a mental state referring to my
deceased great-grandmother because (assuming a causal theory of

124 E R I C D I E T R I C H

reference, as Stich does) I have had the right kind of causal relation to
her. However, my duplicate (let us suppose) has not had the right sort
of causal relation. My duplicate, therefore, has no mental states
referring to her. Hence, our mental states differ semantically (precisely
in our referential components). It is clear to Stich, however, that this
difference doesn't make a difference, psychologically; whatever
behaviors I have, my duplicate will also have. Sharing physical de-
scriptions of our internal states but not semantical descriptions means
that the semantic descriptions do not manifest themselves as
differences in our physical, internal states. It follows from this and the
autonomy principle that semantic descriptions of mental states are
otiose from the perspective of cognitive psychology.

Since the causal strategy depends on psychologically irrelevant
causal relations, the attributions themselves must be psychologically
irrelevant. As cognitive scientists, we simply ought to avoid making
them.

C. The Inadequacy of Semantic Attribution

Taken together, the problems with the two strategies make question-
able the goal of scientifically attributing semantics to mental states. On
the one hand, we cannot use the strategy from our folk psychology,
because when using this strategy, we search for similarities between
ourselves and others, and this prevents us from being able to success-
fully attribute content to those significantly different from us. On the
other hand, one of the best theory-driven approaches to semantic
attribution (the causal strategy) will not do either because the under-
lying theory (the causal theory of reference) postulates relationships
between subjects and the world that are irrelevant to psychology. 8
Hence, even if our subjects are identical replicas of us, we still have
no guarantee that we will be able to attribute semantic contents
because our replicas may not be embedded in the world the way we
a r e .

All this suggests that semantic attribution is successful only when
applied in ordinary settings to subjects like us. But a scientific enter-
prise should not be so idiosyncratic. Hence, semantic attribution is
scientifically disreputable. This is not to claim that semantic attribu-
tion is completely disreputable. It does have a role in our ordinary,
day-to-day lives because it helps us understand (though not

S E M A N T I C S A N D T H E C O M P U T A T I O N A L P A R A D I G M 125

scientifically) most of the humans we come in contact with. Semantic
content, and semantic attribution emerge, then, as heuristic methods
we use in our ordinary lives to get along with ordinary people like us.
As Stich says: "As I see it, the notion of ' content ' . . . despite all its
utility in the workaday business of dealing with our fellow creatures, is
simply out of place when our goal is the construction of a scientific
theory about the mechanisms underlying behavior" (1983, pp. 5-6).

.

The failure of the two strategies discussed in Section 2 suggests that
semantic content itself is scientifically otiose. Neither strategy is used
in the cognitive sciences, yet our psychological theories often explain
our subjects' behavior. Hence, content (together with semantic attri-
bution) must not be required for scientific psychology (cf., Stich 1983,
p. 208). 9

We cannot accept this conclusion without giving up com-
putationalism, the most successful paradigm cognitive psychology has
ever embraced. Such a costly methodological shift could be avoided if
we could find a strategy for semantic attribution that allowed us to
attribute contents to subjects very different from us, and one that tied
semantic descriptions of subjects' internal states to physical descrip-
tions of their states (thus adhering to the autonomy principle). Meeting
both of these objectives would make semantic attribution scientifically
respectable because it would free semantic attribution from the
idiosyncrasies of the ascribers (though not necessarily from their
scientific goals), and make the attribution depend on the subjects and
their relation to their environment.

Such a strategy exists, and in fact is used today in the computational
and cognitive sciences. I call this strategy the computational strategy.
The computational strategy allows one to ascribe contents to another's
mental states based on what function would explain the other's
behavior and psychological capacities. This strategy relies on the fact
that explanatory pressures license the ascription of certain contents
and not others, just as such pressures license scientific explanations in
general.

The computational strategy doesn't require us, as theorists, to be
similar in any way to those to whom we are ascribing contents (this is
why it is successfully used by computer scientists, for example). It also

126 E R I C D I E T R I C H

respects semantical differences between subjects precisely where the
autonomy principle dictates it should. Finally, if the computational
strategy is not used when attributing semantic content to a subject,
then we will not be able to devise any computational theory for that
subject or subjects of its type. This last point is strong. It entails first
that an explanation of a cognitive capacity cannot be a computational
explanation if is does not posit representations and processes internal
to the subject, and attributes content to them. Second, it entails that
we must use the computational strategy if we are to understand a
subject as computing functions. The rest of this section is devoted to
defending these claims.

A. The Computational Strategy

The goal of the computational strategy is to attribute to a subject or
physical system, S, the computation of a certain function, F. To do
this, it must be determined (or assumed) that S executes F, and it must
be determined how S executes F. The computational strategy is
successful when it is possible to explain S's computation of F in
terms of a sequence of functions (gl g,) such that (1) F =
g. o g._l o gl; (2) S passes through a sequence of states where each
state corresponds to either the domain or range of one of the g~'s, and
each state between the first and final states is the range of some gi and
the domain of some g,+l; and (3) we antecedently understand the
individual g~'s (see Figure 1). When F = g, o g,_~ o g~ and the g~'s
are nontrivial it is natural to say that the sequence of functions
(g ~ , . . . , g,) analyzes the capacity of S to compute F (see Cummins
1975 and 1983, pp. 28-44). 1°

Completing steps 1, 2, and 3 (i.e., determining that S computes F
and that F = g, o g,_~ o ga where we antecedently understand the
gi's) is generally quite difficult and always a matter of creative problem
solving. A theory of how steps 1, 2, and 3 are accomplished would
therefore require a theory of how humans creatively solve problems,
i.e., how humans come to see systems as executing F instead of E, and
why F, say, provides a better explanation than E. To date, there are
no theories of creative problem solving that can adequately address
these issues (but see Dietrich and Fields, 1986). Something can,
however, be said about steps 1, 2, and 3.

F is a "system-sized" function. Fixing F for a particular system is

S E M A N T I C S A N D T H E C O M P U T A T I O N A L P A R A D I G M 127

seeing S as doing something regular. Therefore, fixing F grossly, but
not trivially, answers the question "What is S doing"?

The necessity of semantic attribution begins with the specification of
F. If we choose, we could refuse to interpret F's inputs and outputs,
and instead specify F at the level of physical regularities. But doing
this would leave the specification of F relatively useless. In fact, we
would merely have a description of the state changes of the system S.

Consider a transducer such as a telephone receiver that takes
electrical power and produces compression waves in the surrounding
air. If we notice regularities on the compression-wave side that co-
vary with regularities on the electrical side (e.g., respective frequen-
cies), we can describe the transducer as computing the function T:

T: (specification of electrical regularities)~ (specification
of compression-wave regularities)

However, interpreting T's input and output (or, what is the same:
producing another function T*) not only gives us a better under-
standing of what the transducer does, but an understanding that is
crucially different from the specification of T above. For example, if
we interpret the electrical regularities as representing voice patterns
and the compression waves as acoustic signals representing voice
patterns then we will be in a position to detect errors in our transducer.
Indeed, in general, the only way we can know that a certain regularity
is an inappropriate output given a certain input is by using some
global interpretation within which we expect the given input to
produce an output other than what it did. Take an extreme example. If
our transducer outputs an acoustic signal corresponding to 'goodbye'
every time it received an electrical signal corresponding to 'hello', this
would be an error (i.e., unwanted). But we could recognize such an
error only if we had interpreted the corresponding physical regulari-
ties. ~ i

Once F has been specified, the analysis of F into the sequence
(g l , . . . , gn) is possible. Here is where semantic attribution has its
greatest payoff. The analysis of F is a real step forward when we
antecedently understand the individual g;'s. This and the cor-
respondence between the states S can pass through and the gi's is what
gives the explanation of S's state changes as the computation of F its
power, for it is this analysis that connects S's state changes with
something we understand, viz., the gi's. 12

128 ERIC DIETRICH

When S passes from state si to sj, function gi is computed and its
output is then input for succeeding function gj. We understand S's
state transition from s~ to s t by seeing the transition as the execution of
g~. Doing this is interpreting the states of S because it is treating the
states of S as symbols which get transformed. When we do this, we see
S not merely as a physical system, but as an interpreted virtual
machine, i.e., as a system S* that computes F by passing through a
sequence of virtual states which are the inputs and outputs of the g~'s
(see Figure 1). 13 Once we can view S as an interpreted virtual
machine, we can switch between this view and the physical state
transition view. At this stage, the computational strategy is complete,
and we have our explanation of what S does and how it does it (see
Cummins 1983, p. 39).

The correspondence between the S's states and the g/s can be made
precise. On the assumption that S computes F by computing
g, ° g,-1 ° gl we can provde an 'interpretation function' that maps
states of S onto the gi's. Letting I represent the interpretation func-
tion, then we get the following picture (see Stabler 1983, and Pylshyn
1984, pp. 54-59). x4

Interpreted gl g2 g.-i
virtual I (s l)) I(s2) ~ " " ~-- I (s n)

m a c h i n e S * l /] I I I

system S $1 ~" $2 --> ' ' ") Sn

Figure 1. Interpreting the state transitions of S as computing the sequence of functions
(gl g.).

B. An Illustration of Semantic Attribution using the
Computational Strategy

The use of the computational strategy is good scientific procedure. A
concrete example that exhibits this is perhaps useful at this point.
Consider something very different from us: an ordinary, four-function
calculator, a device that can add, subtract, multiply, and divide. For
our purposes, assume that we are given a four-function calculator

S E M A N T I C S ~ A N D T H E C O M P U T A T I O N A L P A R A D I G M 129

which uses a brand new architecture, and that our task is to figure out
what this new architecture is. 15

When we test the new calculator, we notice that it sometimes seems
to add, subtract, multiply, and divide, and that sometimes it does
nothing. Further experimentation reveals that the order of the inputs
makes a difference. If we input "2 + 2", the calculator does nothing
(other than echo the final "2"). But if we input " 22 + ", the calculator
outputs "4". We hypothesize that, for the four, two-argument arith-
metical operations, the operation must be specified last. We generalize
this, and hypothesize that the operation must always be input last. To
test this we input " 1 2 3 4 + " . The calculator outputs "7", which
doesn't accord with our prediction. The calculator seems to only
"remember" the last two numbers input. Perhaps it can only accept
two numbers at a time, with the operation last, for example we observe
that, "12 + 3 4 + " outputs first "3" then "7". However, as we con-
tinue experimenting with different orders of input, we discover that
"12 + 3 + 4 + " gives the output "10". We interpret this behavior this
way. All four operations only accept two numbers at a time. However,
the result of an operation is somehow 'remembered', and is used as
one of the arguments for succeeding operations, provided that it is not
'forgotten' which happens if more than one number is input next.

This initial explanation, we may imagine, stands up against further
tests. Now, how are we going to explain how our calculator works?
Why does the input have to have the argument and operations in the
order that it does (post-fix order as opposed to the more natural infix
form)? Specifically, we want to explain the way our calculator seems to
'remember' and 'forget' numbers, and that when it gives the output we
want it seems to 'remember' two numbers, operate on them, and
'remember' the result, which can then be used as one of the arguments
for the very next operation.

Naturally enough, we hypothesize an internal representation that
stores the inputs in a certain way, and we hypothesize that the
calculator executes an algorithm that must have its information stored
that way. There is a data structure that nicely fits our needs: the stack.
Our hypothesis, then, is that our calculator is a stack-based machine,
i.e., our calculator uses a stack as its primary data structure. 16

Stacks have two associated operations: push and pop. Data items
are pushed onto the stack as they are stored, and popped off from the
'top' of the stack as they are used. We hypothesize that our calculator

1 3 0 E R I C D I E T R I C H

pushes numbers onto its stack as they are input, and pops them when
an operation is input. If "2 2+" is the input, the first "2" is pushed
onto the stack, then the second "2" is pushed. When "+" is received,
the two "2" 's are popped off the stack, added together, and "4" is
pushed back onto the stack.

Here is how the calculator works if we input "1 2 + 3 + 4 + ". Let T
be the stack in the calculator, and assume that T = (), i.e., assume that
T is empty at the beginning of the computation. First, "1" and "2"
are pushed onto the stack in the order in which they are received.
Now T = (2 1). (Note that the top of the stack is on the left.) Next,
"+" is input. Now "1" and "2" are popped off the stack, added, and
the result is pushed back on the stack. Now, T = (3). Next, "3" is
received as input. Now T = (3 3). Next, "+" is received. The two
"3" 's are popped, added, and "6" is pushed onto the stack. T = (6).
When "4" and "+" are received the same thing happens, with the
result that finally T = (10). If we assume that whatever is on the top of
the stack is also displayed as output, then 10 is displayed, and we have
our explanation of why the order of input to our calculator has to be
the way that it does. 17

Compare the features of this example with the definition of the
computational strategy given above. First, we assumed that the cal-
culator added. (This is indeed an assumption because we could have
assumed that the infix " 2 + 2 = null" was the interesting function
rather than the post-fix "2 2+ = 4". This assumption is dependent on
the context that in our culture calculators are used to compute
(instances of) functions like addition, not functions that map inputs
onto the null set.) Second, we explained how the calculator added by
analyzing its addition into a series of antecedently understood stack
operations (involving push and pop). Third, our explanation requires a
correspondence between states of the calculator and states of the
stack. We interpreted (a subset of) the states of the calculator as being
states of the stack. We also interpreted changes in the stack as
computations of the functions push and pop. Both of these steps
essentially involved semantic attribution, and both were essential to
understanding what our calculator did and how it did it. Finally, the
success of our explanation, i.e., its utility, vindicated our original
assumption that the calculator added.

I am now in a position to present an argument that positing and
interpreting structures and processes is necessary if an explanation is

S E M A N T I C S A N D T H E C O M P U T A T I O N A L P A R A D I G M 131

to be a computational explanation. A process is a computation if it is
usefully described as computing a function F, i.e., if over time, the
process generates output equal to F(input). But, in order to see a
certain process as computing a function F, we must interpret the
initial state of the process (or system) as being the requisite input for
F, and the final state of the process as being the requisite output,
namely F(input).

C. The Computational Strategy as a Strategy for Semantic Attribution

It is worth emphasizing the main points so far. First, the goal of the
computational strategy is ascribing the computation of a certain
function F to a certain system, S. Second, in order to do this one must
interpret states of S as entities over which F (and each of the gi's) is
defined. That is, we cannot understand state transitions of a system as
adding 1 and 2 unless we are prepared to interpret states of S as
representing 1 and 2. TM

Though similar points have been made before (see Cummins 1983,
Smith 1982), they have not been seen as constituting a strategy for
semantic attribution. Furthermore, the consequences of using this
strategy have not been appreciated. The first consequence is that
though attributions of semantic content do depend on the context in
which the attributions are made, the contexts are completely in-
dependent of any similarity measures between subjects and theorists.
For example, if an aboriginal tribe found a calculator in the desert and
did not understand addition, then they would devise theories of it that
differed significantly from ones we would devise. Such context
dependence relativizes our scientific explanations to our goals and
views of the world. This is not methodologically suspect as Stich
suggests (1983, footnote p. 139); it is merely a feature of scientific
explanation. It is hard to imagine a methodology that could do
otherwise. Indeed, this sort of context dependence appears in all our
sciences. Even in physics, explanatory goals affect theories: if we
wanted to, we could describe the earth as being at the center of the
solar system with all the planets revolving around it in epicycles of
perfect circles. Moreover, if we observe the practices of theorists in
the computational and cognitive sciences, we see that the com-
putational strategy is used successfully relative to our goals (see

132 E R I C D I E T R I C H

Cummins, 1983; Haugeland, 1981; Smith, 1982; Wulf, 1981, esp.
Chap. 5 and part 2; and Stoy 1977).

The second consequence of using the computational strategy is that
there are no arbitrary or extra-theoretical restrictions placed on the
contents that can be attributed. The only general requirement is that
the attributed contents explain observed behavior and hypothesized
cognitive capacities. For example, causal connections underlying
reference have no role in the computational strategy, but not because
such connections are incompatible with semantic attribution. Rather,
such connections are not useful for explaining cognition. Whereas, on
the causal strategy, we had to pick between attributing contents or
having ("scientific") explanations, using the computational strategy
allows us to attribute contents in an explanatorily useful way. For
example, in the case of my duplicate and I, both of us have thoughts
about my great grandmother. Presumably, only I was causally related
to her, but that is not important as far as scientific explanation is
concerned. What is important is which function we are computing,
and hence the (attributed) contents of our states. Since my duplicate
and I compute the same function, the content of our states must be
identical. 19

Since referential causal connections are not important to the com-
putational strategy, we can simply avoid such issues as what the
causally correct referent of a referring term is, while respecting the
autonomy principle. The computational strategy allows us to attribute
contents and fix referents in a way that is relevant to psychological
explanation because contents are assigned on the basis of what
explains the current physical, computational state of the system: this
is what the function I does. 2°

This brings us to the third consequence. In the computational
strategy, attributing a particular content to a particular mental state
(or state of the system) is n o t paramount, as it is for example in the
causal strategy. The computational strategist wants to understand
systems. Semantic contents are thus Viewed in the context of entire
systems. On the computational strategy, no mental state, indeed no
symbol whatsoever, is (usefully) interpreted in isolation. Rather, whole
systems of states must be ascribed contents so that a cogent explana-
tion results. In discussing this point with respect to ciphers, Cummins
says:

S E M A N T I C S A N D T H E C O M P U T A T I O N A L P A R A D I G M 133

In a cipher any numeral can, taken independently of the others, be assigned any
significance whatever. It is only a definite context which places any constraint on the
significance to be assigned to an individual numeral, the requirement being that when
each numeral is assigned a meaning by a determinate rule, a coherent message should
result. (1983, p. 37)

The fourth consequence is that attributing semantics via the com-
putational strategy is not a folk art. One must be intimate with the
systems under study in order to attribute contents that are scientifically
useful. This is just another way of saying that understanding and
attribution are achieved concommitantly.

Finally, the view that computational explanations essentially involve
semantic attribution has two major consequences. First, it entails that
if psychology is to embrace the computational paradigm, it must
ascribe contents to mental states and processes because ascribing
contents is necessary for understanding which function is being com-
puted by the psychological processes in question, and understanding
this is necessary for understanding the behavioral and psychological
capacities of the system. Second, it entails that computers cannot be
understood as merely formal symbol manipulators. In the next section,
I will defend this latter claim.

.

Most philosophers view computers as formal symbol manipulators. A
formal symbol manipulator is a syntax machine, performing the
actions it does on the basis of the syntactic properties of the symbols it
manipulates, rather than on the basis of what the symbols symbolize.
This view of computers has allowed some philosophers to divorce
semantics from computational explanations. Semantic content, then,
becomes something one adds to computational explanations to get
psychological explanations (see Haugeland, 1981; and Pylyshyn,
1984). Other philosophers, such as Stich (1983), take the more radical
view that semantics is completely otiose. If I can at least raise some
doubts that computers are or can be understood as formal symbol
manipulators, then this basis for current anti-semantic sentiments will
be weakened.

The importance of semantically interpreting structures and proces-
ses in computational explanations is well known to computer scientists.

134 E R I C D I E T R I C H

The field of denotational semantics is an example of the study of the
semantics of computational processes. In denotational semantics,
computer scientists study the semantics of programming languages
(see, e.g., Stoy, 1977). This approach to semantics involves providing
valuation functions for the syntactic constructs of a programming
language which are used to write programs in that language. The
valuation functions map the constructs onto the abstract entities they
denote: numbers, truth values, data structures, etc. The important
point for our purposes is to note that the mapping is designed in such a
way that behavior of the constructs is explained by the behavior of the
abstract entities, which can be studied independently. Since any pro-
gram is made up of syntactic constructs of a given programming
language, explaining the constructs is necessary for explaining what
the program does, or, said another way, explaining the behavior of the
virtual machine the program instantiates. 21 Within denotational
semantics, therefore, machines are thought of both formally and
semantically. This is an important point: for computer scientists,
semantics is not something that is informal or essentially dependent on
folk notions.

Semantically interpreting processes and structures using the com-
putational strategy is more than a field of study within computer
science, however. Brian Smith has argued that explanatory semantic
attribution lies at the core of the notion of computation (Smith, 1982).
In 'Semantic Attribution and the Formality Condition' (1982), Smith
says " . . . what distinguishes an abacus, a calculator, and even a full
scale computer, from other rule-governed complex artifacts like steam
plants and food processors, is that the best explanation of [their]
behavior is formulated in the domain of interpretation, not in the
domain of the uninterpreted signs. . . [Smith's emphasis]". He goes on
to say: "The more complex the computer, the more important the
interpreted account becomes to our understanding, and the more
variegated the kinds of interpretation: once you move past simple
calculating devices into full programming languages, you find not just
simple names, but quotation and internal reference, complex function
designators, and even intensional contexts". Thus, on Smith's view of
computation, something is a computer just in case we are required to
semantically interpret its input/output behavior, its structures, and its
internal processes in an effort to explain its most salient capacities. His
own summary of this view is this: "Computers . . . a r e . . , just those

S E M A N T I C S A N D T H E C O M P U T A T I O N A L P A R A D I G M 135

devices whose functional architecture we understand in terms of external
semantical attribution [Smith's emphasis]".

Though Smith's view has not achieved the status of received doc-
trine within computer science, it is fair to say that he has articulated
what many computer scientists have long believed: interpreting the
constituents of a process as standing for or representing other things is
essential to understanding that process as a computation. 22 Using the
language from Section 3, if we can usefully view a system as an
interpreted virtual machine, it is a computer.

So far, my argument has been 'epistemological'. I have argued that
in order to understand computers (i.e., in order to know what they are
doing), we must view them as interpreted virtual machines. In some
sense, a computer might be a formal symbol manipulator, but we
could never understand it as such. Unless we attribute contents to the
computer's processing we could never build one nor could we ever
debug one (recall the discussion of the transducer in Section 3). 23

To me, the epistemological argument is compelling. Worries about
whether computers are really formal symbol manipulators seem beside
the point: to understand them, we must view them as semantic
engines. However, I think an argument can be made that, in-
dependently of our understanding them, computers are not formal
symbol manipulators.

In the obvious sense of the term, to manipulate symbols in a purely
formal manner is to manipulate them without regard to what they refer
to, mean, or denote. This means that the manipulations must not
depend on a symbol having a meaning or denotation. For example,
manipulating a symbol solely in virtue of whether it is a token of some
numeral, letter, or part of speech is one way to treat a symbol purely
formally. If this is correct, then computers are not formal symbol
manipulators.

Consider the notion of a variable in this instance of the Lisp
function "+":

(+ x 1).

Loosely speaking, this function adds 1 to whatever x is bound to.
However for this argument, it is important that we be precise about
what the entities under discussion are. A computer running a Lisp
interpreter (the Lisp execution program) defines a virtual machine we
will call a Lisp virtual machine (LVM). An LVM operates solely in

136 E R I C D I E T R I C H

terms of Lisp expressions, the syntax for which can be specified by a
grammar. (I will mention Lisp expressions by placing single quotes
around them. The primary reason for couching the argument in terms
of an LVM is that it will be easier to understand. Nothing turns on
this. The same argument could be made at the bit level, though at this
level the argument would be all but lost in the detail. 24)

An LVM takes as input expressions such as '(+ x 1)', evaluates
them, and returns expressions as outputs. We interpret the inputs,
outputs, and intermediate expressions as, for example, computing an
instance of the function plus, and producing the number 7 as its value.
We also attribute the content of representing the number 1 to Lisp
expressions such as '1'. These interpretations are enhanced by making
the syntactic form of the Lisp expressions look like expression in
languages we already know.

A particular LVM evaluating the expression '(+ x 1)' is required to
look up the value of the variable 'x', which is some other Lisp
expression, let us say '6'. If the LVM could not perform this look-up,
the expression would be syntactically ill-formed: '+' is not defined for
expressions we interpret as non-variable letters. But now notice, the
LVM itself in treating 'x' as a variable, is treating 'x' as denoting the
expression '6'. It follows from this that the LVM treats 'x' as having a
meaning. Hence, the operation of the LVM depends on 'x' having a
meaning for the LVM, not just for us. Of course, the meaning 'x' has
for the LVM (viz. '6') is not the meaning 'x' has for us (we typically
interpret 'x' as representing the number 6, not the Lisp expression '6').
Indeed, '(+ x 1)' means something different to us than it does to the
LVM. Nevertheless, the LVM's manipulations depend on the fact that
'x' has a meaning (and indeed, on the meaning it has). This is enough
to render false the claim that computers are formal symbol manipula-
tors, at least on the straightforward interpretation of this claim I have
assumed. (This same result appears to follow assuming a causal theory
of reference. When a computer internally fixes the binding of a
variable, it is determining the referent of that variable causally.)

I suspect that the notion of a formal symbol manipulator is a
hodgepodge of other notions and intuitions, some of which we want to
maintain. For example, in a very interesting paper, Haugeland (1979),
argues that computers will not succeed in understanding natural
language until they can be given (or otherwise develop) a sense of the
world they inhabit, the creatures they interact with, and, most im-

S E M A N T I C S AND T H E C O M P U T A T I O N A L P A R A D I G M 137

portantly, a sense of themselves as enduring wholes. Those that think
computers are merely formal symbol manipulators may in fact be
noticing that computers are not 'understanders', at least not today.
Another way of stating my point, then, is though computers may not
be understanders, they are not merely formal symbol manipulators.

5. C O N C L U S I O N

I have shown, I believe, that computers are not formal symbol
manipulators. But whether they are or not, our understanding of
computers inescapably involves attributing semantics to their proces-
ses. Moreover, I have argued that, in general, computational explana-
tions, either of humans or computers, crucially involve attributing
semantic contents. If we are going to utilize computational explana-
tions in our psychological theories, then our psychological theories
will crucially involve semantic content. 25

N O T E S

Fodor, for example, wishes to explain propositional attitudes in terms of operations
defined over mental representations (Fodor, 1975, 1981). He also wants to explain the
intentionality of propositional attitudes, their semantic properties, in virtue of mental
representations (Fodor, 1981 and 1984b). Obviously, if a mature cognitive science does
not countenance propositional attitudes and mental representations, Fodor's program is
doomed.
2 Computationalism is the theoretical and methodological backbone of modern cog-
nitive psychology in the sense that some of our best theories are explicitly computational
(see Fodor, 1975, Cummins 1983, and Pylyshyn 1984). There are computational
theories of language processing and language acquisition (e.g., Fodor, Bever, and
Garrett 1974, and Anderson 1976), learning (e.g., Anderson 1976, 1983), imagery (e.g.,
Pylyshyn 1984, and Block 1981), memory (e.g., Norman and Rumelhart 1975, Ander-
son 1976, 1983), problem solving (e.g., Newell and Simon 1972), cognitive develop-
ment (e.g., Moore 1973), and vision (Marr 1982).
3 Rejecting the formal symbol manipulator view of computers will also have far-ranging
affects. For example, Searle's (1980) argument that computers aren't intentional,
Fodor's (1980) argument for adopting methodological solipsism as a research strategy in
cognitive psychology, and Dretske's (1985) argument that computers can't add (let
alone think) will all be undermined since they all rest on this view of computers.
4 Stich uses both of these problems in arguing that cognitive psychologists ought to
reject the notion of belief (1983).
5 An essential part of Stich's theory is attributing content to ourselves. Notice that this
cannot involve any sort of empathic comparison. Though he doesn't explicitly say,
apparently we can attribute content to ourselves merely by introspecting, discovering

138 E R I C D I E T R I C H

which contents are 'there', and attributing those to ourselves. In any case, I am going to
assume that introspection is involved when we attribute content to ourselves.
6 Stich does not think that these similarity judgments are consciously a part of content
ascription; rather, the judgments are made unconsciously (1982).
7 Fodor (1980) has advocated a like principle called 'methodological solipsism' a term
Putnam coined for the 'assumption that no psychological state, properly so-called,
presupposes the existence of any individual other than the subject to whom the state is
ascribed' (Putnam, 1975).
8 The causal strategy is not a folk strategy. It is a theory-driven strategy because
contents are attributed in accordance with referents specified by the underlying theory
of reference. Moreover, the causal strategy is regarded by many as being at least
partially correct. Stich endorses it (see 1983, pp. 60if, 89tt, and 165). See also, Kripke
(1972), Putnam (1975), Devitt (1981), Dretske (1981), Fodor (1984).
9 Though the failure of the two strategies is not sufficient for claiming that scientific
psychology is incompatible with ascribing semantics, this claim can be bolstered by
developing a semantic-free methodology for psychology. This is the strategy Stich
attempts with his syntactic theory of mind (1983).
x0 In computer science, the sequence of gi's are typically expressed in some general
formal language like the lambda calculus or in a programming language like Lisp. The
sequence of g~'s constitute an algorithm expressed in the formal language. For com-
pleteness, note that in the degenerate case, F = gk for some (1 ~< k ~< n), and that all the
other gi's are the identity function, i.e., the "do nothing" function.
11 Of course, we can detect errors in devices such as transducers at the regularity level
if the manufacturer tells us what the T should be, but this is completely artifactual: we
don't have manufacturer's specifications for our eyes, for example. For natural trans-
ducers, we must interpret the given physical regularities, e.g., interpreting neuronal
activity as representing edges, shadows, or locations of color patches. See Marr (1982).
12 What understanding a function amounts to is also something that eludes cognitive
scientists. It surely has something to do with knowing how to use it, how to recognize it,
and how to transform it. In this regard, understanding a function is similar to under-
standing a natural language sentence. Presumably, all types of understanding are similar
and will be subsumed under one theory; until we have a much more robust theory of the
mind, however, we are going to have to be content with couching understanding in
terms of use.
13 For an introduction to the notion of a virtual machine, see Tanenbaum (1984).
14 In computer science, I is the composition of two functions (I = /2 o I1). It is I1 that
allows us to see the state transitions of S as causally related and law-like. In physics, a
function similar to/1 allows us to see S's state transitions as being governed by physical
(transition) laws (see Cummins 1983, esp. pp. 1-2). However, in computer science, /1
maps states of S onto objects (or states) that are themselves interpreted, i.e., Ix maps the
states of S onto instructions in some programming language. /1 is realized by engineers
who design computers, beginning with those who design computer chips and ending
with those who design operating systems and applications software. 12 picks up where/1
leaves off, providing a further interpretation of the states of S. /2 is provided by a
denotational semantics which provides semantic valuation functions mapping syntactic
constructs in the programming language onto the abstract values they denote (see Stoy
1977, and Pylyshyn 1984, pp. 59-62).

S E M A N T I C S A N D T H E C O M P U T A T I O N A L P A R A D I G M 139

~5 This is sometimes called 'reverse engineering'. It is a procedure used in industrial
espionage.
16 Data structures are methods for organizing information inside a computer. A stack is
merely a kind of data structure where individual items of information are added to or
deleted from only one end of the stack called its 'top'. A stack of dinner plates works
like a stack data structure: plates are added to the top of the stack when stored, and they
are removed from the top when they are needed.
~7 This is not a complete explanation of how our calculator works; there are, for
example, other data structures that are involved when the calculator actually adds
(subtracts, etc.) the two numbers from the stack. A complete explanation would also
include an account of how the calculator's hardware supports the computational
explanation involving data structures and processes. Explanations at the hardware level
still require semantic attribution. A good example of this sort of enterprise is provided in
the appendix to Cummins (1983).
~8 It is possible to describe systems (such as our calculator) at the micro-component
level. Yet as noted in Note 17, even at this level, components are interpreted as
computing functions, and inputs and outputs to these components are interpreted as
either numbers or truth values. So even at the microcomponent level, semantic
interpretation is crucial. I will return to this point in Section 4.
19 My duplicate and I of course do not have identical physical states; we have similar
physical states (because of quantum mechanical effects and the like). But this difference
will only make a difference when our behaviors become divergent enough to warrant
assigning different functions to our cognitive processes.

Notice by the way that the causal strategy may not be as bad as Stich claims. The
causal relations between my duplicate and I (the ones figuring in the construction of my
duplicate) are important to (and may be sufficient for) attributing thoughts about my
great-grandmother to my duplicate.
20 Care must be taken here not to think of physical states as states described in one of
the languages of physics such as quantum mechanics, for at this level there aren't any
computers, or any computational devices whatsoever. There are only state transitions
and probabilities assigned to the state transitions. No functions get computed by any
system described at this level unless one is willing to see, e.g., clusters of particles as
numbers, but of course if one does this, one is interpreting state transitions.
21 There are other methods of studying the semantics of programming languages, (for a
good introduction see Wulf, et al., 1981). Note the similarity between denotational
semantics and model theory. Valuation functions in denotational semantics resemble
valulation functions in logic that assign terms in a formal language L to an inter-
pretation of L.
22 Smith no longer believes that the semantic properties of computers are merely
attributed. On his new view, computers are not formal symbol manipulators, in any
sense of this phrase. Thus his view now is stronger than the one he espouses in his 1982
paper (personal communication).
23 Two colleagues of mine were recently testing and debugging an English language
parser. The parser produced incorrect parses for sentences such as "The best in-
gredients for pizza are ground beef and onions". The error turned out to be that the
parser took 'beef' to be one conjugation of the verb "to be". In diagnosing and
repairing this bug the content "beef is related to the verb 'to be ' " was actually

140 E R I C D I E T R I C H

attributed to the parser. This attribution was crucial to finding and fixing the bug.
24 Sometimes the bit level description of computers is thought to be the 'real' level of
description, often because the bit level is thought to be the level of causal interactions.
This is completely mistaken. First, causal interactions can be and are described as
occurring at many different levels, e.g., the Lisp level. Second, bits are as symbolic as
Lisp expressions.
25 This paper has benefitted greatly from the comments of an anonymous reviewer -
thank you. I also thank Chris Fields, Robin Hill, Alan Strudler, Dan Fass, and Jordan
Pollack for invaluable discussions on the various philosophical and computational issues
I've raised here, and Stephen Stich, Robert Cummins, Mike Harnish, and Myles Brand
for commenting on earlier versions of this paper.

R E F E R E N C E S

Anderson, J. R.: 1976, Language, Memory, and Thought, Lawrence Erlbaum, Hillsdale,
N.J.

Anderson, J. R.: 1983, The Architecture of Cognition, Harvard University Press,
Cambridge, MA.

Block, N. J. (ed.): 1981, Imagery, Bradford/MIT, Cambridge, MA.
Cummins, Robert: 1975, 'Functional Analysis', The Journal of Philosophy 72, 741-760.
Cummins, Robert: 1983, The Nature of Psychological Explanation Bradford/MIT,

Cambridge, MA.
Devitt, M.: 1981, Designation. Columbia University Press, New York.
Dietrich, E. and C. Fields: 1986, 'Creative Problem Solving Using the Wanton

Inference Strategy', in Proceedings of the First Annual Rocky Mountain Conference on
Artificial Intelligence.

Dretske, Fred: 1981, Knowledge and the Flow of Information, Bradford/MIT, Cam-
bridge, MA.

Dretske, Fred: 1985, 'Machines and the Mental', Proceedings and Addresses of the
American Philosophical Association, Vol. 59(1), Sept. 1985.

Fodor, Jerry: 1975, The Language of Thought, Cornell, New York.
Fodor, Jerry: 1980, 'Methodological Solipsism Considered as a Research Strategy in

Cognitive Psychology', The Behavioral and Brain Sciences 3.
Fodor, Jerry: 1981, Representations, Bradford/MIT, Cambridge, MA.
Fodor, Jerry: 1984, 'Semantics Wisconsin Style', Symhese 59, 231-50.
Fodor, J., T. Bever and M. Garrett: 1974, The Psychology of Language, McGraw-Hill,

New York.
Haugeland, John: 1979, 'Understanding Natural Language', Journal of Philosophy 76,

619-32.
Haugeland, John: 1981, 'Semantic Engines: An Introduction to Mind Design', in J.

Haugeland (ed.), Mind Design, Bradford Press, Montgomery, VT.
Kripke, S.: 1972, 'Naming and Necessity', in D. Davidson and G. Harman (eds.),

Semantics of Natural Language, Reidel, Dordrecht.
Marr, David: 1982, Vision, W. H. Freeman, San Franscisco.
Moore, T. E. (ed.): 1973, Cognitive Development and the Acquisition of Language,

Academic Press, New York.

S E M A N T I C S AND THE C O M P U T A T I O N A L P A R A D I G M 141

Newell, A. and H. Simon: 1972, Human Problem Solving, Prentice-Hall, Englewood
Cliffs, N.J.

Norman, D. and D. Rumelhart (eds.): 1975, Explorations in Cognition, W. H. Freeman,
San Francisco.

Putnam, Hilary: 1975, 'The Meaning of 'Meaning", in K. Gunderson (ed.), Minnesota
Studies in the Philosophy of Science, University of Minnesota 7, 131-193.

Pylyshyn, Zenon: 1984, Computation and Cognition, Bradford/MIT, Cambridge, MA.
Searle, John: 1980, 'Minds, Brains, and Programs', The Behavioral and Brain Sciences

3, 417-457.
Smith, Brian: 1982, 'Semantic Attribution and the Formality Constraint', unpublished

report, Xerox PARC.
Stabler, Edward: 1983, 'How are Grammars Represented?', The Behavioral and Brain

Sciences 3, 391-402.
Stich, Stephen: 1978, 'Autonomous Psychology and the Belief-Desire Thesis', The

Monist 61, 573-91.
Stich, Stephen: 1982, 'On the Ascription of Content', in A. Woodfield (ed.), Thought

and Object, Oxford University Press, Oxford.
Stich, Stephen: 1983, From Folk Psychology to Cognitive Science: The Case Against

Belief, Bradford/MIT, Cambridge, MA.
Stoy, J.: 1977, Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory, MIT, Cambridge, MA.
Tanenbaum, A. S.: 1984, Structured Computer Organization, Prentice-Hall, Englewood

Cliffs, NJ.
Wulf, W., M. Shaw, P. Hilfinger and L. Flon: 1981, Fundamental Structures of Computer

Science, Addison-Wesley, Reading, MA.

Computing Research Laboratory
New Mexico State University
La Cruces, NM 88003
U.S.A.

