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S u m m a r y .  Accurate measurements of observed frequencies of solar oscillations are 
providing a wealth of  data on the properties of the solar interior. The frequencies 
depend on solar structure, and on the properties of the plasma in the Sun. Here we 
consider in particular the dependence on the thermodynamic state. From an analysis 
of  the equations of stellar structure, and the relevant aspects of the properties of 
the oscillations, we argue that in the convection zone one can isolate information 
about the equation of state which is relatively unaffected by other uncertainties in the 
physics of the solar interior. We review the different treatments that have been used 
to describe the thermodynamics of stellar plasmas. Through application of several of  
these to the computation of models of  the solar envelope we demonstrate that the 
sensitivity of  the observed frequencies is in fact sufficient to distinguish even quite 
subtle features of the physics of solar matter. This opens up the possibili ty of using 
the Sun as a laboratory for statistical mechanics, under conditions that are out of reach 
in a terrestrial laboratory. 

Key  words :  Solar structure - Solar oscillations - Thermodynamics of stellar interiors 
- Hel ioseismology 

1. I n t r o d u c t i o n  

Solar acoustic oscillations have opened a new window into the Sun. By their nature 
they link the local sound speed in the interior with the observed oscillation frequen- 
cies. The spatial resolution of the solar disk allows the identification of a large number 
of individual oscillation modes,  which are classified in terms of spherical harmonics. 
Modes in a large range of angular degrees, between 1 = 0 and a few thousand, are 
observed. The frequencies of  these modes are centered around 3 mHz, which corre- 
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sponds to periods around 5 minutes. They have been determined with high precision: 
typical relative errors are of the order of 10 -4. The modes are confined to a cavity, 
which extends, broadly speaking, from the surface of the Sun, where the waves lose 
their material support, to the inner turning point which lies deeper the lower the an- 
gular degree l is. Radial modes, with l = 0, have no inner turning point and penetrate 
directly to the centre. 

The observed modes of solar oscillation are standing acoustic waves; hence the 
quantity most obviously probed is the sound speed. Since the oscillations are largely 
adiabatic (except very near the surface), the frequencies are determined predominantly 
by the local adiabatic sound speed, which is a thermodynamic quantity. In addition, 
the frequencies depend on the density distribution in the Sun. Powerful techniques 
have been developed to use these frequencies for various purposes. Helioseismology, 
as this still relatively young field is called, has successfully addressed a whole range 
of interesting topics of solar physics. Here, we merely mention a few of them: the 
solar helium abundance, the structure of the convection zone and the position of its 
base, the possible physical processes in the solar core that might take place in addi- 
tion to those assumed in the "standard" model (with applications to the solar neutrino 
problem), and the profile of internal rotation of the Sun. Thus, helioseismology pro- 
vides observational constraints for the theory of stellar evolution and the underlying 
physical processes. Conversely, progress in observational stellar physics will increase 
our knowledge about the Sun. This is true in particular of analyses of multi-mode 
stellar oscillations, including solar-like oscillations of other stars; this field of study 
is now generally known as asteroseismology. 

As is well known, the three basic material properties required in stellar models 
are the equation of state, opacity, and the nuclear-energy generation rate. Here, we 
concentrate on the equation of state, which relates density to pressure and temperature. 
In the following, we shall use the term equation of state in a slightly broader sense, 
so that it encompasses as well all thermodynamic quantities. These quantities must 
be consistent with each other, that is, their appropriate Maxwell relations have to 
be satisfied. Such formal consistency is always achieved if the equation of state and 
the thermodynamic quantities stem from a single thermodynamic potential. In trivial 
models (e.g. in a plasma assumed to be fully ionized everywhere) it is possible to 
write down a consistent equation of state and thermodynamic quantities independently. 
However, in more realistic cases, modelling a thermodynamic potential is the only 
practical way to obtain the equation of state and thermodynamic quantities. 

In a solar-like star the physical conditions are far from extreme, and hence a 
description of the plasma in terms of a mixture of partially ionized ideal gases is 
often adequate; however, the extraordinary high accuracy of observed oscillation fre- 
quencies puts higher demands on the equation of state. This has been recognized 
early and models with improved equations of state were used in helioseismic studies 
(Berthomieu et al. 1980; Lubow et al. 1980; Ulrich 1982; Ulrich and Rhodes 1983; 
Shibahashi et al. 1983, 1984; Noels et al. 1984). These early studies not only showed 
the importance of an accurate equation of state in helioseismology, but they also sug- 
gested the exciting prospect of a helioseismic diagnostic of the equation of state. This 
makes possible studies of properties of matter in the solar interior, under conditions 
that cannot be achieved on Earth. 

Improvements in the equation of state beyond the model of a mixture of ideal 
gases are difficult. This has both technical and conceptual reasons. As a fundamen- 
tal conceptual reason we mention the fact that in a plasma environment already the 
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idea of isolated atoms (and compound ions) has to be abandoned: the early studies 
mentioned above clearly showed that the interactions between atoms and environment 
could not be neglected, so that, strictly speaking, one has always to deal with com- 
plicated many-body states. Of course, many formalisms for strongly-coupled plasmas 
have been developed. However, since their motivation is different, they mostly aim 
at understanding qualitative phenomena, and they are normally not suited for the pur- 
poses of stellar models. That is, their results are not sufficiently precise, nor do they 
allow a description of realistic astrophysical mixtures. These two reasons illustrate 
some of the technical difficulties that one encounters when one goes away from the 
extremely comfortable hypothesis of the ideal gas. 

The weakly non-ideal plasma of the solar interior can thus become very com- 
plicated if high accuracy is demanded. Given the virtual impossibility of rigorous 
formalisms, it is no wonder that a large number of more-or-less phenomenologi- 
cal treatments have been developed, mainly built around perturbational treatments of 
ideal gases. The three principal non-ideal effects are related to: (i) the internal partition 
functions of bound systems, (ii) pressure ionization, and (iii) collective interactions 
of the charged particles. The internal partition functions contain the difficult problem 
of excited states, where and how they are to be cut off, and their magnitude is an 
important element in determining the ionization balances. Pressure ionization has to 
be provided by non-ideal interaction terms, because the ideal gases would spuriously 
recombine toward the central regions of the Sun. 

The collective interactions between the charged particles lead to the third non-ideal 
correction. In the Sun, the interactions are often treated in the Debye-Htickel approx- 
imation. They lead to the usual (negative) Coulomb-pressure correction, as well as to 
corresponding changes in other thermodynamic quantities. The nature of this Coulomb 
effect depends on the location in the Sun. Beneath the hydrogen and helium ionization 
zones, where most of the atoms are ionized, the Debye-Htickel term is straightfor- 
ward. Quantitatively, it provides a correction to the pressure which is typically of 
the order of a few per cent relative to the total pressure. In the regions of partial 
ionization of hydrogen and helium, the Coulomb effect is more complicated. Here, 
the net change of pressure and thermodynamic quantities involves two components: a 
direct change, and an "induced" one due to the fact that the Coulomb interaction also 
changes the ionization equilibrium. This induced part plays a very important role in 
the thermodynamic derivatives (such as adiabatic sound speed), where it can cause 
relative changes of a few per cent despite the significantly smaller pressure changes. 
This is easily understood from the strong dependence of thermodynamic quantities 
on ionization. Quantitatively, going from the photosphere to the helium ionization 
zones, the (negative) net Coulomb pressure correction grows from s o m e  10 - 4  to  a 
few per cent of the total pressure. However, as a result of the induced part the ther- 
modynamic quantities are affected at the per cent level already in the upper part of 
the hydrogen ionization zone where, due to the reduced total charge, the pressure 
correction is still only of order 10 -4 to 10 -3. We shall show in Sect. 4 that among all 
non-ideal corrections to the equation of state it is precisely this collective Coulomb 
interaction and its important induced part that have the most significant helioseismic 
consequences. 

For certain astrophysical applications, it can well be that lower demands on the 
accuracy of the equation of state are sufficient. Especially the calibration of solar 
evolutionary models with the present-age radius and luminosity often reduces the 
influence of given quantities on uncertainties in the equation of state. For instance, 
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any uncertainty in the pressure in the solar centre is easily compensated with a slight 
change in the helium abundance. Many aspect of such a recalibrated model remain 
virtually unchanged and thus independent of the equation of state. However, if the 
helium abundance is determined by the same calibration, it is affected by the whole 
uncertainty in the equation of state. Similarly, in other cases, an interesting physi- 
cal quantity might be the result of a spatially weighting over zones that pose little 
difficulty to the equation of state. Examining the range of solar models with respect 
to different, commonly used equations of state, but with all other assumptions being 
kept unchanged, allows a simple examination of the influence of the uncertainty in the 
equation of state. As a first purpose of this article, we make a systematic presentation 
of the influence of the equation of state on various physical quantities of solar models. 

As we have just mentioned, there are cases where the net influence of uncertain- 
ties in the equation of state is less severe than for local thermodynamic quantities. 
However, there is one important application, the helioseismic determination of the 
solar helium abundance which does not profit from favourable cancellations. The key 
idea of this helium abundance determination is based on the signature of the second 
ionization zone of helium on the adiabatic exponent F1, and thus on sound speed. In 
a zone of partial ionization F1 is lowered. This lowering can be qualitatively under- 
stood in the following way. First notice that F1 is approximately equal to the ratio of 
specific heat at constant pressure cp over specific heat at constant volume cy.  Then 
consider that in regions of partial ionization, both specific heats become much larger 
than their ideal gas values (which for cv  and c v correspond to 3 /2kB  and 5 /2kB  per 
particle, respectively, kB being Boltzmann's constant), because heat increments are 
used to ionize, with temperature changing little (the analogy is the latent heat at phase 
transitions of ordinary matter). However, the difference of the (caloric) specific heats 
cp - cv  is, according to the first law of thermodynamics, a thermal quantity. It stays 
close to its ideal-gas value even when cp and cv are very big. Thus the ratio cp /ev  
and also/~1 become smaller (for example, in the Sun, /~  attains 1.2 in the ionization 
zone of hydrogen). The lowering of /71 in the second helium ionization zone can 
therefore, in principle, be used as a measure of the Sun's helium abundance in the 
convection zone (see Sects. 2.1.2 and 4.1.2). The technical tools to use the oscillation 
frequencies to obtain such a localized information are being developed and some tests 
with artificial data have been successfully carried out (for a recent review of the cur- 
rent situation, see Kosovichev et al. 1992). However, it is clear that any uncertainty 
in the absolute accuracy of/~1 will directly translate into the so determined helium 
abundance. 

From this example we can see two things. First, there is a case where the absolutely 
accurate theoretical prediction of the equation of state at certain conditions is essential. 
Second, helioseismology has the potential to localize thermodynamical properties, in 
principle everywhere in the Sun. This suggests the idea of Gough (1984a) to use the 
power of helioseismology simultaneously, both to determine the equation of state in 
regions where the influence of sound speed on the helium abundance is less, and 
also, equipped with that knowledge of the equation of state, to determine the helium 
abundance through the sound speed in the second ionization zone of helium. 

To probe issues of atomic and plasma physics by helioseismology sounds rather 
ambitious, but it is feasible because of two fortunate circumstances. The first is the 
exceptional accuracy of the observations, and the second the fact that the quantity 
immediately probed by the oscillation frequencies - adiabatic sound speed - is a purely 
thermodynamic one. To be more precise, helioseismic inference determines sound 
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speed as a function of depth. However, in the convection zone the thermal structure 
is sufficiently simple that the depth dependence can essentially be transformed into a 
dependence of sound speed on the thermodynamic variables. 

Without further bias, helioseismic probing can therefore be directly applied to the 
underlying physics. So far, we have found sufficient evidence to support the claim 
that solar observations can be used as a laboratory to test material properties under 
conditions that cannot be achieved on Earth. In this way, we define the second purpose 
of this article: to put helioseismic constraints on the equation of state. 

In the following, we first review the basic tools of helioseismology (Sect. 2). Of 
course we shall be selective in view of our restricted topic and only discuss that part 
of the field that has a direct bearing on the tests of the equation of state. Then we 
shall present an overview of the equation of state, showing currently used models and 
exposing open issues (Sect. 3). After that we shall bring the two topics together and 
discuss the connection between the equation of state and helioseismology (Sect. 4). 
We shall examine both the forward direction, that is the propagation of uncertainties 
in the equation of state to helioseismic results, and the backward direction, that is a 
quantitative assessment of present and future helioseismic constraints on the equation 
of state. 

2. Helioseismology 

2.1 Properties of the solar interior 

The connection between the physical properties of the solar plasma which we wish 
to probe by means of helioseismology and the observed frequencies goes through 
computations of solar models. Hence it is useful to review very briefly normal calcu- 
lations of such models, and their possible shortcomings (see also Bahcall and Ulrich 
1988; Turck-Chibze et al. 1988; Bahcall 1989; Turck-Chibze 1990). 

2.1.1 Standard models and their limitations 

It is assumed that the model is in hydrostatic and thermal equilibrium, and that 
energy is transported either diffusively by radiation, or according to some simplified 
description of convection, depending on whether or not the given region of the Sun is 
stable or unstable towards convection. Thus the model satisfies the following equations 
(Clayton 1968): 

Hydrostatic equilibrium: 
dp Gmp 
dr r2 , (2.1) 

where r is the distance to the solar centre, p is pressure, p is density, G is the 
gravitational constant, and the mass m interior to r is determined by 
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Thermal equilibrium: 

dm 
= 47rpr 2 ; (2.2) 

d~- 

d~r =47rr p e - ~  + p  2 d t j  ' 

where L is the luminosity at r, e is the rate of energy generation per unit mass, and 
u is the internal energy per unit volume (the last two terms on the right-hand side 
come from the change in internal energy and the release of gravitational potential 
energy due to the changing structure of the star as it evolves; these are small during 
the main-sequence evolution of the Sun); 

dT 3~pL 
dr 647r~rrZT3 (radiative transport) (2.4a) 

or  

dT (d_:T_T'~ (convective transport) (2.4b) 
dr \ d r /  c 

where T is temperature, ~ is opacity, ~r is the Stefan-Boltzmann constant and (dT/dr)r 
is obtained from a simplified description of the relation between the temperature 
gradient and energy transport in the convection zone. Evolution is controlled by the 
gradual fusion of hydrogen into helium; it is assumed that there is no mixing or 
diffusion in the solar interior, so that the composition in any given mass-shell is 
determined solely by the local nuclear burning. 

With these assumptions the structure is largely determined by the microphysics of 
the solar interior, i.e., 

- the equation of state 
- the opacity 
- the nuclear reaction rates. 
In addition, the computation requires that the solar mass is known, as well as the 
initial chemical composition, which is assumed to be uniform. The goal is to compute 
a model at the age of the present Sun, which is also assumed to be known, with the 
observed radius and surface luminosity. 

In practice, the initial helium abundance Y~ cannot be determined independently 
and must be regarded as a free parameter of the calculation, as must the "mixing- 
length" parameter c~c which measures the efficiency of convective energy transport 
near the solar surface. Y0 and c~c are adjusted until the model of the present Sun has 
the correct radius and luminosity. In this way one obtains what is sometimes called a 
"standard solar model". It is evidently dependent on the uncertainties in the assumed 
microphysics, but is otherwise well-defined. 

The topic of the present review is precisely the dependence of the models, and 
hence the oscillation frequencies, on the microphysics, particularly the equation of 
state. The models are also sensitive to the assumed nuclear reaction rates, but to 
a lesser extent: because of the high temperature sensitivity of the reaction rates, 
changes in the parameters describing the nuclear reactions can be compensated for 
in the model by a modest change in temperature, and hence in general have little 
effect on the overall structure of the model or its oscillation frequencies [see also 
Christensen-Dalsgaard (1988a) and Lebreton et al. (1988). Of course, the computed 

Energy transport: 
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neutrino flux is quite sensitive to the nuclear reaction parameters; see, for example, 
Bahcall and Ulrich (1988) and Bahcall (1989)]. 

It is evident that our ability to investigate the microphysics by means of helioseis- 
mology depends on the validity of the other assumptions on which the computations 
are based. In fact, the computation of standard solar models ignores, or grossly sim- 
plifies, a number of processes that might be labelled the macrophysics of the Sun. 
These include 
- energy transport 
- dynamics of convection 
- convective overshoot 

- microscopic diffusion 
- core mixing 
- magnetic fields. 
Energy transport by radiation is treated adequately in the solar interior in the diffusion 
approximation; on the other hand, energy transport by convection is treated in a rather 
crude way, which furthermore depends on the a priori unknown parameter c~c. Near 
the surface convection is probably sufficiently vigorous to have dynamic effects on 
the average hydrostatic equilibrium, yet such effects are often ignored. At the lower 
boundary of the convection zone motion is normally supposed to stop at the point 
where convective instability ceases; there is no doubt, however, that motion extends 
into the convectively stable region through convective overshoot, although the extent 
of the overshoot is uncertain. Microscopic diffusion is likely to have some effect on 
the composition profile in the convectively stable region, yet with a few exceptions 
has been ignored. Instabilities in the deep interior could lead to material mixing, 
affecting the composition profile and hence solar evolution. Finally, magnetic fields 
dominate the structure of the upper solar atmosphere and may have some effect at the 
photospheric level. The nature or strength of the subphotospheric field is unknown, 
but one probably cannot totally exclude a field of sufficient magnitude to have an 
effect on the overall structure of the Sun. 

Despite the complications it introduces, convection in a certain sense simplifies 
the structure of the outer parts of the Sun. Regardless of the uncertain details of 
convective energy transport, there is no doubt that except in a thin boundary layer 
near its top the convection zone is very nearly adiabatically stratified (e.g. Gough and 
Weiss 1976), so that the gradient of density p is given by 

1 d lnp  1 
_ , (2.5) 

F d lnp F1 

where r is distance from the centre, p is pressure, and F1 = (Olnp/Olnp)~, the 
derivative being at constant specific entropy s. The structure of the adiabatic part 
of the convection zone is determined by this relation, together with the equation of 
hydrostatic support. Hence it only depends on the equation of state, the composition 
and the constant value of the specific entropy, which in turn is essentially fixed by the 
value of c~c; in particular, the convection zone structure is insensitive to the opacity. 

It should also be noted that much of the uncertain macrophysics is concentrated 
very near the surface. This is true of the dynamical effects of convection, since 
convective velocities are likely to be very small elsewhere, of the details of convective 
energy transport, and of the effects of the visible magnetic field. Apart from convective 
overshoot and a hypothetical strong internal magnetic field, the remaining difficulties 
listed are concerned with the composition profile in the radiative interior of the model. 
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/ - x , z  x , z  

Fig. 1. Schematic representation of solar structure. The thin hashed area near the surface indicates the 
region where the physics is uncertain, because of effects of convection, nonadiabaticity, etc. At the base 
of the convection zone, convective overshoot and diffusion introduce additional uncertainty. The structure 
of the adiabatic part of the convection zone is determined by the equation of state (EOS), and the constant 
values of specific entropy s, and composition (given by the abundances X and Z of hydrogen and heavy 
elements). Beneath the convection zone the structure also depends on opacity ~ and the energy generation 
rate e 

Although the list of  problems is not exhaustive, this argument gives some support to 
the simplified view of solar structure shown in Fig. 1. 

2.1.2 Properties of  the convection zone 

According to the description of solar structure in Fig. 1, the convection zone is partic- 
ularly well suited for testing the properties of the equation of state, and determining 
the composition, because its structure is independent of opacity. The properties of  
the observed five-minute oscillations, which are predominantly acoustic modes, are 
largely determined by the adiabatic sound speed c, given by 

c2 = Flp (2.6) 
P 

It was noted by Gough (1984a) that, assuming adiabatic stratification, c satisfies the 
following identity 

7 ̀2 d c  2 1 - F 1 - / ~ l , p  
W _= - -  - = (9 ,  (2.7) 

Gm dr 1 - Fl,c2 

where Fl,p -= (OlnF1/Olnp)d and F1,~2 - (OlnFl/Olnc2)p (see also D~ippen and 
Gough 1984, 1986; D~ippen et al. 1988). It is straightforward to verify Eq. (2.7) 
from Eq. (2.5), assuming equality, and Eqs. (2.1) and (2.6). The quantity 69 depends 
on the equation of state and the chemical composition. In W, c can be determined 
helioseismically, as discussed in Sect. 2.3.2. Furthermore, in the outer parts of  the 
convection zone ra can be assumed to be constant and equal to the surface value; in 
fact, the entire convection zone contains only about 2 per cent of the Sun's mass (cf. 
Christensen-Dalsgaard et al. 1991). A more complete analysis of observed oscillation 
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frequencies allows p(r) and hence re(r) to be determined (see Sect. 2.3.3). It follows 
that W can essentially be determined observationally; thus Eq. (2.7) provides a direct 
relation between a quantity that is, at least in principle, observable, and the properties 
of the solar plasma. 

This relation is illustrated in Fig. 2, which shows W and O computed for a 
standard solar model. Very near the surface, departure from adiabaticity causes the 
two curves to differ. One should also note the feature at r / R  ~_ 0.98. This is related to 
the variation of/~1 in the second helium ionization zone; hence the magnitude of this 
feature depends on the abundance of helium. As pointed out by Dfippen and Gough 
(1984, 1986), and discussed in more detail in Sect. 4.1.2 below, this may provide a 
measure of  the helium abundance in the solar convection zone. 

In most of the convection zone hydrogen and helium are essentially completely 
ionized. Then F1 --~ 5/3  and, consequently, @ _~ - 2 / 3 .  If, furthermore, m is assumed 
to be constant Eq. (2.7) can be integrated to yield the variation of c 2 with r. Assuming 
the sound speed to vanish at the surface, r =/~,  and neglecting the contribution from 
the relatively thin region where F1 varies substantially due to ionization, the result is 

c2 ~ (F, - 1 ) ~ -  ( ~  - 1) (2.8) 

(Christensen-Dalsgaard 1986). Thus, in this approximation, c(r) in the convection 
zone depends only on the total mass and surface radius of the Sun. 

W 

0.0 

- 0 . 2  

- 0 . 4  

-0.(  

-0.~ 

. . . . . . . . .  [ . . . . . . . . .  I . . . . . . . . .  ~ . . . . . .  ' ' ' 

. . . . . . . . .  r . . . . . . . .  ~ ] i i i i i i r i , 1 i i i ~ ~ i i i 

0,960 0,970 0.980 0,990 1.000 
r / R  

Fig. 2. The quantities W (dashed curve) and ~ (solid curve) defined by Eq. (2.7). They have been computed 
for Model C1 (cf, Table 1), using the CEFF equation of state (cf. Sect. 3.3.2) 
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2.1.3 Effects of changes in the convection zone 

We are concerned with the sensitivity of the solar models and frequencies to changes 
in the assumed physics. In general, it is possible to obtain relations between such 
changes by linearizing Eqs. (2.1) - (2.4) describing solar structure (D~ppen 1983). 
However, to aid the subsequent discussion of the effects of changes in the equation of 
state in the hydrogen and helium ionization zones, it is useful to derive approximate 
relations, valid in the convection zone. We assume that the changes are so small that 
the linear approximation is applicable, and use "(5" to denote differences between two 
equilibrium models atfixed radius r. Of particular interest is the change in the sound 
speed, since this to a large extent determines the change in the frequencies of the 
p modes (cf. Eq. [2.37] below). From Eq. (2.6) it follows that 

1 @ l n F I + ( 5 1 n P )  (2.9) (51nc = 2 

where In is the natural logarithm. Assuming that the mass is constant in the convection 
zone, it is straightforward to show from Eq. (2.1) of hydrostatic support, and the 
definition of F in Eq. (2.5) that 

(51n p ( ~ ) H p  1 Hp,s (51n f , 2(51nF /7 -P= P s ~ d r  J ; (2 .10)  

here 
F%p = P~ (2.11) 

9P 

is the pressure scale height, 9 being gravity, and the subscript s indicates values at 
r = R .  

The change in F can be thought of as consisting of two parts: the change in the 
superadiabatic gradient/~ -/71, and the change in F1. The former is localized to the 
very thin region where convection is significantly superadiabatic, and hence in most 
of the star its contribution can be considered as a constant term in the square brackets 
in Eq. (2.10). The change in/71 can be written as 

(5 In F I =((5 In F1)(i) 

(OlnF1~ (51np+(OlnFl~ (OlnFl~ (2.12) 
+ \ Olnp Jp, x \ ~ ] p , X ( 5 1 n p +  \ OX jp, (5X. 

Here ((5 in/71)(~) is the intrinsic change, at fixed p, p and X, brought about by a possible 
change in the equation of state; the remaining terms arise from the changes in p, p 
and X, and the dependence of F1 on these quantities. Notice that (SX is constant in 
the convection zone. 

With the possible exception of intrinsic changes to the equation of state, (5 In/"1 
is of significant size only in the ionization zones of hydrogen and helium. The same 
is therefore true of (SF. Since Hp 1 decreases roughly as T -1 with increasing depth 
(cf. Eq. [2.11]) it follows from Eqs. (2.9) and (2.10) that within the convection zone, 
and outside the ionization zones, (5 In c likewise decreases with increasing depth. In 
particular, if the changes in/~1 and the superadiabatic gradient can be neglected, there 
is no change in the sound speed in the convection zone; this is obviously consistent 
with the approximation (2.8) for the sound speed. 
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From the equation of hydrostatic support, again neglecting the variation of mass, 
it also follows that the change in p is related to the change in p/p by 

~51np=(61np)~ - fR~5 (lnP) gp 
(2.13) 

6 In d lnp~. 
.J in Ps 

Since pressure varies very rapidly with depth in the outer part of the convection zone 
(between depths of 0.001R and 0.01R, p increases by roughly a factor 1000) even a 
fairly small change in p/p, of predominantly the same sign, can lead to a considerable 
change in p. An example of this is considered in Sect. 4.2.1. 

The changes in p/p and p are coupled through the change in F1, as is evident from 
Eq. (2.12). Thus in general the changes to the model satisfy a set of coupled, linear 
differential equations (see also Dhppen 1983). Nevertheless, the integral relations 
(2.10) and (2.13) provide some indication of the behaviour of the changes. Also, since 
the derivatives of F~ in Eq. (2.12) are quite small except in the hydrogen ionization 
zone, there may be circumstances where the intrinsic change in F1 dominates, and 
where therefore ~5 in c can be calculated without consideration of the changes in p and 
p. 

2.2 Properties of solar oscillations 

The present section gives an overview of the theory of stellar oscillations, particularly 
those aspects that concern the determination of the oscillation frequencies, and a very 
brief summary of the observations of solar oscillations. More extensive presentations 
can be found, for example, in the reviews by Deubner and Gough (1984), Christensen- 
Dalsgaard et al. (1985), Christensen-Dalsgaard (1988a), Libbrecht (1988a), Vorontsov 
and Zharkov (1989), Gough and Toomre (1991), Libbrecht and Woodard (1991), 
Christensen-Dalsgaard and Berthomieu (1991), and Gough (1992), as well as in the 
classical review by Ledoux and Walraven (1958) and the books by Cox (1980) and 
Unno et al. (1989). 

2.2.1 Geometry of the modes 

Small-amplitude oscillations of a spherical star can be separated into normal modes, 
each of which has a harmonic dependence on time, and depends on the spherical coor- 
dinates 0 and ~) (co-latitude and longitude) as a spherical harmonic. The displacement 
for a single mode can be written 

(2.14) 
where a~., ae and a~ are unit vectors in the r, 0 and 9 directions. Here ~(0, ~) --- 

czmP/~(cos 0)e ~ is a spherical harmonic, _P~ being a Legendre function and czm 
a normalization constant defined such that the integral of I~I 2 over the sphere is 
unity. In particular, Eq. (2.14) describes the variation of the displacement, and hence 
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the velocity, over the solar surface, and thus determines the observable properties of 
the oscillation. The variation of the displacement with the distance r from the centre is 
determined by the eigenfunctions ~ ( r )  and ~h(r). The dependence of the perturbation 
of a scalar quantity, such as pressure, on position and time may similarly be written 
as 

p' (r, O, r ~) : Re  { [}(r)Yl '~] e - i~t  } , (2.15) 

where ~5 is the amplitude function, which describes the radial variation of the pertur- 
bation. 

The mode is characterized by three wavenumbers: n is the radial order whose 
absolute value, roughly, gives the number of zeros in ~<; 1 is the degree, and ra 
the azimuthal order of the mode. The degree of the mode is related to its horizontal 
wavenumber hh and wavelength Ah at radius r by 

2re L 
kh - - , (2.16) 

Ah r 

where L = ~ - +  1). As is seen from Eq. (2.14), m, which is in the range - I  to 1, is 
twice the number of zeros around the equator. 

If the processes that damp or excite the oscillations are neglected, co is real, and 
the eigenfunctions {~ and {h may also be chosen to be real. In addition to the angular 
frequency c~, which is used in Eq. (2.14), the cyclic frequency u = co/(27r) = 1 /P ,  
is commonly used, particularly in discussions of observed frequencies; here P is the 
oscillation period. 

In general, the frequency cc = co~l,~ depends on all three wavenumbers. However 
if rotation or other departures from spherical symmetry are ignored, COnlm does not 
depend on m. This follows from the fact that in this case there is no preferred 
axis in the star; since m depends on the choice of coordinate axis, the physics of the 
oscillations, and hence their frequencies, must be independent of m. For slow rotation 
a modal description as in Eq. (2.14) is still possible, provided that the rotation axis is 
chosen as coordinate axis. Rotation introduces a splitting in the oscillation frequencies; 
this may be used to determine the variation of angular velocity within the Sun [Duvall 
et al. (1984); Brown et al. (1989); for reviews, see also Harvey (1988) and Christensen- 
Dalsgaard (1990a)]. Here, however, we neglect effects of rotation and other departures 
from spherical symmetry, and hence assume that the frequencies are independent of 
TgL 

2.2.2 Physics of solar oscillations 

The equations governing oscillations with small amplitudes are obtained by linearizing 
the equations of hydrodynamics. It is common to ignore the processes that damp or 
excite the oscillations, by assuming them to occur adiabatically, i.e., without heat 
loss or gain. In this case the perturbations of pressure and density are related by 

@ = F16~ . ( 2 . 1 7 )  

p P 

Note that in this section only (5 denotes the Lagrangian perturbation, i.e., the pertur- 
bation following the motion (it should not be confused with its usage elsewhere to 
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denote differences between different equilibrium models). It is related to the local, or 
EuIerian perturbation, indicated by a prime, by, for example 

@ = p ' +  6 r - V p .  (2.18) 

We assume that the dependence of the variables on 0, 0 and time has been separated 
as in Eqs. (2.14) and (2.15), and we suppress the tildes on the amplitude functions. 
The equations of adiabatic oscillations may then be written 

d~r - -  d7  S ~cd 2 coat 2 ' 
- + { , .  + - 1 1)r  ( 2 . 1 9 )  

dr Flp 

1 dp d~ I 
dp~ = p(&;2 ]V2)~r + - -  (2.20) 
dr Iip~PI +P dr ' 

r 2 dr r2 dr ] = 4rcG ~5 + - - g  -N-2 + ~ (2.21) 

Here ~ is the perturbation in the gravitational potential, and we introduced the char- 
acteristic acoustical frequency 

L c  
Sz = - -  = kh c ,  (2.22) 

r 

and the buoyancy frequency N, given by 

N2 = g dr p dr  ' (2.23) 

where g is the gravitational acceleration. It may also be shown that the amplitude {h 
of the horizontal component of the displacement (cf. Eq. [2.14]) is given by 

G = - -  - ~ '  rw2 
(2.24) 

Equations (2.19), (2.20) and (2.21) constitute a fourth-order system of ordinary 
linear differential equations for the 4 dependent variables {T, pl  ~, and dgo'/dr. 
They must be supplemented by four boundary conditions. Two of these are obtained 
from regularity of the solution at r = 0, which is a regular singular point of the 
equations. One surface condition results from demanding the continuity of ~ and its 
first derivative. Finally, a condition can be obtained by considering the behaviour of 
the oscillations in the solar atmosphere. 

Equations (2.19) - (2.21) depend on the structure of the equilibrium model. In 
fact, the coefficients in these equations are essentially completely determined if the 
density p and the adiabatic exponent Fl are given as functions of r, assuming that the 
model is in hydrostatic equilibrium. Given p, the interior mass re(r) is obtained by 
integrating Eq. (2.2), with the obvious boundary condition re(r) = 0. Then p(r) can be 
obtained from Eq. (2.1) by integrating from the surface; this requires an assumption 
about the surface pressure, which, for example, can be obtained from semi-empirical 



280 J. Christensen-Dalsgaard and W. D~ippen 

Top 30 20 10 5 

V 1 

(ll Hz) 0 

100 

n<o  

10( 

1 10 100 1000 

.s 

Fig. 3. Adiabatic oscillation frequencies for a standard model of the present Sun, as functions of the degree 
l. For clarity points corresponding to modes with a given radial order have been connected by straight 
lines, some of which have been labelled by the radial order. Only g modes with order less than 40 have 
been included 

models of the solar atmosphere (e.g. Vernazza et al. 1981). Given p(r), p(r) and/"1 (r), 
the coefficients may be evaluated. 

In the adiabatic approximation the computation of the oscillation frequencies is a 
straightforward numerical problem. Nevertheless, some care is needed to obtain suf- 
ficient precision, particularly in view of  the fact that the radial order of  some of the 
observed modes is high. To illustrate the results, Fig. 3 shows computed eigenfrequen- 
cies for a standard solar model, as functions of  the degree 1. The curves are labelled 
by the radial order of the modes; by convention, the sign of n is used to distinguish 
different types of  oscillations (see below), whereas ]n I, at least in the limit when it 
is large, gives the number of  zeros in the radial direction in the eigenfunctions. From 
the figure it is evident that there are two distinct, but slightly overlapping, groups of  
modes, with very different behaviour of the frequency as a function of 1. The upper 
set of modes has n > 0; they are known as p modes, since for these modes the 
dominant restoring force is the pressure perturbation; thus they have the character of  
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standing sound waves (see also Sect. 2.2.3). The modes with n = 0, although similar 
to the p modes in the behaviour of the frequencies, are in fact physically distinct; 
for l greater than about 20 they behave approximately as surface gravity waves, with 
frequency 

g~ L , (2.25) W ~ gs]~h = R 

where 98 is the surface gravity. They are known as f modes. Finally, the modes with 
n < 0 are known as g modes; here the dominant restoring force is gravity acting on 
the density perturbations, and the modes have the character of standing gravity waves. 
Only the g modes with lnl < 40 have been shown; the g mode spectrum extends 
to zero frequency at all degrees, although the modes obviously become increasingly 
crowded with increasing degree. On the other hand, the gap between the g and the f 
modes is real. 

An important global property of a mode of oscillation, beside the frequency, 
is its integrated kinetic energy or, equivalently, its inertia. Here we consider the 
dimensionless inertia 

foR[   + l(l + 
E n l  = M[~2(/~phot) + I(l + 1){2(/~phot)] ' (2 .26)  

where ~phot is the photospheric radius. This is related to the modal mass Mnz (cf. 
Goldreich and Keeley 1977) by Mnz = Er~ZM, and defined such that the time-averaged 
kinetic energy in the oscillation is 

1 2 M,~z Vff,~ = ~ E~z MV~:~, , (2.27) 

where Vff~8 is the mean, over the solar surface and time, of the squared total pho- 
tospheric velocity of the mode. For p modes Enz decreases rapidly with increasing 
frequency up to about 3000 #Hz. This is related to the behaviour of the eigenfunc- 
tions: at low frequencies there is a region just beneath the solar surface where the 
displacement increases roughly exponentially with depth; hence the interior amplitude 
is substantially larger than the surface value (Libbrecht 1988b; Christensen-Dalsgaard 
1988b), and E,~z is large. At high frequencies, on the other hand, the mode is oscilla- 
tory essentially to the surface, and the surface and interior amplitudes are comparable. 
Furthermore, E,~z decreases substantially with increasing l at fixed frequency; the in- 
crease in l causes the mode to be confined closer to the surface, and hence to involve 
a smaller fraction of the mass of the Sun. 

The calculations described so far ignore a number of complicating features that 
are so far badly understood, such as 

- nonadiabaticity 
- excitation, more generally 
- dynamical effects of convection 
- detailed atmospheric behaviour 
- magnetic fields. 

This approximation is in some sense similar to those underlying the computation of 
standard solar models. Calculations that do take into account some of the features 
(Christensen-Dalsgaard and Frandsen 1983; Kidman and Cox 1984; Balmforth and 
Gough 1988, 1990; Balmforth 1992a-c; see also Sect. 4.3) show that they may change 
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the frequencies by several #Hz. Thus they have a substantial effect on comparisons 
between observed and computed frequencies. On the other hand, the complications 
are all (again with the possible exception of a very strong deep-seated magnetic field) 
located near the solar surface. Thus they add to the uncertainty of the surface region 
indicated in Fig. 1 but do not directly affect the properties of the oscillations in the 
deeper solar interior. 

2.2.3 Asymptotic properties of p modes 

Although the numerical solution of the equations of adiabatic oscillations is relatively 
simple, it does not immediately provide an understanding of the properties of the 
oscillations. Such understanding may be obtained by means of asymptotic theory. It 
was shown by Gough (Deubner and Gough 1984; Gough 1986a) how to write down 
an approximate form of the oscillation equations, from which it is straightforward to 
obtain the asymptotic behaviour of the solution. Here we restrict the discussion to 
p modes and present a description of the asymptotic behaviour which, although ex- 
tremely simple, nevertheless contains the most important results of the more complete 
theory. 

The p modes can be approximated locally by plane sound waves, with the disper- 
sion relation ]g2 ~ k2 + ]~2 _ Cd2/C2. Here k, k~ and kh are the length, and the radial 
and horizontal components, of the wave vector. For a mode of oscillation, kh is given 
by Eq. (2.16), so that 

h2 ~ _ c J  L 2 
C2 r2 (2.28) 

Close to the surface, c is small and hence k~ is large. Here the modes propagate 
almost vertically. With increasing depth, c increases and h,. decreases, until the point 
is reached where k~ = 0 and the wave propagates horizontally. The location r = re of 
this turning point is determined by 

c(re) 
- (2.29) 

re L 

It corresponds to a point of total internal reflection; for r < rt, k 2 < 0, and the mode 
decays exponentially. The behaviour at the surface requires a more careful analy- 
sis, showing that below a critical cut-off frequency (which in the solar atmosphere 
corresponds to a cyclic frequency of about 5200 #Hz) the wave is reflected by the 
steep density gradient. Thus the wave propagates in a series of "bounces" between 
the surface and the turning point. A mode of oscillation is a standing wave, formed 
as an interference pattern between such bouncing waves. It is trapped between the 
surface and rt, and hence its frequency depends largely on conditions in this region. 
Figure 4 illustrates rt as calculated from Eq. (2.29). Modes at the highest values of 
I observed are confined to the outermost fraction of a per cent of the solar radius, 
whereas the lowest-degree modes penetrate essentially to the centre. 

Due to the rapid decrease of the sound speed with increasing radius, the first term 
on the fight-hand side of Eq. (2.28) is substantially larger than the second except near 
or below the turning point. As a result, except near their turning points modes of the 
same frequency but different degree have essentially the same k~; thus the properties 
of the modes, and their response to solar structure, are similar. 
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Fig. 4. The turning point radius r t  a and the penetration depth R - r t  b, in units of the solar radius R, 
as a function of degree l for three values of the frequency u. The curves have been calculated from Eq. 
(2.29) for a standard model of the present Sun. In panel b the curves terminate at the degree where the 
frequency equals the f -mode frequency; for p modes the degree is below this value at a given frequency 
(see also Fig. 3) 

This simple description of the p modes may be extended to give an asymptotic 
relation for their frequencies (Gough 1984b; Christensen-Dalsgaard et al. 1985): the 
condition for a standing wave is that the change in phase in the radial direction is an 
integral multiple of %, apart from a contribution which takes into account the phase 
change at the inner turning point and at the surface. This condition may be expressed 
as  

f R k~dr  ~_ (n  + a)~c , 
t 

or  

1 - d r  7r[n + a(c~)] (2.30) 
t c o2 

where we used Eq. (2.28). Here a is the quantity which takes into account the phase 
change at the reflection points; the reflection at the lower turning point introduces a 
phase change of 7r/4, whereas the outer reflection, and hence a, depends on conditions 
near the surface. As indicated, a is in general a function of the frequency, but not 
of the degree, of the mode. Indeed, as discussed above, the waves propagate almost 
vertically near the surface; hence their behaviour here is essentially independent of 
the horizontal wavenumber and so, therefore, is ct. 

A more careful analysis of the asymptotic behaviour near the centre of the solution 
for modes of low degree, including radial modes, shows that L should be replaced 
by I + 1/2 [Brodsky and Vorontsov (1987, 1988a); see also Kemble (1937) for the 
corresponding result for solutions to the Schr6dinger equation]. Except at low I this 
modification evidently has little effect; hence in the following we take L = 1 + 1/2. 
We note also that the derivation of Eq. (2.30) assumes the Cowl ing  approx imat ion ,  
i.e., that the perturbation q5 t in the gravitational potential can be neglected (Cowling 
1941). It is straightforward, however, to extend it to take into account the leading-order 
effect of ~ ' ,  by using Jeans's (1929) dispersion relation for waves in a homogeneous, 
gravitating medium (Christensen-Dalsgaard 1991a); the resulting expression for the 
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frequency correction was obtained previously by Vorontsov (1988a, 1989) and Tassoul 
(1990) through more complete asymptotic analyses. 

As re is a function of cJ/L, Eq. (2.30) may be written as 

7r[n + c~(co)] cJ - F ( L )  ' (2.31) 

where 

fR ( C2 ~ '~2dr (2.32) 
F(w) = 1 -- •2W2 j T 

That solar oscillations satisfy a relation of this form was first found by Duvall (1982) 
from observed frequencies. In fact, since Eq. (2.31) is a relation between observable 
quantities, the function F can be determined observationally. This is achieved by 
fitting the observed frequencies to a relation of the form given in this equation to 
determine, in addition to F(w), the function c~(~z). It should be noted that in this fit 
F(w) is determined only to within an additive constant, and correspondingly c~(co) 
is determined to within a term proportional to cd. This led Brodsky and Vorontsov 
(1987, 1988a) to consider instead 

Cd 2 d 

which clearly does not suffer from this indeterminacy. 
For small I Eq. (2.30) reduces to 

l 1 
u~z ~ (n + ~ + ~ + c~)Au + e~z (2.34) 

(Vandakurov 1967; Tassoul 1980), where 

1 

is the inverse of twice the sound travel time between the centre and the surface, and 
c~l is a small correction term. Thus, neglecting e~z, there is approximately a uniform 
spacing Au between modes of same degree, but different order. Equation (2.34) also 
predicts the approximate equality u~l -~ u,~-l,Z+2. This frequency pattern has been 
observed for the solar five-minute modes of low degree. 

It is of great interest to consider the deviations from this simple behaviour, intro- 
duced by e~l. This can conveniently be analysed by considering the separation ~u~l = 
u~z - u~-l,l+2; it is predominantly determined by conditions in the solar core since, 
as argued above, only here does the behaviour of the modes depend substantially on 
I. From asymptotic analysis (e.g. Tassoul 1980; Gough 1986a) one finds that 

Au  f R  de dr 
6 u n ~ - ~ - ( 4 / + 6 ) ~ J 0  dr r ' (2.36) 

where we neglected a small term in the surface sound speed. This relation was anal- 
ysed in more detail by Gabriel (1989), Gough and Novotny (1990) and Christensen- 
Dalsgaard (1992a); although its precision, when compared with numerically computed 
frequencies, is somewhat questionable, it nonetheless indicates the sensitivity of 6u~t 
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to the conditions in the solar core. In Sect. 4.4 we consider examples of this sen- 
sitivity, and compare the computed separation with values obtained from observed 
frequencies. 

It is of interest to use Eq. (2.30) to estimate the effects on the frequencies of 
changes in the equilibrium model. If (5c denotes the difference in c between two solar 
models, at fixed r, and 6c~ denotes the difference in c~ at fixed frequency, it follows 
by linearization, assuming 6c and 6c~ to be small, that (Christensen-Dalsgaard et al. 
1988a) 

f R (  1 L2c2 "~ -1/2 6c dr" ~a 
- - - -  + r e - -  , (2.37) 

where 
f R  ( fj2c2~--1/2 dT do~ 

= - rc (2.38) S 1 r-T~jj  e dw 
t 

Since a is assumed to be a function of w alone, and rt is determined by w / L ,  the 
scaled frequency difference S S w / w  is predicted to be of the form 

where the two functions HI and H2 are determined by Eq. (2.37). Furthermore, the 
last term on the right-hand side of Eq. (2.38) is in general relatively small compared 
with the first, and hence S is approximately a function of w / L .  Equation (2.39) 
evidently describes a very special dependence of 5w on w and L. 

Since c / r  decreases quite rapidly with increasing r, (Lc / rw)  a << 1 except near 
the turning point rt; hence as a rough approximation 1 - L2c2/r2w 2 may be replaced 
by 1 in the integrals in Eqs. (2.37) and (2.38). If furthermore the term in 5a can be 
neglected, the result is the very simple relation between the changes in sound speed 
and frequency: 

f R 5c dr 

6w t c c 
- R dr (2.40) 

t C 
This shows that the change in sound speed in a region of the Sun affects the frequency 
with a weight determined by the time spent by the mode, regarded as a superposition 
of traveling waves, in that region. Thus changes near the surface, where the sound 
speed is low, have relatively large effects on the frequencies. Although this expression 
is only a rough approximation, it is a useful guide in attempts to interpret frequency 
differences between models, or between observed and computed frequencies. 

The dependence of c~ on frequency is determined by the structure of the outer few 
per cent of the radius of the Sun, including the region where hydrogen and helium 
ionization takes place. Consequently, cffco) provides a potentially powerful diagnostics 
of effects of the equation of state. In Sect. 4 we make extensive use of differences in 
c~, expressed in terms of the function H2(w) introduced in Eq. (2.39), to characterize 
the frequency differences between pairs of models or between the Sun and a model. 
It is possible to express H2(co) in terms of integrals of appropriate kernels multiplying 
differences in the structure of the model (Christensen-Dalsgaard and P6rez Herngmdez 
1988, 1992). This may eventually enable a study of the outer layers of the Sun from 
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inversion of H2 as determined from the observed frequencies. In such an analysis it is 
a substantial problem that c~ is affected also by the uncertainties in our description of 
the physics of the very superficial layers of the Sun, including the superadiabatic part 
of the convection zone; however, as discussed in Sect. 4.1.1 it is possible to achieve 
some separation of the different effects by considering the variation o f / / 2  with cJ. 
We note also that Marchenkov and Vorontsov (1990, 1991) presented a method for 
inverting differences between the observed Vorontsov phase function/3(c~) and/3(c~) 
for a reference model, to determine corrections to the structure near the surface of 
the model. 

As discussed in Sect. 2.3.2, the asymptotic relations (2.30) and (2.37) permit an 
almost direct, and surprisingly precise, inversion for the solar sound speed or the 
sound-speed difference between the Sun and a model. 

2.2.4 Observations of solar oscillations 

Solar oscillations have been observed with a variety of techniques, but the most 
detailed data have so far been obtained by measuring Doppler velocity [for a review of 
observing techniques, see Brown (1988); a brief overview of techniques for observing 
and analysing solar oscillations was given by Christensen-Dalsgaard (1992a)]. From 
spatially resolved observations modes corresponding to individual spherical harmonics 
may be isolated through a suitable spatial transform; this has led to the detection of 
modes with degrees as high as 1500, where the observations are restricted by seeing in 
the Earth' s atmosphere. In addition, particularly sensitive measurements of low-degree 
modes can be obtained from unresolved Doppler observations, in light integrated over 
the solar disk. 

The five-minute oscillations have cyclic frequencies between about 1 and 5 mHz, 
and extend in l from radial modes, with l = 0, to the observational cut-off in degree. 
It follows from the theoretical properties of the oscillations discussed above that 
they correspond predominantly to p modes but also, at moderate and high degree, 
include f modes. The five-minute oscillations are the only modes whose degrees 
and radial orders have been determined. This is a prerequisite for the use of the 
observed frequencies to study the solar interior, and hence helioseismic investigations 
of the solar interior have up to now been based on these modes. A characteristic 
feature is that their distribution of power as a function of frequency and the average 
amplitude per mode are largely independent of I (Christensen-Dalsgaard and Gough 
1982; Libbrecht et al. 1986). The maximum velocity amplitude for single modes is 
about 15 cm sec -~. This corresponds to a relative amplitude in broad-band intensity of 
order 10-6; such observations were carried out from the SMM satellite (Woodard and 
Hudson 1983) and more recently from the Soviet Mars probe PHOBOS (Toutain and 
Fr6hlich 1992). The mode lifetimes are strongly dependent on frequency (Libbrecht 
1988c; Jefferies et al. 1991; Duvall et al. 1991), varying from about a day at high 
frequency to several months at the lowest frequencies observed. 

Libbrecht et al. (1990) published an extensive compilation of frequencies of five- 
minute oscillations; the most accurately determined of these have relative errors of 
order 10 5. Furthermore, sets of accurate frequencies of low-degree modes were pre- 
sented by Elsworth et al. (1991) on the basis of data from a network of whole-disk 
observing stations, and by Toutain and Fr6hlich (1992) based on the space observa- 
tions of intensity oscillations mentioned above. 
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In the following we are exclusively concerned with the properties of the five- 
minute oscillations. Nevertheless, it should be mentioned that there have been claims 
for the detection of other types of oscillations in the Sun. At intermediate frequencies, 
between 0.1 and 2 mHz, there have been reports, although not substantiated by other 
observing techniques, of oscillations observed in the solar limb intensity (Hill and 
Caudell 1985). At even lower frequencies, corresponding to periods of more than 
2 hours, there have been observations of a number of oscillations, both in Doppler 
velocity (e.g. Severny et al. 1976; Brookes et al. 1976; Scherrer and Wilcox 1983; 
van der Raay 1988) and, somewhat less directly, in intensity (Fr6hlich and Delache 
1984a,b; Fr6hlich 1988). If the observations are indeed of solar eigenmodes, they 
would have to be g modes of fairly high order; this would make then extremely 
valuable as probes of the deep solar interior. It is probably fair to say, however, 
that the reality or solar origin of these long-period oscillations are still questionable 
(Fossat et al. 1988; Garcia et al. 1988; Elsworth et al. 1989). 

2.3 Inverse analysis 

Neglecting again rotation and other departures from spherical symmetry the oscillation 
frequencies conz are functionals 

~,~z = 5,~z [p(r ) ,  p(r),...] (2.41) 

of the structure of the Sun. So far we have discussed how to obtain the frequencies, 
given the structure. With the ability to do so, one can compare observed frequencies 
with computations based on different models, and in this way obtain some information 
about solar structure. In particular, as discussed in Sect. 4.3, one may be able to choose 
between different formulations of the physics in the model. However, it is evidently 
desirable to attempt to invert the process, to obtain more extensive information about 
the properties of the solar interior from the observed frequencies. 

Such inverse analyses are, in a certain sense, implicit in any type of scientific 
measurement, since a raw measurement rarely supplies the quantity that one is inter- 
ested in. However, in the present case the relation between the desired properties of 
the Sun, e.g. p(r), and the observed quantities is more complex, since each frequency 
is sensitive to the structure of a substantial part of the Sun; thus the inverse problem 
is correspondingly more difficult. Similar problems are encountered in other branches 
of science, such as geophysics and radiation theory, and there is a substantial litera- 
ture dealing with them (Parker 1977; Deepak 1977; Craig and Brown 1986; Tarantola 
1987). 

Here we provide a brief description of the principles of helioseismic inversion 
and discuss their application to the study of the solar internal structure. For more 
extensive treatments the papers by, for example, Gough (1985), Thompson (1991) 
and Gough and Thompson (1991) may be consulted. 

2.3.1 Principles of helioseismic inversion 

As discussed in Sect. 2.2.2 the equations of adiabatic oscillations depend on the struc- 
ture of the equilibrium model only through the density p(r) and adiabatic exponent 
/~1 (r); given p(r), the pressure p&) can be computed from the equation of hydrostatic 
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equilibrium, which must be satisfied to a high degree of precision. Thus p, p and/71 
are the only quantities that are directly constrained by the observed frequencies. Fur- 
thermore, in the important case of the solar five-minute oscillations, the frequencies 
are mainly determined by a combination of p, p and 1~, viz. the adiabatic sound 
speed given by Eq. (2.6). 

To move beyond the determination of these properties of the solar interior, addi- 
tional constraints must be imposed. As discussed by Gough and Kosovichev (1988) 
this may be done at two levels. At the level of what they term secondary inversions 
one imposes Eqs. (2.3) and (2.4) of thermal equilibrium and energy transport, together 
with expressions for the equation of state, opacity and energy generation rate. It is 
then possible to determine the variation of, for example, temperature T and hydrogen 
abundance X in the solar interior. At the level of tertiary inversion one imposes in 
addition the constraint that the evolution of the Sun is in accordance with that of stan- 
dard solar models. Then, as discussed in Sect. 2.1.1, the structure of the present Sun 
is completely determined by the microphysics, whose properties one may therefore 
attempt to determine through the inversion. 

According to this argument inversion for the microphysics, which is in some sense 
the subject of this review, might appear essentially impossible, given the assumptions 
required in computing standard solar models. This argument, however, may be too 
formalistic, since it ignores the possibility that a sufficiently comprehensive descrip- 
tion of the structure of certain regions of the Sun can be made without involving 
the complete set of assumptions. For our purposes the most important example, al- 
ready discussed at some length in Sect. 2.1.2, is the convection zone. If one accepts 
the assumptions that the stratification in the convection zone is essentially adiabatic 
and that it is chemically homogeneous, its structure is determined by the equation of 
state, as well as by the constant values of the specific entropy and the composition, 
the latter being essentially specified by the abundances X and Z of hydrogen and 
heavy elements. It does not appear unreasonable to expect that sufficiently detailed 
information will become available to allow the determination of the composition, and 
at the same time provide information about the equation of state in the regions of 
partial ionization of hydrogen and helium. We return to this point in Sect. 4 below. 
As a second example, we may consider the region beneath the convection zone, but 
outside the region where nuclear burning takes place. Here it might be reasonable to 
assume the composition to be constant and equal to the composition in the convection 
zone, and the luminosity is presumably also equal to its surface value. Furthermore, it 
is likely that the uncertainty in the equation of state, insofar as it affects the structure 
of the model and the oscillation frequencies, is modest. In that case the dominant 
uncertainty would be in the opacity, and one would perhaps be justified in attempting 
to get information from the observations about the opacity in the temperature range 
corresponding to this region. 

It is obvious that some caution is required in these examples, as indeed in any 
analysis of helioseismic data. In the case of the convection zone, for example, it is 
conceivable that magnetic fields sufficiently strong to affect the structure might ex- 
ist, and hence invalidate investigations of the equation of state that neglected them. 
Similarly, diffusion beneath the convection zone would lead to abundance inhomo- 
geneities which would introduce errors in attempts to probe the opacity. Only by 
careful consideration of all the available data, and through attempts to construct a 
consistent picture of the solar interior, can we hope to minimize the effects of such 
uncertainties; however, it is evident that we can never completely eliminate the pos- 



Solar oscillations and the equation of state 289 

sibility of being misled by the Sun's potentially boundless ingenuity in introducing 
new, as yet unimagined complications. 

The goal of the inverse analysis is to isolate information about localized regions 
of the solar interior. That this is possible, in principle, from observations of the five- 
minute oscillations follows from the structure of the eigenfunctions (c.f. the discussion 
of their asymptotic properties in Sect. 2.2.3). Consider two modes with slightly dif- 
ferent degree, and hence slightly different re, but almost the same frequency. Since 
their eigenfunctions are similar away from the turning points, the frequency difference 
between these two modes is mainly determined by the region in the model between 
the two turning points. Hence the difference is a measure of conditions in that region. 
In practice much more elaborate combinations of the frequencies than simple differ- 
ences are needed to obtain truly localized information about the solar interior; but the 
principle remains the same. Thus inversions based on the five-minute oscillations are 
differential processes. In particular they involve cancellation of the large contribution 
to the frequencies coming from near the surface, where the eigenfunctions are large. 
To obtain accurate results on the deep solar interior therefore requires very precise 
frequency measurements. 

Although inversion of the five-minute oscillations, due to their relatively limited 
range in frequency, is principally controlled by the variation in turning point position 
with degree, it should be noticed that inversion is possible also on the basis of low- 
degree oscillations alone, provided that the data cover a sufficient range in radial order 
(Cooper 1981; Christensen-Dalsgaard and Gough 1984; Christensen-Dalsgaard et al. 
1990). The principle of the inversion in this case is similar to a Fourier analysis in 
space, since the observed frequencies can be regarded as a set of Fourier coefficients, 
in a generalized sense, of the underlying solar structure. Given a sufficiently extensive 
set of Fourier coefficients one may attempt to reconstruct the underlying structure; 
this corresponds to the inversion. 

A general property of the inversions is that we desire an infinite amount of infor- 
mation, e.g. the dependence of structure on position in the Sun, from a finite amount 
of data. Thus the problem is underdetermined. To obtain a definite solution, we must 
impose additional constraints. The nature of these constraints vary, but in general they 
require that the solution be smooth, in a suitable sense, and hence they act to limit the 
resolution achieved in the inversion. Furthermore, observational errors must be taken 
into account. In general, there is a trade-off between achieving high resolution and 
restricting the errors in the result. This trade-off is controlled by one or more param- 
eters in the inversion procedures, which must be determined as part of the analysis. 
Additional, external constraints may result from other known properties of the Sun; 
in particular it is obvious that the structure should be such as to be consistent with 
the observed surface mass and radius of the Sun. 

2.3.2 Asymptotic inversion 

Simple, yet powerful, inversion techniques are based on the asymptotic relation (2.30). 
As discussed in Sect. 2.2.3 the function F(w), which is related to the sound speed 
c through Eq. (2.32), can be determined from observed frequencies. Given F,  Eq. 
(2.32) provides an integral equation for e as a function of r. This can be inverted 
analytically (Gough 1984b), to yield 
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( c ) = R e x p [  2 fr  ( r2 ) - l /2dFdw ] 
'F = 'F - - - -  W 2 

rc J o~/R - ~ dw j , (2.42) 

where ca is the surface value of c; hence c(r) can be determined, This procedure was 
described in more detail by Gough (1986b). It was applied to observed frequencies 
by Christensen-Dalsgaard et al. (1985) who were able to determine the sound speed 
in much of the Sun with a precision of considerably better than 1 per cent. It is 
interesting that an essentially identical inversion technique for inversion of data on 
free oscillations of the Earth was proposed by Brodsky and Levshin (1979). There 
are other similar inversion techniques, based on the asymptotic expression (2.31) 
or extensions of it, which have been developed by several authors (Brodsky and 
Vorontsov 1987, 1988a; Kosovichev 1988; Shibahashi 1988; Shibahashi and Sekii 
1988; Vorontsov 1988a, 1989; Sekii and Shibahashi 1989; Vorontsov and Shibahashi 
1990, 1992; also see Vorontsov and Zharkov 1989). They are mainly distinguished by 
the methods of fitting the data to the asymptotic expression, particularly the separation 
into parts depending on coiL and on co. 

A very attractive feature of these inversion methods is that they are absolute: 
the sound speed c(r) is obtained directly from the data, without any use of a solar 
model. However, they suffer from systematic errors arising from inaccuracies in the 
asymptotic Eq. (2.42). It was shown by Christensen-Dalsgaard et al. (1989) that these 
errors to a large extent cancel if one considers instead differences between frequencies 
of pairs of models. This suggests that a differential asymptotic inversion of the solar 
data may be more accurate; here the solar frequencies are compared with those of 
a suitable reference model, and the inversion is aimed at estimating the differences 
between the solar sound speed and the sound speed of the reference. This procedure 
can be based on Eq. (2.39). As discussed in more detail in Sect. 4.1.1 the function 
Hi(w) can be estimated by fitting this expression to differences between observed 
solar frequencies and those of the reference model; then the sound-speed difference 
between the Sun and the model can be determined from 

6c 2a d f ~  - ] (a 2 -- w2) -1/2Hl(w)dw , (2.43) 
c 7r dlnr was 

where a = c/v and a8 = a(/~). Christensen-Dalsgaard et al. showed that this method 
could recover even quite considerable sound-speed differences between pairs of mod- 
els with an accuracy better than 0.5 per cent in most of the model. 

2.3.3 Numerical inversions 

The asymptotic inversion is based on an approximate relation for the frequencies, 
and so it suffers from inherent errors. Furthermore, its use is obviously restricted to 
analysis of p-mode data; it is not possible, for instance, to include data on the high- 
degree f modes which are observed. To make full use of the data requires inversion 
techniques based on numerically computed frequencies. As discussed in Sect. 2.3.1 
the adiabatic oscillation frequencies are determined as 

cJnl = .T'(~d)[p(r), Fi(r)] , (2.44) 

,-~(ad) where the J nz are complicated nonlinear functionals of the equilibrium variables. 
Assuming for the moment the validity of the adiabatic approximation, we therefore 
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seek to "solve" the equations 

nl (2.45) 

, .(obs) for a given set of observed frequencies c%z , to obtain p(r) and/'1 (r). The solution 
requires iterative techniques, where the equations are linearized around an initial 
reference model. Let (po(r), Pl,o(r)) correspond to the reference model, which has 

oscillation frequencies .(0) We seek to determine the corrections 6p(r) = p(r) - po(r) 
(obs) (0) and 6271(r) = 271 (r)-271,0(r) to match the differences a2z -~ , , l  between the observed 

frequencies and those of the reference model. By linearizing Eq. (2.45), assuming @ 
and 6271 to be small, one obtains 

/0R .(obs) , (0)  K~z)(r)6p(r)dr + K(f~l)(r)6Fl(r)dr (2.46) 
~ n l  - -  C~nl = 

where the kernels K (p) and /((F1) ,~z ,~z are determined from the eigenfunctions in the 
reference model. To these equations must be added the constraint that the mass of the 
Sun and the reference model be the same, i.e., 

~0 R 6 M  = 4re @(r)r;dr  = 0 . (2.47) 

In this way the original problem in Eq. (2.45) has been replaced by the linear 
inversion problem in Eqs. (2.46) and (2.47). Having determined 6p and 6FI we may 
then obtain the corrected model. In principle the procedure should then be iterated, 
by repeating it using the corrected model as reference; so far, however, there is little 
experience with the convergence properties of this iteration (but see Cooper 1981). 
On the other hand, it seems that in practice the linearization in Eq. (2.46) is quite 
accurate, so that even the initial correction may be adequate (Gough and Kosovichev 
1988, 1990). 

In reality, the inversion should take into account the departures from the adiabatic 
approximation, and other effects near the solar surface. In the absence of a reliable 
theory for the properties of the oscillations in this region, these effects can be incor- 
porated by including in Eq. (2.45) a suitably parameterized unknown term which is 
determined, or eliminated, as part of the inversion procedure (see Dziembowski et 
al. 1990; D~ppen et al. 1991; Kosovichev et al. 1992). Note that this is analogous 
to eliminating the surface uncertainty through the effects of c~(co) or H2(w) in the 
asymptotic inversion methods. 

The pair (p, F1) considered above is only one amongst several pairs involving p, 
p, F1 or, for example, the sound speed c or the buoyancy frequency N. Indeed, given 
the importance of the sound speed in determining the p-mode frequencies, the most 
sensible pair for analyzing the five-minute oscillations may be (c, F1). In this case 
the envelope of the kernel for 6c/c is approximately given by the asymptotic kernel 
implicit in Eq. (2.37). The calculation of such kernels is discussed by Gough and 
Kosovichev (1990) and Gough and Thompson (1991). 

If further assumptions about the model are imposed, one may derive kernels 
relating the frequency differences to differences in other aspects of the model, such 
as the variables describing the composition. To do so, the kernels for the primary 
quantities, for example p and F1, are combined with relations derived by linearizing 
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the Eqs. (2.1) - (2.4) of stellar structure. This procedure was discussed in more detail 
by Gough and Kosovichev (1988, 1990) who also presented examples of such kernels. 

A number of techniques exist for solving the linear inversion problem specified 
by Eq. (2.46). One technique is based on forming linear combinations of the observed 
data .(obs) .(0) such that the corresponding combinations of the kernels provide a 

r  - -  r  
localized average of the unknown functions @ and gF1. Other techniques involve 
least squares fits of parameterized version of the unknown functions to the data, 
with additional constraints included to ensure that the solution is sufficiently smooth. 
Descriptions of these methods, with further references, can be found in the papers 
quoted in the introduction to this section. We note also that Christensen-Dalsgaard et 
al. (1990) made a careful analysis of some of these methods, and of the differential 
asymptotic technique discussed in Sect. 2.3.2, as applied to the mathematically similar 
problem of inversion for the solar internal rotation. 

3. The equation of state 

The equations of stellar structure (2.1) - (2.4) are formulated in a general way, with no 
specific assumptions about the properties of matter. The density, which for example 
appears in the equation of hydrostatic equilibrium, is not an independent field but is 
a function of pressure, temperature and the chemical composition by virtue of the 
equation of state. The equation of state is therefore crucial for the internal structure 
of the star. Similarly, another property of matter, opacity, enters the equation of heat 
transport. It governs the flow of radiation (and thus the temperature gradient) in the 
radiative interior, but it has virtually no influence in the convection zone with the 
exception of a small strongly superadiabatic layer just beneath the photosphere. 

From a theoretical point of view, it is much easier to compute the equation of 
state than the opacity. The equation of state can be dealt with within the framework 
of equilibrium statistical mechanics. An equilibrium system can be characterized by 
mean values of conserved quantities, such as energy and particle number (for extensive 
reviews of the more recent literature see, for example, Ebeling et al. 1976; Kraeft et 
al. 1986; Eliezer et al. 1986; D~ppen et al. 1987; Hummer and Mihalas 1988; D~ppen 
et al. 1991; Ebeling et al. 1991). 

Opacity, however, is a transport quantity. Computing transport quantities requires 
considering non-equilibrium states and additional observables, which are, in the con- 
text of hydrodynamics, particle-, momentum-, and energy currents determined by the 
respective equations of continuity. Linear response theory often provides the frame- 
work for these computations (for an introduction see Kraeft et al. 1986). 

As a consequence, the computation of the equation of state is the simpler problem. 
Besides the general fact that equilibrium quantities are easier to compute than transport 
quantities, there are two specific reasons for this. Firstly, already at lower densities 
where "atoms" exist (i.e., where many-body effects can be neglected), to determine the 
equation of state it suffices to know the energy levels of atoms (and their occupation); 
for the opacity, however, transition matrix elements between all sorts of atomic states 
have to be known a~ well. Secondly, at higher densities, where many-body effects 
become important (and where one cannot speak of "atoms"), there are at least roads 
to a correct treatment of the equation of state (we shall show some of them in this 
chapter). Extending these techniques to opacity calculations faces the difficulty that 
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again more detailed information about the quantum-mechanical many-body states is 
required. 

3.1 Statistical mechanical foundation of the equation of state 

Two different kinds of information are required in the description of the thermody- 
namic state of an astrophysical plasma. Firstly, one needs thermodynamical relations. 
One of these is the equation of state p(p, T) itself, which is essential for the solution 
of the hydrostatic equilibrium Eq. (2.1). In addition, other thermodynamic quantities 
are needed: principally the adiabatic pressure-density gradient F1, which determines 
the structure of most of the convection zone, and is crucial for sound speed and 
thus oscillation frequencies. Secondly, the thermodynamic state has to be known in 
opacity calculations to provide the occupation of individual levels of atoms and ions 
and the fractions of ions of any given chemical element. Strictly speaking, there is 
no fundamental reason for introducing atoms and ions and their level populations 
in an opacity calculation. As we shall mention below (Sect. 3.4), one can model 
the thermodynamics without starting out from the concept of atoms, ions, or levels 
(which at any rate are merely approximations to the complex situation of particles in 
a plasma). However, even then somewhat heuristic concepts of atoms and ions have 
to be introduced in the opacity calculation (see Rogers 1986; D~ppen et al. 1991). 
Nevertheless, often the approximate ideas of (modified) atoms and ions are already 
introduced in the thermodynamic part, which gives then the necessary information 
about level populations directly, to be used in opacity calculations. Needless to say, 
in a consistent stellar model the thermodynamic quantities and the opacity should be 
based on the same equation of state. Although this is an obvious requirement, we 
would like to mention that it is not satisfied in many models. 

The typical task of quantum statistical mechanics consists in the calculation of 
the (total) partition function (see Huang 1963, Reichl 1980) 

Z(T, V, N )  = Tr(e H / k B T )  . (3.1) 

Here, H is the Hamiltonian operator of the quantum system with Ni particles of 
species i, i = 1 , . . . ,  m [i.e., N = (N1, N2 , . . . ,  N~)]  confined to a box of volume V, 
and/cB is the Boltzmann constant. (We note that this is the canonical point of view; 
the alternative, equivalent grand-canonical approach is another possibility, which is 
discussed in Sect. 3.4). The partition function directly leads to the thermodynamical 
potential of the free energy 

F(T,V,N)= kBTlnZ(T ,V ,N) ,  (3.2) 

from which all thermodynamic quantities can be derived. It is evident that various 
approximations are necessary before Eq. (3.1) can be evaluated. One such approx- 
imation consists in treating the motion of the heavy particles (nuclei, atoms, ions) 
according to classical mechanics, which is certainly appropriate as long as one does 
not approach the conditions of the interior of neutron stars. Thus, only electrons have 
to be described by quantum mechanics. 

Such a separation of effects leads to a factorization in Eq. (3.1), which is translated 
into a sum in Eq. (3.2). The free energy thus becomes modular, which is a very 
useful property of models that are based on the canonical partition function. The 
classical contribution in Eq. (3.1) is obtained from an integration over the Hamiltonian 
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coordinates pi and qi (i = 1 , . . . , 3 N ) .  Neglecting velocity-dependent interactions 
between the particles, the classical integrations over pi and qi factorize, resulting in 
the Maxwell-Boltzmann distribution for the heavy particles multiplied by the so-called 
configuration integral 

Q(T, V, N )  = f @1 �9 "" dp3N dql �9 " dq3x e - v / kBT  , (3.3) 

where )2 = V(ql , . . . ,  q3N) is the interaction potential of the heavy particles. Equa- 
tion (3.3) is at the base of the (negative) Coulomb-pressure correction for the charged 
particles and of excluded-volume effects of neutral particles (such as hard-sphere and 
Van-der-Waals type corrections). 

An approximate evaluation of the Coulomb pressure correction is made in the 
Debye-Htickel theory, where it is assumed that each charge is surrounded by a cloud 
of opposite charge, screening the Coulomb interaction outside a sphere with radius 

= (47re 2 < Z2 > ) -1/2 
(3.4) 

called the Debye radius. Here 

< 22 >= Z Z2)gJ ' (3.5) 
J 

where the sum runs over all charged particles with particle densities nj = N j / V  and 
charge Zj. A convenient dimensionless parameter of the Debye-Htickel theory is the 
ratio r of the Coulomb potential energy of unit charges at the distance AD to the 
average kinetic energy kBT, thus ( = (e2/ID)/kaBT = 1L/AD (where 1s = e 2 / k s T  
is the Landau length). The values of these parameters in the solar convection zone 
were studied in detail by Baturin (1991) and Vorontsov et al. (1992). With these 
definitions, the free energy of the classical Coulomb interaction in the Debye-Htickel 
approximation can be written as (see Ebeling et al. 1976) 

< Z 2 FDH : - - ~  < > kBT. (3.6) 

The specific form of the Debye-Hiickel Coulomb free energy used in many as- 
trophysical equations of state is that adopted by Graboske et al. (1969). There, two 
additional effects are taken into account. First, in the sum of Eq. (3.5), the weight 
of partially degenerate electrons is reduced (by a factor involving Fermi integrals), 
and second, a multiplicative correction factor ~- is used as a rough approximation for 
the non-vanishing size of the charged particles (see also Ebeling et al. 1991). The 
Debye-Htickel approximation is basically valid as long as there are still relatively 
many particles in the so-called Debye sphere (with the Debye length as its radius). 

Once the heavy particles are separated out, electrons remain, and they are, of 
course, treated according to quantum mechanics. The quantum mechanical electrons 
interact in two totally different ways. First, being Fermions, electrons obey Pauli's 
exclusion principle, which results in de facto interaction effects (see Sect. 3.4), even 
if their underlying dynamics (i.e., in their Hamiltonian) were assumed to be non- 
interacting. Second, the Coulomb repulsion of the electrons couples them in the 
dynamical equations, making it, formally speaking, impossible to work with the 
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extremely useful one-electron states. In moderate-density astrophysical applications 
(such as the Sun), the dynamical interaction has not been taken into account, but it 
remains to be seen if the high demands of helioseismology will not force us to do so. 
The dynamically interacting electron gas was treated by Gell-Mann and Brueckner 
(1957), Gell-Mann (1957) and Sawada (1957); practical approximative formulae can 
be found in Tanaka et al. (1985), and a general review was given by Ichimaru (1982). 

In the treatment of electrons, we find a bifurcation into two distinct classes of 
approach, the "chemical picture" and the "physical picture" (Krasnikov 1977). While 
in the more conventional chemical picture bound configurations (atoms, ions and 
molecules) are introduced and treated as new and independent species, only funda- 
mental particles (electrons and nuclei) appear in the physical picture. In the chemical 
picture, reactions between the various species occur, and thus the thermodynamical 
equilibrium must be sought among the stoichiometrically allowed set of concentration 
variables by means of a maximum entropy (or minimum free-energy) principle. In 
contrast, the physical picture has the aesthetic advantage that there is no need for a 
minimax principle; the question of bound states is dealt with implicitly through the 
Hamiltonian describing the interaction between the fundamental particles. The differ- 
ent physical assumptions of the two pictures have been the source of considerable 
difficulties in recent comparisons and interpretations (see Rouse 1983; Ebeling et al. 
1985; Dfippen et al. 1987). 

There is an intuitive simplicity in the chemical picture: we usually take the ex- 
istence of atoms in plasmas for granted, at least at densities that are not too high. 
However, this simplicity has to be paid for by additional minimization procedures in 
the multidimensional space of abundances of each species, restricted by the appro- 
priate stoichiometrical relations and by mass and charge conservation. The physical 
idea behind this minimization is simple: the "internal" degrees of freedom, such as 
ionization degrees, are not adjustable by the experimenter; he can control only "ex- 
ternal" parameters, like temperature, density, and mass fractions of each chemical 
element. The thermodynamic equilibrium is then determined as the one configura- 
tion, compared with those having different internal parameters, that minimizes the 
free energy, or equivalently, maximizes entropy. Once this minimum is found, the 
model free energy delivers all thermodynamic quantities in a straightforward way by 
differentiation. 

It should be clear that the advantage of the chemical picture lies in the possibil- 
ity to model complicated plasmas, and to obtain numerically smooth and consistent 
thermodynamical quantities (see Sect. 3.2). Nevertheless, the heuristic method of 
the separation of the atomic-physics problem from that of statistical mechanics is 
not satisfactory, and attempts have been made to avoid the concept of a perturbed 
atom in a plasma altogether, Thus in the physical picture only fundamental particles 
(electrons and nuclei) enter. This has the advantage that the constraints appearing in 
the chemical picture (i.e., mass and charge conservation) are automatically satisfied. 
In the absence of constraints, it becomes possible to use the powerful apparatus of 
the grand-canonical partition function. In the chemical picture, however, this road is 
barred, because the aforementioned constraints are expressed in numbers of particles 
and not in terms of the chemical potentials, the independent variables of the grand- 
canonical partition function. In the physical picture, one can try to build a theory 
of partially ionized plasmas similar to well-known cluster expansions for real gases 
(Rogers 1981; for an introduction into cluster expansions see Huang 1963). We come 
back to the physical picture in more detail in 3.4. 
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3.2 Requirements on an equation of state 

For many astrophysical applications crude recipes for the equation of state are quite 
adequate (e.g. Saha's equation with ground-state partition functions, together with an 
imposed total ionization above certain temperatures and densities). Such formalisms, 
however, do not satisfy thermodynamic consistency, which is expressed by the con- 
dition that the equation of state and the thermodynamical quantities must be derived 
from a single thermodynamical potential. It is evident, for example, that imposing total 
ionization as described above violates thermodynamic consistency. Such inconsisten- 
cies can cause problems in finer applications, such as helioseismology. These formal 
problems are independent of those due to inadequacies in the quality of the description 
of reality. The reason is that in the usual formulation of the stellar pulsation equa- 
tions thermodynamic identities are used several times during the manipulations of the 
hydrodynamical equations. Consider, as an example, how the adiabatic temperature 
gradient enters the derivation of the adiabatic pulsation equations after the substitu- 
tion of pressure perturbations by density perturbations (which are further transformed 
using mass conservation). The adiabatic gradient thus inserted must be consistent 
with the equation of state used in the equation of hydrostatic support. Therefore, the 
equation of state and the thermodynamical quantities have to be at least formally 
consistent. 

From these considerations it is clear that the degree of formal precision required 
of an equation of state strongly depends on the chosen purpose. Equilibrium models 
and adiabatic pulsations need second-order thermodynamic quantities (the terminol- 
ogy refers to derivatives of the free energy or any other equivalent thermodynamic 
potential). Nonadiabatic pulsation calculations have to go one level deeper: third- 
order quantities such as derivatives of the adiabatic gradient or specific heat are also 
required. In a complicated equation of state that comprises many nonideal effects it 
is a highly nontrivial matter to achieve accurate third-order quantities. 

Another aspect regarding the formal precision concerns the interpolation in tables. 
In most concrete stellar models, which are already by themselves quite demanding on 
computing resources, the inclusion of a realistic equation of state as a subprogramme 
would exceed current capabilities. As a consequence, the equation of state (like the 
opacity, for that matter), is precomputed in large tables, from which it is interpolated. 
Such interpolations, however, introduce errors that have to be kept under control (see 
Sect. 4.1.3). 

Formal precision is of course not enough, and perhaps the most transparent solar 
physics application that demonstrates the need for absolute accuracy of the physical 
description is the thermodynamic method to determine the helium abundance of the 
solar convection zone. In the absence of laboratory experiments, comparisons between 
conceptually and technically different formalisms can give a feeling for their absolute 
accuracy. Under very fortunate circumstances, which are the subject of this article, 
there is hope to use astrophysical information to assess the absolute quality of a 
physical model. 

3.3 Equations of state in the chemical picture: free-energy-minimization method 

Most realistic equations of state that have appeared in the last 30 years belong to 
the chemical picture and are based on the free-energy minimization method. This 
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method uses approximate statistical mechanical models (for example the nonrelativis- 
tic electron gas, Debye-H~ckel theory for ionic species, hard-core atoms to simulate 
pressure ionization via configurational terms, quantum mechanical models of atoms in 
perturbed fields, etc.). From these models a macroscopic fi'ee energy is constructed as 
a function of temperature T, volume V, and the concentrations NI, .. �9 Nm of the m 
components of the plasma. The free energy is minimized subject to the stoichiometric 
constraint. The solution of this minimum problem then gives both the equilibrium 
concentrations and, if inserted in the free energy and its derivatives, the equation of 
state and the thermodynamic quantities. 

We note again that this procedure automatically guarantees thermodynamic consis- 
tency. As an example, when the Debye-Hiickel correction (3.6) is taken into account, 
it affects both the pressure and the equilibrium concentration, i.e., the degrees of 
ionization. In contrast, the mere inclusion of the pressure correction would be incon- 
sistent. 

The starting point is Eq. (3.2), and the notion of individual particles (atoms, ions, 
molecules, and electrons) is introduced, despite the plasma environment. Formally, 
with the exception of the classical part (3.3), the species are treated as non-interacting, 
thus allowing a factorization of the total partition function, which in turns causes the 
free energy to be a sum of individual particle contribution. However, although the 
quantum-mechanical part of Eq. (3.2) formally looks non-interacting, various types 
of interactions can be introduced, as long as they are expressed as modifications of 
the individual particles. Such modifications can be given, e.g. by an expression of 
the destruction by the environment of the internal states of bound systems. Another 
possibility is to introduce an energy-level shift for certain (or all) bound states. Since 
plasma spectroscopy cannot constrain absolute energies but only differences, there is 
not much known about these plasma-polarization shifts (see Hummer and Mihalas 
1988). Nevertheless, although spectroscopically only energy-level differences matter, 
in general the thermodynamic quantities depend on a global shift of all energy levels 
(see Jackson and Klein 1969). In other words, thermodynamically it is not the same 
if the ground-state energy is lifted or the continuum is lowered. Notice that such 
modifications of atomic states, occupation probabilities, or energy levels are clearly 
heuristic, analogous perhaps to the introduction e.g. of an effective mass in solid- 
state physics, which allows treating electron-electron interactions in a formally non- 
interacting model. 

3.3.1 The simple Saha equation 

Disregarding the even simpler polytropic relations for the equation of state, the sim- 
plest prescriptions available consist in mixtures of ideal gases with ionization (and 
molecular dissociation) reactions. Since interaction terms are absent, the free-energy- 
minimization method becomes very simple and one obtains the equation of state 

kBpT 
p - , (3.7) 

with # and m~ being the mean molecular mass and the atomic mass unit, respectively. 
The ionization equilibrium (and thus #) is found by the minimum of the free energy; 
the resulting equation for this minimum is, in the language of astrophysicists, the 
Saha equation. We note that in this simple case there is no need to use the free- 
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energy-minimization method, but conceptually it is nice to view it as the trivial part 
of the more realistic models discussed below. For a simple hydrogen plasma (without 
molecules) the Saha equation is 

NH A 3 
NM+ N e- - V exp(-F</kBT)zintema~ ' (3.8a) 

with 

zinternal = Z gi exp ( E { - E 1 )  " ( 3 . 8 b )  

Here, NH, Nm,  and N e are the numbers of hydrogen atoms, protons, and electrons 
in the volume V, respectively, and A - h/~/27rra~kBT is the thermal wavelength of 
electrons; also, Ei is the (negative) energy of the assumed internal states of hydrogen 
atoms and 9i is statistical weight of the states (which are labeled by the index i, with 
i = 0 denoting the ground state). The gi do not contain the factor 2 due to the spin of 
the electrons, because it cancels in the ratio NH / N e . The divergence of the sum in 
Eq. (3.8b) has always plagued the statistical mechanics of partially ionized plasmas, 
but the simplest equations of state avoid the problem by including only the ground 
state. The Saha equation thus becomes 

NH A 3 
NH+N e- - V e x p ( I / h B T )  , (3.9) 

where I = P0 is the (positive) ionization potential of hydrogen. More realistic inter- 
nal partition functions with elaborate cut-off procedures have been developed e.g. for 
opacity calculations (Cox 1965; Huebner 1986). They allow calculations of ionization 
fractions and occupation numbers, at least at not too high densities. Nevertheless, the 
Saha equation suffers from its inability to describe pressure ionization. From physical 
arguments it is clear that atoms must be ionized at very high densities, but, unless 
the temperature gradient is sufficiently steep to keep the factor A 3 / V  in Eq. (3.9) 
small, the Saha equation predicts just the contrary, i.e., an unphysical recombina- 
tion of atoms. In the solar centre, where temperature is not high enough because 
of the subadiabatic temperature gradient beneath the convection zone, it predicts as 
much as 30 per cent of neutral hydrogen. [To understand this, note that the thermal 
wavelength A is of the order of a Bohr radius for the temperature T -- I / k B  (about 
1.6 • 105 K). Also note that the Boltzmann factor e x p ( I / k B T )  is essentially unity at 
high temperatures (i.e., hBT >> I).] 

This Saha recombination is clearly at variance with elementary volume consid- 
erations, from which one concludes that at the densities of 150 g cm 3 of the solar 
centre there is no room for neutral hydrogen atoms, which have (in tightly packed 
configurations) densities of the order of 1 gcm -3. Since the simple equations of state 
considered here know nothing about the radius of the hydrogen atom, their predicted 
recombination is, in this approximation, a legitimate quantum-mechanical effect. In 
the absence of an effective interaction term between "extended" particles (i.e., all 
particles except electrons and nuclei), the recombination is caused by two quantum 
effects of the free electrons which work in the same direction. The first effect is only 
a consequence of the quantum nature of the electron gas (i.e., it does not depend on 
the statistics of the free electrons; note however that the nature of the bound states 
very much depends on the statistics of the electrons). The reason for this quantum 
recombination is that if the sum of cubes of the thermal wavelengths NA 3 exceeds the 
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available total volume V, the electrons effectively become quantum correlated, which 
drastically reduces their entropy. The entropy maximum principle, on which Eq. (3.8) 
is based, responds by reducing the number of free electrons. A second quantum 
effect, this time based on the Fermi-Dirac statistics of the electrons, reinforces the 
recombination. The reason is that at higher densities the continuum states of the 
electrons become less accessible. This is due to a smaller density of electronic states 
per energy interval at higher densities (one should think of the problem of electrons 
in a box, and note how the discrete energy spectrum gets wider-spaced the smaller 
the box is). The rest is done by the Pauli principle: at high densities it causes a piling 
up to such high continuum energies that the system finally responds with favouring 
atomic recombination as the lesser evil. 

Of course, both these recombinations do not occur in nature because there are 
"hard-core" interactions between extended particles that prevent them by forcing the 
so-called "pressure ionization". Pressure ionization can only be modelled by non-ideal 
equations of state that treat interactions between extended species and the surroundings 
(see Sect. 3.3.3). 

3.3.2 The EFF and CEFF equations of state 

Eggleton et al. (1973) developed a simple equation of state (EFF) that is formally 
consistent and includes an ad hoc pressure ionization device that works at least qual- 
itatively correctly. The device is not based on a physical model (e.g. a description 
of an atom and its surrounding particles), but is imposed by forcing the anticipated 
result, i.e., full ionization at high densities. In addition, the EFF equation of state 
incorporates a correct treatment of the partially degenerate electrons according to 
Fermi-Dirac statistics. Bound systems (atoms and ions) are always assumed to be in 
their ground state; the ground-state energy is constant and equal to the free-particle 
value. 

Despite the lack of a physical foundation of its pressure ionization device, the 
EFF equation of state is nonetheless useful because of its thermodynamic consis- 
tency. Compared to simple prescriptions, like those imposing full ionization above an 
empirically determined temperature (such procedures can still be found in some of 
the current programmes of stellar evolution), the EFF equation of state is better suited 
for stellar pulsation applications, and has, for example, been successfully employed 
in many solar models (e.g. Christensen-Dalsgaard 1982). In addition, the relative sim- 
plicity of the EFF formalism allows accurate numerical computation of higher-order 
thermodynamical derivatives in a way that can be put directly into the programmes 
of stellar evolution, without interpolation of pre-tabulated results. Furthermore, the 
manifestation of pressure ionization in stellar structure can be discussed with the help 
of the parameters that fix the actual location of the EFF pressure ionization zone. 
By varying these parameters one might get some indication about the sensitivity of 
stellar and solar models on the precise nature of pressure ionization, as suggested by 
Bahcall and Ulrich (1988). 

On the negative side of the EFF equation of state, we mention its principal limi- 
tations, given by the absence of: 1) a physical mechanism for pressure ionization, 2) 
excited states in the bound systems, 3) a treatment of hydrogen molecules (important 
for low-mass stars; see e.g. Lebreton and D~ippen 1988), and 4) the Coulomb-pressure 
correction. Another potential problem is the fact that at low temperatures and high 
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densities pseudo phase-transitions appear in the EFF equation of state, resulting in 
multivalued state functions (see Christensen-Dalsgaard 1978). This behaviour does 
not occur under solar conditions; however, it has been noted by VandenBerg (private 
communication) that it causes problems in computations of low-mass stars, where 
the density is substantially higher than in the Sun at given temperature. It should in 
principle be repaired with Maxwell constructions, analogous to that applied to the 
Van-der-Waals equation of state. We note that a similar behaviour, at roughly compa- 
rable conditions, has been noted by Ebeling (1990) for a more realistic treatment of 
pressure ionization. The more sophisticated equations of state discussed in the follow- 
ing have not yet been examined with respect to possible phase transitions (artificial 
or physical). However, if for a given model it cannot be rigorously proved that there 
are no multi-valued state functions, it is certainly wise to be on the alert for this 
possibility. 

To overcome the lack of a Coulomb term in the EFF equation of state, the present 
authors have added a Coulomb configurational term in the Debye-Htickel approxima- 
tion (3.6) (taken from the MHD equation of state, which is presented in Sect. 3.3.4). 
Such an upgrade of the EFF equation of state was motivated by the fact that adding a 
Coulomb term to the EFF equation of state makes a significant contribution towards a 
more realistic equation of state (see Sect. 3.5). Of course the remaining disadvantages 
of the EFF equation of state still point to the need of more complete formalisms (see 
below). However, the successful application of the CEFF equation of state to solar 
physics (Christensen-Dalsgaard 1991b; see also Sect. 4.3) makes it very well suited 
as a reference equation of state. 

3.3.3 The confined-atom and static-screened Coulomb potential (SSCP) 

In the confined-atom model, the Coulomb potential outside a sphere of radius Ri is 
replaced by an infinitely high potential wall (this is equivalent to a zero boundary 
condition of the wave function at Rd.  The value of R~ is chosen as a function of the 
volume available for a given bound species. For R~ < cx~, all bound-state energies are 
lifted from their unperturbed values and the number of bound states becomes finite. 
With decreasing Ri, the higher states are gradually spilled over into the continuum. 
The confined-atom model thus provides an automatic cut-off for the otherwise diver- 
gent internal partition functions [e.g. in Eq. (3.8)]. However, the spilling-over causes 
jumps in the internal partition functions when the "external" parameters continuously 
vary; these jumps would lead to singularities in the thermodynamic derivatives. Ap- 
propriate smoothing of the internal partition function is therefore necessary. Such a 
smoothing can be done, for instance, with weighted sums (see Sect. 3.3.4). 

While physically the confined-atom model is certainly not very realistic, it has 
some formal advantages. For instance, it can describe pressure ionization at cold 
temperature without the presence of initial or "seed" electrons. Such "starters" are 
often required in other approaches, such as the static-screened Coulomb potential 
(SSCP). The static-screened Coulomb potential is a Yukawa potential in which the 
Debye length AD [cf. Eq. (3.4)] serves as the screening radius. The problem with 
the SSCP is that the infinite-range Coulomb potential is only screened by ionized 
surroundings. However, at sufficiently cold temperatures, there are no such ionized 
surroundings, and they therefore have to be provided artificially, for instance by adding 
alkali-type "donor" metals. Without such starters, the free energy is always equal to 
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minus infinity for a completely unionized system. This provides a spurious solution, 
which makes the search for other (local) minima difficult, especially if they lie close 
to the spurious one. In contrast to this, the confined-atom model needs no charged 
background for pressure ionization (see D~ppen 1980). 

As mentioned in Sect. 3.3, formalisms based on the confined-atom or the SSCP 
models suffer from the ambiguity in choosing either a fixed ground-state energy for 
all parameters ()~D or Rj), which effectively means a lowering of the continuum, 
or leaving the continuum fixed, which causes an increase of the ground-state energy 
(and thus tl?e internal energy) of each species. Jackson and Klein (1969) discussed 
this ambiguity in the case of the SSCP and concluded, from consistency arguments 
correct to first order in the inverse Debye length, that it makes more sense to lower the 
continuum than lifting the ground-state energy. However, even then problems remain. 
First, the relative energy-level shifts predicted by the SSCP are by about one order 
of magnitude too large when compared with spectroscopic observations (Wiese et al. 
1972; see also Hummer and Mihalas 1988). Secondly, a lowering of the continuum 
cannot be defined in the case of more than one species, because physically there can 
be only one continuum. 

If the confined-atom model is realized with an added Coulomb configurational term 
and partially degenerate electrons (Fontaine et al. 1977; D~ppen 1980), an equation of 
state results that is equipped with a very powerful pressure ionization mechanism, es- 
pecially at cool and moderate temperatures. However, since atoms are only destroyed 
by extended particles, and not by charged particles, the ionization fraction predicted 
by the confined atom model is clearly too low in hot, strongly ionized plasmas. 

On the other hand, as we have mentioned above (Sect. 3.3.1), the Saha recom- 
bination in hot dense regions is a legitimate quantum mechanical effect, subject to 
availability of excluded volume. A convincing model that predicts the precise amount 
of ionization above that minimum requirement has still to be found. The full ioniza- 
tion that results from the MHD equation of state is, in this sense, merely the other 
extreme, and it remains to be shown where, between these extreme cases, reality lies. 
Of course, in the solar centre, there is no room for neutral hydrogen, but a significant 
fraction of He + ions could easily survive, first because they occupy a factor of 8 less 
volume (estimated with the Bohr radius), and second because the number abundance 
of helium is still less than half that of hydrogen, despite the creation of helium by 
nuclear fusion. Detailed calculations with the confined-atom model predict a ratio 
of He + over He ++ of about 0.30. Of course this is merely an upper bound. Other 
mechanisms are also at work to destroy the He + ions, and it is possible that helium 
is virtually fully ionized in the solar centre. For instance, the MHD equation of state 
(Sect. 3.3.4) predicts full ionization. Since there is so far no rigorous result (or con- 
vincing argument) that would prove such a complete ionization, it is certainly useful 
to have, in the form of the confined-atom model, an equation of state that predicts 
the maximum recombination allowed by extended volume considerations, especially, 
because there are indications that deep-core helioseismology could address this issue 
of 'residual' He + ions (see Sect. 4.4). 

3.3.4 The MHD equation of state 

In the chemical picture, perturbed atoms must be introduced on a more-or-less ad-hoc 
basis to avoid the familiar divergence of internal partition functions (see, for example, 
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Ebeling et al. 1976). In other words, the approximation of unperturbed atoms precludes 
the application of standard statistical mechanics, i.e., the attribution of a Boltzmann 
factor to each atomic state. The conventional remedy of the chemical picture against 
this is a modification of the atomic states, e.g. by cutting off the highly excited states 
depending on the density and temperature of the plasma. Such cut-offs, however, 
have in general dire consequences due to the discrete nature of the atomic spectram, 
leading to jumps in the number of excited states and thus in the partition functions 
and in the free energy when the external parameters (temperature and density) are 
varied smoothly. 

Mihalas etal .  (Hummer and Mihalas 1988; Mihalas et al. 1988; Dfippen et al. 
1988) have developed a new treatment of the equation of state (hereafter MHD), 
which is part of the "Opacity Project" (see Seaton 1987). The MHD equation of 
state avoids the discontinuities in the free energy by introducing "soft" cut-offs in 
the form of occupational probabilities. These occupation probabilities have the same 
function as the "hard" cut-offs mentioned above. The occupational probabilities of 
a state simulate a result from quantum mechanics, denoting the fraction of atoms 
where the state can exist. Only then, these "available" states are populated accord- 
ing to statistical mechanics. It is clear that such an approach is largely intuitive. 
However, its advantage is that complicated plasmas can be modelled, with detailed 
internal partition functions for a large number of atomic, ionic, and molecular species. 
Also, full thermodynamic consistency is assured by analytical expressions of the free 
energy and its first- and second-order derivatives. This not only allows an ef~cient 
Newton-Raphson minimization, but, in addition, the ensuing thermodynamic quan- 
tities are of analytical precision and can therefore be differentiated once more, this 
time numerically. Reliable third-order thermodynamic quantities are thus calculated. 

In the MHD occupation probabilities, perturbations by charged and neutral parti- 
cles are taken into account. Correlations between the two effects are neglected (for 
lack of knowing how to describe them); thus the occupation probabilities due to 
charged and neutral perturbers are simply multiplied. Specifically, the perturbations 
are described by an occupation probability w~ for each energy level in the sum over 
internal states in Eq. (3.8b), which is generalized to the multicomponent plasma and 
renormalized so that the energies of the excited states are measured with respect to 
the ground state. No energy-level shifts whatsoever are assumed. This decision was 
due to the fundamental uncertainty in deciding otherwise, and is based on some the- 
oretical and observational circumstantial evidence (see Sect. 3.3.3 and Hummer and 
Mihalas 1988). Furthermgre, in the alternative physical picture (see Sect. 3.4), it turns 
out that there are no energy-level shifts. 

The resulting weighted internal partition functions [see Eq. (3.8b)] Zi~ tem~l of 
species s are (with is labelling the state i of species s) 

z i 2  ternal ---- ~ Wisgis exp -- . (3.10) 
i 

The coefficients wi~ take into account charged and neutral surrounding particles. In 
physical terms, w~.~ gives the fraction of all particles of species s that can exist in state 
i with an electron bound to the atom or ion, and l - w~ gives the fraction of those that 
are so heavily perturbed by nearby neighbours that the state is effectively destroyed. 
Perturbations by neutral particles are based on an excluded-volume treatment and 
perturbations by charges are calculated from a fit to a quantuna-mechanical Stark- 
ionization theory. Hummer and Mihalas's (1988) choice has been 
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( 4 7 r )  { ~  I(Zs + 1)e2] 3r~hT 7, 3/2 } (3.11) 
l n w i s  = - ~ N~,(ri8 + Vlu) 3 + 16 ----1~2 / ~  ~'~--c~ " 

Here, the index L, runs over neutral particles, the index c~ runs over charged ions 
(except electrons), r~  is the radius assigned to a particle in state i of species s, 
Xi~ is the (positive) binding energy of such a particle, hi8 is a quantum-mechanical 
correction, and Zs is the net charge of a particle of species s. Note that in wi~ ~ , ~ 6  
for large principal quantum numbers n (of state i), and hence provides a density- 
dependent cut-off for ,.~internal A first comparison of these occupation probabilities 

- - S  

with experiment has been made: D~ippen et al. (1987) have used them to simulate 
the radiation from a precision plasma experiment (Wiese et al. 1972). Though the 
agreement is good, it serves only as a necessary condition (see D~ippen et al. 1987), 
and other equations of state (realized both in the chemical and physical picture) have 
succeeded in equally good agreements (Seaton 1990; Iglesias and Rogers 1992). 

Apart from formal thermodynamic consistency, the MHD equation of state also 
achieves some degree of statistical mechanical consistency (Hummer and Mihalas 
1988). Statistical mechanical consistency refers to the more subtle requirement that 
each time a bound configuration (like an atom) is modified by its surroundings in the 
plasma, then the relevant force has to be described in the physical description of the 
surroundings as well. To be more specific, consider as an example the EFF equation of 
state: this is thermodynamically consistent, but not statistical mechanically consistent, 
because atoms are pressure ionized by an ad-hoc mechanism which does not have its 
counterpart in the free particles. 

The MHD equation of state is a computational heavy-weight. Unless drastically 
simplified to a small number of atomic and ionic species, it has to be used in the 
form of tables. A tape with first results is already available (Mihalas et al. 1988). 
Furthermore, Lebreton and D~ippen (1988) have developed programmes that can au- 
tomatically create tables that are centered around the temperatures and densities of 
stellar interiors. These table-creating programmes can also handle the changes in 
chemical composition during the main-sequence evolution of stars. As we have men- 
tioned above, the smoothness of the MHD formalism allows tabulation of third-order 
thermodynamic quantities. Furthermore, by tabulating the results from EFF - or, as is 
done in Sect. 4.1.3, CEFF - in the same way as those of MHD, and by comparing the 
models that use the interpolated EFF results with the models that call EFF directly 
(Christensen-Dalsgaard et al. 1988b; Lebreton and D~ippen 1988), we can control the 
precision of the interpolation process and adjust the necessary fineness of the tables. 
Sect. 4.1.3 below presents the analogous test for the tables used in the present work. 

Before leaving the MHD equation of state we add just one general remark. Though 
the MHD formalism was developed for stellar envelopes, there is no problem in 
applying it to interiors. Though one is leaving the domain for which MHD was 
originally conceived, the physical ingredients are, even at these high densities, quite 
the same as the ones conventionally used in models of stellar interiors. Only theories 
that treat higher-order correlations in plasmas seriously would distinctly go beyond 
the assumptions of MHD under these conditions. Such theories still await application 
in the context of stellar interiors, and in order to extend them to the low-density 
regime, special care will have to be given to overall consistency. 



304 J. Christensen-Dalsgaard and W. Dfippen 

3.4 Equations o f  state in the physical picture 

There is an impressive body of literature on the physical picture. Important sources 
of information with many references are the books by Ebeling et al. (1976), Kraeft 
et al. (1986), Ebeling et al. (1991). However, the majority of work on the physical 
picture was not dedicated to the problem of obtaining a high precision equation of 
state for stellar interiors. Such an attempt was made for the first time by a group at 
Livermore as part of an opacity project (Rogers 1986; Iglesias et al. 1987). 

The Livermore group uses a many-body activity expansion of the grand canonical 
partition function (Rogers 1981). To explain the advantages of this approach for 
partially ionized plasmas it is instructive first to discuss the activity expansion for 
gaseous hydrogen. The interactions in this case are all short ranged and the pressure 
is determined from a self-consistent solution of the equations (Hill 1960) 

P - z + z252 + z3b3 + . . .  , (3.12) 
k B T  

z (0p  
p = \ N j ,  (3.13) 

where z= A -3 exp(i.zi/lvBT) is the activity, A the thermal (de Broglie) wavelength 
of electrons [see Eq. (3.8)], #i the chemical potential and T the temperature. The 
b,~ are cluster coefficients such that b2 includes all two particle states, b3 includes all 
three particle states, etc. More specifically, the second cluster coefficient for hydrogen 
includes the formation of H2 molecules as well as the scattering states of the H atoms. 
The states of the H-H system are of different type according to the configurations of 
the electrons. Molecules are always in the singlet state, with total electron spin S = 0, 
and the lowest symmetrical orbital wave function, the 1~  9 bonding orbital. In this 
configuration, the interaction between the H atoms is described by the attractive 1Z~ 
bonding potential. The scattering states of the H atoms are either singlet states, with 
sufficient kinetic energy of tile H atoms so that they are in the continuum of the 1Z 9 
bonding potential. Or, they belong to the triplet states (total electron spin S = 1), for 
which even the lowest orbital (the 3Z u antisymmetric orbital) leads to a repulsive 3S~ 
antibonding potential, which, of course, has only scattering states of the H-H system. 
Or, they belong to excited electronic states (singlet and triplet), which are never 
bound, either. 

As a consequence, the second cluster coefficient for hydrogen includes the forma- 
tion of H2 molecules, the scattering states in the 1Zg potential, in the 3 r~  potential, 
and in the potentials of all excited electronic states. The third cluster coefficient 
includes H3 bound states, H - H2 and H - H - H scattering states. Eq. (3.12) demon- 
strates that the equation of state for reacting gases can be obtained without an explicit 
knowledge of the occupation numbers of the internal states of the composite particles. 

For low-density gases the bound-state contributions to the b,~ can be important 
at low temperature while the scattering contributions are too small to matter. Strict 
application of Eq. (3.12) would contain a large amount of unimportant information 
which is very hard to calculate. Consequently it is necessary to reorganize Eq. (3.12) 
such that the bound-state terms from each b,~ are a'eated as being of the same order 
as the ideal gas term, i.e., of order z. Terms of order z in the physical picture are 
roughly equivalent to what in the chemical picture is called the Saha equation. Similar 
reorganization of terms involving scattering from composite particles is also required. 
Assuming that H2 molecules are the only bound complex to form, Eq. (3.12) becomes 
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P 2 s * 2 * 
- zH + zH2 + zHb2 + 2ZHzH2b3 + zH2b4 + . . .  , (3.14) 

k B T  

and Eq. (3.13) is replaced by the conditions 

P " =  ' P " 2 - -  ' 

= z2b  b is the activity for molecules and the superscripts b and s refer to where ZH2 H 2 

bound and scattering parts of b2, b~ is the part of b3 involving scattering of H from 
H2, and b~ is the part of/)4 involving scattering of H2 from H2. 

In the case of partially ionized plasmas very similar steps are required, except that 
now even Eq. (3.12) must involve at least two species (nuclei and electrons) to assure 
electrical neutrality. In addition, due to the long range of the Coulomb potential each 
of the bn is composed of a number of divergent terms, some of which are fictitious 
and some of which are real. 

An example of real divergence is afforded by the classical ring diagrams occur- 
ring in each b,~ (Mayer 1950). They are individually divergent but the many-body 
correlations introduced by summing over the b,~ yields the Debye-Htickel correction 
[see Eq. (3.6)]. This type of divergence occurs even for an electron gas in a neutraliz- 
ing background for which there are no bound states. Although the original equations 
involved only even powers in the activity [see Eq. (3.14)], as a result of many-body 
Coulomb correlations, the Debye-Htickel term appears in the power of z 3/2 in the 
activity (also in density). 

An important example of a fictitious divergence is that associated with the atomic 
partition function. This divergence is fictitious in the sense that the bound-state part of 
b2 is divergent but the scattering state part, which is omitted in the Saba approach, has 
a compensating divergence. Consequently the total b2 does not contain a divergence 
of this type (Ebeling et al. 1976; Rogers 1977). A major advantage of the physical 
picture is that it incorporates this compensation at the outset. A further advantage is 
that no assumptions about energy-level shifts have to be made (see Sect. 3.3.3); it 
follows from the formalism that there are none. 

As a result, the Boltzmann sum appearing in the atomic (ionic) free energy is 
replaced with the so-called Planck-Larkin partition function (PLPF), given by (Ebeling 
et al. 1976; Kraeft et al. 1986) 

PLPF = Z ( 2 I  + 1) exp 1 + . (3.16) 

The PLPF is convergent without additional cut-off criteria as are required in the 
chemical picture. We stress, however, that despite its name the PLPF is not a partition 
function, but merely an auxiliary term in a virial coefficient (see, for example, Dfippen 
et al. 1987). 

The power of the activity expansion method, arising in the physical picture, lies 
in the fact it produces expressions for thermodynamic quantities that systematically 
take account of density corrections without the introduction of models or cut-off 
mechanisms. 

An important feature of the PLPF is that it picks out the states that are highly 
occupied. In a perturbation sense it corresponds to that part of the occupation of the 
allowed states that is large enough to be treated as a new variable when the plasma 
reorganization equivalent to Eq. (3.14) is carried out. Some residual effects of the 
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discreteness of high-lying states appear in correction terms of order z 2 that are the 
next higher corrections beyond Debye-H~ckel. This additional occupation of high- 
lying states is important for frequency-dependent opacities and must be added to the 
PLPF occupation numbers when opacities are calculated (Rogers 1986). 

3.5 Comparison of results from the chemical and physical picture 

So far there are no laboratory experiments that could distinguish between equations 
of state in the chemical and physical picture. One of the purposes of this article is 
to show that solar oscillations are precise enough to become an astrophysical test. 
However, at the moment, detailed and precise comparisons of theoretical results from 
both formalisms are probably the best way to learn about their strong and weak points. 
Also, from comparisons between totally independent formalisms, solar physicists will 
obtain an idea of the basic uncertainty in the equation of state. 

In the following, we discuss what so far has been emerged from such compar- 
isons. While earlier comparisons showed a striking agreement between the MHD and 
Livermore equation of state for conditions as found in the hydrogen-helium ioniza- 
tion zones of the Sun (D~ippen et al. 1990; D~ippen 1990), it turned out later that 
this agreement was nearly accidental. Of course, solar physicists were happy that 
two completely different formalisms delivered the same equation of state, but, by the 
same token, a first attempt to use the Sun as a test was also thwarted. Nevertheless, 
from these first comparisons the practically useful simple CEFF equation of state 
has resulted (see Sect. 3.3.2). Recently, these comparisons have been extended to 
higher densities, and also beyond the simple hydrogen-helium mixtures, by including 
a representative heavy element (see D~ippen 1992). In the following, we briefly show 
and discuss the results of these comparisons. The equations of state participating in 
these comparisons are the EFF, CEFF and MHD equation of state all realized in the 
chemical picture, and the Livermore equation of state, realized in the physical picture. 

3,5.1 Early low-density H-He comparisons 

For convenience, a representative result from D~ippen et al. (1990) is shown in Fig. 5, 
which compares MHD and Livermore with the simple EFF equation of state. The 
absolute curves in Fig. 5a are merely able to show the difference between MHD (or 
Livermore) and EFF results. The difference between the MHD and Eivermore results 
is only visible in the magnified Fig. 5b, which shows the relative differences between 
MHD and EFF, and between Livermore and EFF values. This relative plot not only 
now allows to see the difference between MHD and Livermore results clearly, but 
also to realize their striking similarity. 

By varying the parameters of the MHD equation of state (see D~ippen 1990), the 
physical reason of this agreement was found to be that on the chosen isochore, all 
thermodynamical quantities are mainly dominated by the Coulomb correction. This 
correction overshadows the effect of the excited states (which are of course treated 
differently in the MHD and Livermore approach). However, note that there are two 
contributions due to the Coulomb term: one associated with the free energy [cf. Eq. 
(3.6)] of the Debye-Htickel term itself, the other with the Coulomb-term induced shift 
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Fig.5a,b. Comparison of the logarithmic pressure derivative XT = (Olnp/OlnT)p on an isochore 
with p = 10 5.5 g c m - 3  a Absolute values; the solid line represents EFF and the dashed line MHD. The 
chemical composition consists of hydrogen and helium only, with number abundances of 90 per cent H and 
10 per cent He. The Livermore result would be indistinguishable from the MHD curve. Panel b magnifies the 
effect by showing the relative differences between Livermore and EFF values, i.e., \ X T  ( Livermore _ ) C  TEFF~/j/XTEIF 

(dotted line) and between MHD and EFF values, i.e., ( • M H D  E F F , -  EFF XT )/Xr (dashed line). The solid line 
indicates the zero level. Other thermodynamic quantities show essentially the same behaviour. (Adapted 
from Dfippen et al. 1990) 

in the ionizat ion equi l ibr ium which plays ml important  role  in the deviat ion o f  the 
the rmodynamica l  quantit ies fi 'om the unperturbed E F F  result. 

The  resul t ing vir tually perfect  low-dens i ty  agreement  was by no means  expected~ 
and even  when  it turned out that it was essential ly due to the Cou lomb  interaction 
(contained both in the M H D  and L ive rmore  equat ions o f  state), it is still somewhat  
myster ious.  At  the selected temperature  and density, the number  of  exci ted states in 
the M H D  formal ism,  when  compared  with the admit tedly large Bol tzmann  weight  of  
the ground state, wou ld  predict  a s izeable shift in the ionizat ion balance,  at least of  
the same order of  magni tude  than that due to the Cou lomb  pressure. The implic i t  can- 
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cellation of the contribution of the partition functions in the thermodynamic quantities 
is therefore perhaps accidental, and it is currently being investigated. 

3.5.2 Present comparisons 

While the rather striking agreement shown above is important for solar physics, it 
also follows that the hydrogen-helium ionization zones of the Sun cannot be used 
as an observational test that could discriminate between the MHD and Livermore 
equations of state. In contrast, solar oscillations clearly distinguish between the MHD 
and EFF equation of state, as shown by Christensen-Dalsgaard et al. (1988b). The 
result is confirmed by the comparisons presented in Sect. 4.3 (although there, strictly 
speaking, the comparison is made between the EFF and CEFF equation of state). 
Looking for testable manifestations of the influence of internal partition functions, 
the comparison were extended to higher densities and, for the first time, beyond 
H-He mixtures. 

Intermediate- and high-density H-He comparisons. Fig. 6 shows results analogous to 
those in Fig. 5 for an intermediate-density (p = 0.1 g cm 3) and a higher-density 
(p = 1.0gcm -3) isochore. However, here F1 is shown, and CEFF (see Sect. 3.3.2) 
has replaced EFF as the reference. There is good agreement for solar conditions, that 
is for temperatures such as found in the Sun at these densities. However, the Sun 
just marginally passes: for slightly less massive stars, the temperature is lower at the 
densities considered, and the discrepancy soon becomes very important indeed. 

A first case involving a heavy element (oxygen). The first comparison involving a 
representative heavy element was made for a H, He, and O mixture. The density 
has been chosen as p = 0.005 g cm 3, suggested from a study on the solar helium 
abundance (Kosovichev et al. 1992). Figure 7 shows the result for F1. Here, the large 
MHD partition functions not only cause shifts in the ionization balance but also a 
propagation of these shifts into thermodynamic quantities. Despite their small relative 
number in the mixture, the heavy elements cause a distinct discrepancy, which appears 
to be within reach of helioseismology (D~ippen 1992). To examine the MHD ionization 
fractions, a single case was examined (T = 2.10 • 105 K, p = 5.00 • 10 -3 g cm-3), once 
with the full MHD equation of state, once with a "stripped-down" version of MHD, 
called MHD(S), which does not contain any excited states (but is otherwise identical). 
The resulting ionization fractions of O 3+, O 4+, 05+ were, respectively, 0.314, 0.248, 
0.364 for the stripped-down MHD (without excited states), and 0.304, 0.476, 0.182 
for the full MHD. (The result for the stripped-down very closely reflects the ground- 
state weights of the ions). Not unexpectedly in view of the Planck-Larkin partition 
function, the Livermore equation of state predicts ionization fractions close to those 
of the stripped-down MHD equation of state (Rogers, private communication). 

This comparison for the first time establishes a clear case of disagreement between 
the MHD and Livermore results. Clearly, the origin of the discrepancy in the ionization 
degrees is due to the treatment of the excited states. Of course, only some 2 per cent 
of the matter in the Sun consist of elements heavier that H and He, and therefore the 
signature of the MHD-Livermore discrepancy on thermodynamic quantities (Fig. 7) 
is small (of the order of 10-3). Nevertheless, as will be demonstrated in the next 
section, the resulting sound-speed differences are within reach of a helioseismological 
diagnosis. 
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Fig. 6a,b. Adiabatic gradient /'1 for the mixture of Fig. 5. The solid line denotes the CEFF, the dashed 
the MHD, and the dotted the Livermore equation of state. In part a, density is p = 0.1 g c m  -3  , in b 
p = 1 0 g c m  3 

4. T he  e q u a t i o n  of  state and  the  so lar  inter ior  

In the previous sections we discussed aspects of solar structure and oscillations, and of 
the physical properties of the gas in the solar interior. Here we investigate the extent 
to which the treatment of the equation of state affects the properties of the models 
and their frequencies, and consider the prospects for using helioseismic observations 
to study the physics of the gas. 

As discussed in Sect. 2.1.2, the convection zone is particularly suitable for such 
analysis, in that its properties do not depend directly on the opacity, except for a 
thin region very near the solar surface. The bulk of the convection zone is essentially 
adiabatically stratified; hence its structure and the frequencies of modes trapped within 
it are largely determined by the (constant) value of the specific entropy which defines 
the adiabat, by the chemical composition and by the equation of state. Therefore, 
in most of this section we concentrate on models of the outer part of the Sun. Such 
models can conveniently be computed as envelope models with the proper solar radius 
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Fig.7a,b, Comparison of FI for a mixture involving a representative heavy element. Density is p = 
5.00 • 10 -3  g c m  -3,  and the chemical composition is a representative solar mixture of H, He, and O, 
with mass abundances of 0.7429, 0.2371, 0.0200, respectively, a absolute values; b relative differences 
(FLi . . . . . . . .  FCEFF)/T1CEFF and (~1 MHD F1CEFF)/T1CEFF, with respect to the CEFF equation of state. 
The line styles are the same as in Fig. 6; in panel b the solid line therefore indicates the zero level 

and luminosity, thus bypassing the complications of the nuclear energy generation and 
evolution of the Sun. 

Effects of the equation of state in the solar core are potentially very interesting, 
although difficult to isolate. To study them evidently requires complete solar models; 
also, it follows from the discussion in Sect. 2.2.3 that amongst the five-minute oscilla- 
tions only those of low degree probe the core. In Sect. 4.4 we briefly discuss possible 
departures from the conventional assumption of complete ionization in the core, mo- 
tivated by a comparison between observed and computed properties of low-degree 
p modes. 
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4.1 Techniques for the analysis 

4.1.1 Comparisons of equation of state, models and frequencies 

The basic goal is to study the effects of using different equations of state. This 
is analyzed in several different steps. The simplest comparison is between various 
quantities, evaluated with different equations of state at the conditions corresponding 
to a given solar model; this is a natural extension of the results presented in Sect. 
3, where differences between various quantities, evaluated at fixed temperature T 
on different isochores, were presented as functions of T. The direct analogue is to 
consider conditions at given density and temperature, defined by the structure of a 
specific model. In this way we can investigate the immediate result of modifying the 
physics of the equation of state. Here we consider differences between pressure and 
adiabatic exponent El. It should be recalled, however, that the hydrostatic structure of 
the model, and the frequencies of adiabatic oscillation, are given in terms of pressure 
and density (cf. Sect. 2.2.2); it might be noted also that in Eqs. (2.9) - (2.12) the 
changes to the model resulting from a change in physics were expressed naturally in 
terms of the intrinsic change (61nF~) (i) in El at fixed (p,p). This suggests that it is 
of interest to consider changes in the thermodynamic properties, particularly/"1, also 
at fixed (p, p). We note that the two types of differences are related through 

( 6P1~ = ( (5P l )  ( 0 1 n f f l ~  ( ~ _ )  . (4.1) 
+ \O-5- -nTJp ' 

here subscripts "(p, p)" and "(p, T)" denote differences at fixed (p, p) and (p, T). Also, 
it is obvious that there is the identity 

\OlnTJp(~)(p,p) (4.2) 

between the change in pressure at fixed (p, T) and the change in temperature at 
fixed (p, p). To indicate the properties of these relations, Fig. 8 shows the quantities 
(OlnF1/OlnT)p and (Olnp/OlnT)p, for Model C1 (cf. Table 1 below), computed 
with the CEFF equation of state. 

Of more direct relevance are the differences between the structure of two models 
that only differ in the assumed equation of state, and between the frequencies of such 
models. A convenient (although by no means unique) method of analyzing the model 
differences is to consider differences at fixed fractional radius. In particular, we note 
that they are related to the frequency differences through the asymptotic relations 
(2.37) and (2.38). 

From an observational point of view, the most important quantities are the com- 
puted frequencies. For each of the models considered we have computed frequencies 
for extensive sets of p modes; since the analysis is based on envelope models, only 
modes of degree in excess of 20 were included. When considering frequency differ- 
ences, one should take into account the fact that with increasing rt the modes extend 
over a smaller fraction of the solar mass, and hence their frequencies are easier to 
perturb. As a result, frequency differences caused by perturbations near the solar 
surface generally increase in magnitude with increasing l, because of the resulting 
increase in ft. Using a perturbation analysis of the exact oscillation equations for 
modifications to the model or the physics of the oscillations (Christensen-Dalsgaard 
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to temperature T at fixed density p, for the CEFF equation of state. They have been evaluated at the 
conditions (p, T) defined by the envelope Model C1 (cf. Table 1 below). The lower abscissa shows logT,  
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1988a; Christensen-Dalsgaard and Berthomieu 1991), one can show that the principal 
/-dependent part of the frequency differences is inversely proportional to the mode 
inertia E~z defined in Eq. (2.25). Since Ent depends strongly on frequency, it is more 
convenient to replace it by the scale factor Q~l, defined by 

Enl 
Qnl = /)tel(Writ) ' (4.3) 

where /~ref(C~) is the value of Ent at a reference degree 1 = lref, interpolated to the 
frequency a3. Roughly speaking, the scaled frequency differences Qnz&J~l measure 
the effect of that part of the modification which is confined to the region where the 
actual mode is trapped, on a mode of low degree lre f with the same frequency. When 
considering complete models it is natural to take lref = 0; in the present case, where 
most of the results are based on envelope models, we have used instead /re f = 20. 
This makes very little difference, however. 

As argued in Sect. 2.2.3, the behaviour of the oscillations near the surface depends 
on frequency but not on l. Thus, if the modification is confined close to the surface 
its effect on the frequency, when corrected for the/-dependence of the mode inertia, 
is a function of frequency alone; so therefore is Q~z&J~z. The condition for this to 
be true is that the extent of the region over which the modification is significant is 
much smaller than the depth of penetration of the modes considered. It follows that 
if Q~16co~z does depend on l for a set of modes, the change in the model extends 
at least to the lower turning point of those modes. Furthermore, it was mentioned in 
Sect. 2.2.2 that with decreasing frequency the mode amplitude very near the surface, 
relative to the amplitude in the interior, decreases, and the mode inertia increases. 
As a result, low-frequency modes are relatively insensitive to modifications that are 
confined to the superficial layers of the model. It follows from this analysis that 
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the currently unavoidable errors near the surface of the model might be expected to 
introduce scaled frequency errors that are essentially independent of I and small at 
low frequency. Frequency errors that do not have these properties therefore indicate 
errors in the bulk of the model. 

This behaviour of the frequency differences is also contained in the asymptotic 
expression (2.37). Indeed, the scaling S in that equation is closely related to Qnz intro- 
duced in Eq. (4.3) (Christensen-Dalsgaard 1991b). Furthermore, Eq. (2.37) shows that 
asymptotically Stco/co should be separable into a function of coil  and a function of 
co. It was shown by Christensen-Dalsgaard et al. (1989) how this separation could be 
accomplished by a least-squares fit of S&o/w to an expression of this form, where Ht 
and H2 were represented as cubic splines. Here, roughly speaking, H~ is determined 
by the sound-speed difference 5c/c in the interior of the Sun; as discussed in Sect. 
2.3.2, H1 may be inverted to obtained an estimate of ~5c/c. On the other hand,//2 is 
predominantly determined by the region near the solar surface. Christensen-Dalsgaard 
and Ptrez Hernfindez (1992) showed how H2(co) is related to the differences in sound 
speed and F1 in the outer parts of the Sun: differences localized very near the surface 
give rise to a component of H2 that varies slowly with co, whereas differences at some- 
what greater depth introduce an oscillatory variation with co in / /2 ,  the "frequency" 
of which increases with the depth of the difference. This is in fact a general property 
of frequency differences caused by sharply localized modifications to solar structure 
(Thompson 1988; Vorontsov 1988b; Gough 1990), and reflects the variation with fre- 
quency in the phase of the eigenfunctiou at the location of the modification. At the 
surface the behaviour of the eigenfunction changes slowly with frequency, whereas 
at greater depth a change in frequency causes the eigenfunction to "sweep through" 
the point where the model was changed, causing a rapid variation in the frequency 
change. In the case of the variation of H2 with co, Christensen-Dalsgaard and Ptrez 
Hern~ndez (1991) found several cases where the relatively sharp change in F1 in 
the second helium ionization zone caused an oscillatory behaviour of H2(co). Similar 
variations in the Vorontsov phase function/3(0:) (cf. Eq. [2.33]) were analyzed, for 
example, by Brodsky and Vorontsov (1988b, 1989) and Baturin and Mironova (1990). 
Vorontsov et al. (1992) showed how the phase could be separated in a quantitative 
fashion into components varying slowly and rapidly with frequency. This type of 
analysis provides a powerful diagnostic of the properties of the ionization zones of 
hydrogen and helium, of great interest both for the analysis of the equation of state 
and for attempts to determine the helium abundance of the solar convection zone. 

Here we analyze frequency differences in terms of the asymptotic expressions in 
Eqs. (2.37) - (2.39). For the purpose of interpreting the results, it is convenient to 
write Eq. (2.39) as 

5co~l 
-- SO s [HI (conl "] + H2(conl)] - (4.4) 

So conz L k L / .1 

Here 

f R  ( Lac2 ~-1/2 dr (4.5) 
& z =  ~ 1 r2co~12 / T 

(for simplicity we neglect the small second term on the right-hand side of Eq. [2.38]); 
also 

So = 1 - - ,  (4.6) 
7" C 
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where r0 is the radius at the base of the envelope model, and w0 = c(ro)/ro. The 
scaling of the frequency differences in Eq. (4.4) is closely analogous to the scaling 
introduced in Eq. (4.3); it is defined such that (S~z/So)SCO~z/C'Jnz, and hence SolH1 
and SolH2, correspond to relative frequency differences for the most deeply pene- 
trating modes considered. It might be noted also that for complete solar models where 
ro = 0, So = To where 

fo R dr (4.7) TO= C 

is the acoustical radius of the star. 
The functions H1 and //2 were determined by means of the spline fit of 

Chfistensen-Dalsgaard et al. (1989), where details about the fitting method may be 
found. Briefly, the procedure is to approximate HI(W/L) and H2(co) by splines, the 
coefficients of which are determined through a least-squares fit to the scaled fre- 
quency differences. The knots of the splines in w = co/L are distributed uniformly 
in log w over the range considered, whereas the knots for the w-splines are uniform 
in co. We used 28 knots in w and 20 knots in ca. (As a technical point, we note that 
in the separation in Eq. [2.39] H1 and //2 are evidently only determined up to a 
constant term; hence in the following, when comparing H2 for different cases, we 
are permitted to shift //2 by a constant). The asymptotic separation may be ques- 
tionable for modes penetrating beyond the lower boundary of the convection zone, 
where sharp features in the sound speed could introduce additional frequency depen- 
dence; furthermore, since the asymptotic description assumes that the properties of 
the modes are independent of 1 in the vicinity of the upper reflection point, it fails for 
modes trapped very near the surface. Hence, as argued by Christensen-Dalsgaard and 
P6rez Hernfindez (1991, 1992),/42 is probably determined most accurately by modes 
trapped entirely in the convection zone, but of moderate degree. Here we compare H2 
determined for the full mode set with the result of using only those modes for which 
20#Hz < u/L <_ 50#Hz (corresponding to the range 0.80R to 0.94R in turning 
point radius r,). 

4.1.2 The helium hump 

It was mentioned in Sect. 2.1.2 that in the adiabatic part of the convection zone the 
quantity 

1 - Ft - F l , p  
O = (4.8) 

1 - ] ' l ,d  

is closely related to the derivative of the sound speed, which can be estimated from 
helioseismic observations [cf. Eq. (2.7)]. Since @ is sensitive to the helium abundance, 
it was proposed by Gough (1984a) and DSppen and Gough (1984) that the helium 
abundance Y~ of the solar convective envelope could be determined from analysis of 
O. It is evident that @ depends also on the properties of the equation of state and hence 
has the potential of serving as a tool for investigating these properties. This requires 
that the effects of uncertainties in the equation of state and in the composition can be 
separated; that this may be possible, at least to a limited extent, follows from the fact 
that the composition can be assumed to be homogeneous throughout the convection 
zone, where the timescale of mixing is fast compared with any processes that might 
lead to composition differentiation. 



Solar oscillations and the equation of state 315 

This method for determining Ye was developed further by Dfippen and Gough 
(1986) who attempted to apply it to solar data by using the absolute asymptotic inver- 
sion technique described by Eq. (2.42); however, no definite results were obtained, 
largely due to observational errors. Dfippen et al. (1988) used instead differential 
asymptotic inversion (cf. Eq. [2.43]); when tested on artificial data the method was 
found to be potentially useful, but noise in the observational data, and possibly the 
uncertainty in the equation of state, precluded a reliable determination of the solar 
Ye. 

Here we investigate the properties of O, particularly its sensitivity to the equation 
of state. The goal is partly to evaluate the extent to which uncertainties in the equation 
of state affect the determination of Y~, partly to determine whether it is possible to 
study properties of the equation of state from measurements of O. It was argued in 
Sect. 2.3.3 that helioseismic inversion leads to estimates of p, p and F1, if hydrostatic 
equilibrium is assumed. Provided that p is identified with the thermodynamic pres- 
sure (and hence that the effective pressure resulting from the turbulent convection is 
neglected) we may therefore regard pressure and density as being fixed seismically, 
independent of an equation of state. Hence to isolate the effects of the thermodynamic 
description it is natural to compare @, as evaluated with different equations of state, 
at fixed pressure and density. In addition, we consider the effects on @ of changing 
the helium abundance. 

4.1.3 Interpolation errors 

Equations of state as complex as the MHD and Livermore formalisms cannot be 
called directly in a stellar structure calculation, but must be used through interpola- 
tion in previously computed tables of suitable thermodynamic quantities as functions 
of density, temperature and composition. This inevitably introduces errors in the com- 
putation, the magnitude of which depends on the interpolation procedure and on the 
mesh in the tables. Accurate comparisons of computations using different equations 
of state, and comparisons of the computed frequencies with observations, require that 
the effects of the interpolation errors be limited as far as possible. 

The errors can be estimated by considering equations of state sufficiently simple 
that they can be called directly in the model computations, yet sufficiently realistic 
that the behaviour of the thermodynamic quantities approximates the behaviour in the 
tabulated equation of state. The procedure is to set up tables for the simplified equation 
of state, on precisely the same mesh in p, T and composition, and to compare the 
results of using interpolation in those tables with results obtained using direct call. 
Here we have used the CEFF equation of state, introduced in Sect. 3.3.2, for this 
purpose. 

Figure 9 shows differences at given p and T, corresponding to the values in a solar 
envelope model, between p and F1 obtained from interpolation and from direct call. In 
addition, the location of the points in T in the table is indicated. It is evident that the 
behaviour of the errors is closely related to those points, indicating that the errors are 
dominated by the interpolation in T. The largest errors are in El, particularly in the 
low-temperature region corresponding to the onset of hydrogen ionization where F1 
varies rapidly with T; this region does not have a substantial effect on the oscillation 
frequencies, however, and in any case it is affected by much larger uncertainties 
associated with nonadiabaticity and the treatment of convection. The second helium 
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Fig. 9. Relative differences between values of pressure p ( . . . . . .  ) and adiabatic exponent FI ( ) 
evaluated from interpolation in tables and with direct call, in the sense (interpolation) - (direct call), for 
the CEFF equation of state. They have been computed at the conditions (p, T) defined by the envelope 
Model C1 (cf. Table 1 below). The lower abscissa shows logT, the upper abscissa the fractional radius 
r/R in the model. The crosses mark the location of the temperature points in the tables 

ionization zone, and ionization zones of  carbon and oxygen, are also reflected in the 
error in F].  Nevertheless, it is evident that with the present choice of  mesh the errors 
resulting from interpolation have been reduced to a comparatively low level. 

To indicate the effect of the interpolation errors on the computed frequencies, 
Fig. 10 shows differences, scaled asymptotically as in Eq. (4.4), between frequencies 
of  a model  computed with interpolation in CEFF tables and a model computed with 
direct call, the models having otherwise the same parameters. The comparatively large 
differences at v /L  ~- 100 #Hz is caused by model  differences that result from interpo- 
lation errors in the region affected by the EFF formulation for pressure ionization; in 
this region/71 has a small sharp feature. However,  in any case the relative errors are 
below 10 -5 for essentially all the modes considered. Hence the effect of interpolation 
is below or comparable with the errors in the observed frequencies. Corresponding 
errors are found for HI and //2 as obtained by fitting Eq. (2.39) to the frequency 
differences. 

We finally note that the interpolation errors are determined by the distribution of  
mesh points and by higher derivatives of the quantities being interpolated. Hence to 
the extent that these higher derivatives are insensitive to the details of the formulation 
of the equation of  state, the same is true of  the interpolation errors. This suggests that 
errors arising from the interpolation would largely cancel in comparisons between dif- 
ferent equations of state, obtained by interpolation on the same mesh. Therefore, when 
making comparisons between models computed with simple and complex equations of 
state, we base the models on tables even for the simple equations of state, essentially 
eliminating effects of  interpolation error in the model  and frequency differences. 
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Fig. 10. Asymptotically scaled relative frequency differences (cf. Eq. [4.4]), illustrating the effect of in- 
terpolation errors. The differences are between frequencies of Model C1 ~ computed with interpolation in 
CEFF tables, and Model C1 computed with direct call to the CEFF routine (see Table 1), in the sense 
(Model C1 ~) - (Model C1). Points corresponding to the same value of the degree l have been connected. 
The lower abscissa gives u~t/(l + 1/2), where u.,~l is the cyclic frequency; the upper abscissa shows the 
corresponding fractional turning-point position rt /R,  which is related to ung/(l + 1/2) through Eq. (2.29) 

4.2 Effects o f  the equation o f  state in the solar convection zone 

It was realized early in the development of helioseismology that the treatment of 
the equation of state might have a substantial effect on the computed oscillation fre- 
quencies. Berthomieu et al. (1980) and Lubow et al. (1980) computed solar envelope 
models with improvements in the equation of state and compared them with the ob- 
served frequencies of high-degree five-minute oscillations; this comparison, however, 
was also affected by uncertainties about the adiabat of the solar envelope. Effects of 
changing the equation of  state, involving among other features electrostatic correc- 
tions, were studied by Ulrich (1982), Ulrich and Rhodes (1983), Shibahashi et al. 
(1983, 1984) and Noels et al. (1984), who considered also modes of low and mod- 
erate degree. More recently, Christensen-Dalsgaard et al. (1988b) compared models 
computed with the EFF and the MHD equation of state (for a somewhat simplified 
chemical composition); they found that the model with the MHD equation of state was 
in generally closer agreement with the whole range of observed solar oscillation fre- 
quencies. Stix and Skaley (1990) made an investigation of the effect on the oscillation 
frequencies of a simplified equation of state based on the SSCP model (see Sect. 3.3.3) 
and the classical Debye-Htickel Coulomb term (3.6). Electrostatic effects were also 
considered by Baturin (1991), who in particular studied the response of the Vorontsov 
phase/3(w). Christensen-Dalsgaard and Pdrez Hernfindez (1991) considered the effect 
on the phase difference H2(w) of going from the EFF to the MHD equation of  state. 
Pamyatnykh et al. (1991) varied a number of  parameters in computations of solar 
envelope models, including the equation of state, analyzing the change in thermody- 
namic state and the response of the frequencies in terms of/3(w). Vorontsov et al. 
(1992) also considered the effects on the structure of the model and the oscillation 
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frequencies of electrostatic corrections, both in the simple form and including the 
~- cut-off for the size of atoms and ions (see Sect. 3.1); the frequency analysis utilized 
the asymptotic description in Eq. (2.30), furthermore separating the variation of the 
phase c~(w) into a part varying slowly with frequency and associated with the extreme 
superficial layers and a part oscillating with frequency and predominantly related to 
the second helium ionization zone (see also Sect. 4.1.1). Baturin et al. (1992) made 
a similar study, but concentrating on the role of the assumed atomic size in pressure 
ionization. 

To provide a homogeneous illustration of the effects of the physics, and of other 
parameters, on the structure of the solar envelope and its oscillation frequencies, we 
here consider a number of models computed specifically for this purpose. Since a 
major aim is to investigate the differential effect of introducing additional properties 
in, for example, the equation of state, it is natural to analyze the results in terms of 
the differential asymptotic expression (4.4), which was discussed in Sect. 4.1.1. Apart 
from the physics, in particular the equation of state, the models are characterized 
by the composition and by the value of the mixing-length parameter c~c. For most 
of the models we, somewhat arbitrarily, fix c~c by demanding that the model have 
the depth of convection zone of 0.287R which has been inferred helioseismically 
(Christensen-Dalsgaard et al. 1991). Except where otherwise noted the composition 
was characterized by ! / =  0.265, Z = 0.02; the mixture of heavy elements consisted of 
C, N, O and Fe, with number densities relative to hydrogen of 4.17 • 10 -4 ,  0.87 X 10 -4 ,  
6.92 • 10 -4  and 1.72 • 10 -4 ,  respectively. The consequences of modifying the helium 
abundance and the mixing length are briefly considered in Sect. 4.2.4. 

Models have been computed with the EFF and CEFF equations of state, discussed 
in Sect. 3.3.2, as well as with the MHD formulation presented in Sect. 3.3.4. To 
investigate the effects of the details in the MHD formulation, we have considered 
both the full treatment [referred to in the following as MHD(F)] and the "stripped- 
down" version [cf. Sect. 3.5.3; in the following MHD(S)] where the effects of excited 
states of all elements other than hydrogen and helium are neglected. We consider 
models computed with two different sets of opacities: in most cases the Cox and 
Tabor (1976) tables (referred to as CT) were used; however, in the comparison with 
observed frequencies in Sect. 4.3 we also consider models computed with a set based 
on the Los Alamos Opacity Library [Huebner et al. 1977; details about how the tables 
were set up were given by Courtaud et al. (1990) and Turck-Chi~ze (1990)]; these 
tables are referred to as LAOL in the following. 

A summary of the models considered is given in Table 1. 
A notable feature is the difference between the CT and the LAOL opacities in 

the values of c~c required to obtain the specified depth of the convection zone. This 
is caused by the fact that the LAOL opacities are larger (by up to a factor two) at 
conditions corresponding to the solar atmosphere; as a result the atmospheric structure 
is different, and so therefore is the entropy jump, determined by c~c, required to reach 
the proper adiabat in the bulk of the convection zone. 

4.2.1 Comparisons of the EFF and CEFF equations of state 

The simple EFF equation of state has been used in a substantial number of calculations 
of solar and stellar structure. For this reason, it is of some interest to investigate in 
detail how it differs from more realistic formulations. Here we concentrate on the 
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Table 1. Summary of envelope models. The column marked EOS gives the equation of state, as defined in 
the text. "Opacity" indicates the opacity: CT denotes the Cox and Tabor (1976) tables and LAOL denotes 
tables derived from the Los Alamos Opacity Library. Y is the envelope helium abundance, db/R is the 
depth of the outer convection zone, in units of the solar radius, and c~ c is the mixing-length parameter. In 
the column marked "Notes", (a) indicates that the equation of state was obtained through interpolation in 
tables 

Model EOS Opacity Y db / R o~ C Notes 

E1 EFF CT 0.265 0.2870 1.7297 
E2 EFF LAOL 0.265 0.2870 2.7503 

C1 CEFF CT 0.265 0.2870 1.7604 
CI' CEFF CT 0.265 0.2870 1.7591 (a) 
C2 CEFF CT 0.260 0.2870 1.7624 
C3 CEFF CT 0.265 0.2904 1.8000 
C4 CEFF LAOL 0.265 0.2870 2.8009 

MS1 MHD(S) CT 0.265 0.2870 1.7528 (a) 

M1 MHD(F) CT 0.265 0.2870 1.7524 (a) 
M2 MHD(F) LAOL 0.265 0.2870 2.7877 (a) 

effects of including the Coulomb terms, by comparing the EFF and CEFF formulations 
(cf. Sect. 3.3.2). 

To illustrate the direct effect of  the change in the equation of state, Fig. 11 a shows 
/71 evaluated with the EFF and the CEFF equations of state at the conditions (p, T) 
corresponding to Model  C1 computed with the CEFF equation of state; Fig. 1 lb  shows 
relative differences in p and FI ,  in the sense (EFF) - (CEFF), at fixed (p, T). The 
behaviour of  F1 is dominated by the fact that it has "dips" for each ionization reaction: 
it decreases from the value of 5/3 at no or complete ionization down to about 1.20 in 
the case of hydrogen ionization, and to about 1.55 in the case of the second ionization 
stage of helium (the effect of the first stage of helium ionization is mostly hidden in 
the high-temperature flank of the hydrogen dip). 

To elucidate the consequences of including the Coulomb terms we recall (cf. 
Sect. 3.5.1) that there are two contributions due to the Coulomb term, one associated 
with the free energy [cf. Eq. (3.6)] of  the Debye-Htickel term itself, the other with 
the Coulomb-term induced shift in the ionization equilibrium. The direct (negative) 
Coulomb pressure contribution, computed from the free-energy term of Eq. (3.6), 
gets as high as 10 -1 (Baturin 1991; Shibahashi et al. 1983). This direct contribution 
basically causes the CEFF pressure to be smaller than that of EFF. However, the 
difference between the two is reduced by the Coulomb-term induced enhancement 
of the ionization equilibrium, which translates into a positive pressure contribution 
in CEFF, which offsets a part of the direct negative contribution. Changes in ther- 
modynamic quantities such as F1 are more difficult to trace. In the top part of the 
hydrogen ionization zone, where overall ionization is still low, the induced part has 
a more pronounced influence; however,  as soon as a sizeable fraction of  hydrogen is 
ionized, the direct part and the induced part become comparable. 

The principal physical  reason that causes the oscillatory behaviour of  the relative 
differences in F1 is the increased ionization fraction of  hydrogen and helium due to 
the Coulomb interaction (see also Stix and Skaley 1990; Baturin 1991; Vorontsov 
et al. 1992): the higher ionization fractions shift the ionization zones of hydrogen 
and helium towards the surface; this in turn shifts upward the dips in F1 which are 
associated with these ionization zones (cf. Fig. 1 la),  thus giving rise to the oscillatory 
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Fig. 11. a Adiabatic exponent F] evaluated with the EFF ( ) and the CEFF ( . . . . . .  ) equations of 
state, b Relative differences between values of pressure p (- . . . .  -) and adiabatic exponent/7] ( ) 
evaluated with the EFF and the CEFF equations of state, in the sense (EFF) - (CEFF). They have been 
computed at the conditions (p, T) defined by the envelope Model C1 (cf. Table 1). The lower abscissa 
shows log T, the upper abscissa the fractional radius r/F~ in the model 

behaviour of ~SF1, Pressure, on the other hand does not exhibit dips but rather steps 
for each ionization reaction; therefore, the principal effect of the Coulomb term is the 
different location of  the steps, which explains the general behaviour of the relative 
pressure difference. It should be noticed that in the cases of  little or of full ionization, 
the pressure difference appears to be rather small compared with the case of partial 
ionization. When the plasma is essentially neutral, in the uppermost part of  the hy- 
drogen ionization zone, the Coulomb pressure is small, though the the associated shift 
in the ionization balance already changes / ' l  significantly. When the plasma is fully 
ionized, beneath the hydrogen and helium ionization zones, the Coulomb effect also 
becomes smaller. However,  the reason is that the essentially adiabatic temperature 
gradient of  the solar convection zone causes a steep increase of temperature, leading 
to a smaller Coulomb term [see Eqs. (3.4) and (3.6)]; for a more detailed discussion 
see Baturin 1991). Note that conversely in radiatively stratified regions (such as in 
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Fig. 12a,b. Properties of the function @ (cf. Eq. [4.8]), evaluated at the conditions (p,p) defined by the 
envelope Model C1 (cf. Table 1). a 6) computed with the EFF ( ) and the CEFF (- . . . . .  ) 
equations of state, b Difference between the two curves in a, in the sense (EFF) - (CEFF). The abscissa 
is fractional radius r/R 

the inner part of the Sun), the Coulomb effect becomes more prominent with depth 
(Baturin 1991). 

It was argued in Sect. 4.1.2 that the quantity @, defined by Eq. (4.8) provides 
a useful diagnostics for the composition and equation of state. As suggested there, 
Fig. 12 compares 6) evaluated with the EFF and the CEFF equations of state, at 
fixed (p,p) in Model C1. From panel (a) it is evident that the dominant effect of 
including the electrostatic corrections is indeed to shift the ionization zones, reflected 
in particular in the helium hump at r ~_ 0.98R, towards the surface. This behaviour 
is even more evident in the O difference shown in Fig. 12b. 

Figure 13 shows differences at fixed r between a model computed with the EFF 
equation of state and a model computed with the CEFF equation of state. The be- 
haviour of the differences can to some extent be understood in terms of Eqs. (2.9) 
- (2.13) (cf. Sect. 2.1.3; see also Christensen-Dalsgaard et al. 1988b). In particular, 
Eqs. (2.9) and (2.10) show that the change in sound speed is closely related to the 
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Fig. 13. a Logarithmic differences between Models  E1 and C1 computed with the EFF and CEFF equations 
of  state, respectively, in the sense (Model E l )  - (Model C1). The quantities plotted are 6 l n p  ( . . . . . . . . . .  ); 
~Slnp ( . . . . . .  ); ~ l n T  ( . . . . . . .  ); 61n/~1 ( . . . . . . . . . . . .  ); and 6 1 n c  ( ). The abscissa 
is fractional radius r/R. b ~ In c and 6 In/ ' i  in the hydrogen and hel ium ionization zones  

change in F1 (in the present case the change in the superadiabatic gradient/" - F~ 
is small). However, as can be seen in Fig. 13b, the part due to structure changes 
[(5 ln(p/p) = (5 In c - (5 In/"1/2] is not always small. This shows that there are regions 
where the structure changes caused by changes in the equation of state can have a 
stronger influence on sound speed than pure thermodynamic changes (Baturin, private 
communication). 

Furthermore, comparison of Figs. l l b  and 13b suggests that in Eq. (2.12) the 
dominant term is the intrinsic change (~ln F1) (~), caused directly by the change in 
the equation of state. Indeed, it follows from Eqs. (4.1) and (4.2), the behaviour of 
(0 I n / ] / 0  In T)p and (0 lnp/O in T)p shown in Fig. 8, and the behaviour of (@/p)(p,T) 
shown in Fig. l lb ,  that (~SF1/Ft)(p,T) which is shown in Fig. l i b  and (~SF]/F])(p,p I 
which enters into Eq. (2.12) are quite similar. Hence there is a very direct link between 
the change in the physics, as expressed in (gln/"t) (~), and the change in the sound 
speed which in turn is reflected in the change in the frequencies. 
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Fig. 14. Frequency differences, scaled by the inertia ratio Qr~z (cf. Eq. [4.3]), between Models E1 and 
C1 computed with the EFF and CEFF equations of state, respectively, in the sense (Model El) - (Model 
C1). The abscissa is cyclic frequency r%t. The points have been connected with lines according to the 
value of the degree I: I = 20, 30: , I = 40, 50, 60, 80, 100: . . . . . .  ; I = 120, 150, 200,300,400: 
. . . . . . .  ; and l = 500,600,700,800,900, 1000: 

The change in p follows, at least in a qualitative sense, the predictions of Eq. 
(2.13). Very near the surface there is a region where t5 ln(p/p) is positive, leading to a 
negative contribution to ~ lnp; the extent of this region is approximately eight pressure 
scale heights, and hence the magnitude of the initial negative excursion of ~ lnp is 
roughly eight times as large as the average (5 In(p/p). Below this region, ~ ln(p/p) is 
negative, and as a result ~5 lnp decreases in magnitude with increasing depth. 

Fig. 15. a Asymptotically scaled relative frequency differences (cf. Eq. [4.4]), between Models E1 and C1 
computed with the EFF and CEFF equations of state, respectively, in the sense (Model El) - (Model CI). 
Points corresponding to the same value of the degree 1 have been connected. The lower abscissa gives 
r%t/(l + 1/2), where vnt is the cyclic frequency; the upper abscissa shows the corresponding fl'actional 
turning-point position rt /R,  which is related to unL/(l + 1/2) through Eq. (2.29). 

Panels b - f  show results of the asymptotic fit in Eq. (4.4). b Residual after subtraction of the fitted 
H2(w~t), for all modes in the set; the abscissas are as in panel a. e Residual after subtraction of the fitted 
Hl(wnl/L), for all modes in the set, plotted against cyclic frequency r%t. d Residual after subtraction of 
the fitted Hl(Wnl/L), for modes with 20#Hz < r,,~z/L < 50#Hz. e The function HI(w/L) resulting 
from the fit, for the full mode set; abscissas as in panel a. f The function H2(a;) resulting from the fit, 
against cyclic frequency r,. The solid curve shows the result of the fit to the full mode set, whereas the 
dashed curve is based on a fit to the modes with 20#Hz < r%t/L <_ 50#Hz 
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The effects on the frequencies are shown in Fig. 14, in the form of frequency 
differences scaled by Qnz. These differences can be understood qualitatively in terms 
of the sound-speed differences shown in Fig. 13, and the simple expression (2.40). 
Since the sound-speed difference is concentrated relatively near the surface, all modes 
of degree 1 < 100 sense the change in much the same manner, and hence for these 
modes Q.~&'~l depends only on frequency. At higher degree the lower turning point 
of the modes moves into the region where 6 In c is substantial; hence the magnitude of 
the negative contribution to 6unl decreases with increasing l, and Q~t6u~z increases. 
Finally, for l > 500 the modes are trapped entirely in the thin region near the surface 
where ~ lnc  is positive, and hence Q~z(Su~z > O. 

These arguments show that there is a close connection between the frequency 
differences and the location of the turning point or, equivalently, u/L (cf. Eq. [2.29]). 
Hence it is natural to plot frequency differences against u/L. This has been done in 
Fig. i5a, using asymptotically scaled relative differences, in preparation for analyzing 
the differences in terms of the asymptotic separation in Eq. (4.4). Here it is evident 
that the overall behaviour of the differences is determined by location of the turning 
point, and reflects the variation in the sound speed. However, on top of this general 
trend there is apparent scatter where closer inspection reveals a pattern repeated in 
the individual curves, which each corresponds to a given value of I. 

This behaviour is in accordance with the expected form of the frequency differ- 
ences, and further motivates attempting a spline fit of the form (4.4), as discussed 
in Sect. 4.1.1. The results are presented in panels (b) - (f) of Fig. 15. Panel (b) 
shows that after subtraction of the fitted H2(~), the frequency differences are in- 
deed largely a function of co~L, as expected. Similarly, panel (c) shows that after 
subtraction of Hi(co~L) the residual is largely a function of co. The fits in panels 
(b) and (c) were based on the complete mode set; if instead only modes for which 
20 #Hz _< u/L <_ 50 #Hz are included, the scatter in the frequency-dependent residual 
is considerably reduced, as shown in panel (d). The fitted H1 is shown in panel (e). 
Asymptotically, H1 is related to the sound-speed difference by Eq. (2.37); this indi- 
cates that a sharp feature in 6c/c has a particularly significant effect for those modes 
which have turning point at or just below the location of the feature, as a result of the 
integrable singularity in the integrand defining Hi. In particular, one may identify the 
dip in H1 at u/L ~- 10#Hz with the sharp dip in ~lnc at r -~ 0.987R (cf. Fig. 13b), 
associated with the shift to greater depth of the merged hydrogen and first helium 
ionization zones in the EFF case. Finally, panel (f) shows the fitted/-/2 both for the 
full and for the restricted mode set; it is evident that despite the considerably larger 
scatter for the full set, the resulting//2 are very similar for the two sets. It was argued 
by Christensen-Dalsgaard and Pdrez Hernfindez (1991) that the oscillatory behaviour 
in/ /2,  particularly at low frequency, is related to the sharp differences in/"i near the 
second helium ionization zone (see also Sect. 4.1.1). 

4.2.2 Comparison of MHD(S) and CEFF 

To investigate the influence of the excited states of hydrogen and helium separately 
from that of the configurational Coulomb interaction, we here compare the stripped- 
down version of the MHD equation of state with the CEFF formulation. We recall 
that the stripped-down MHD(S) equation of state contains the full MHD treatment 
of all excited states of H, He and He +, but uses only ground states for the heavier 
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atoms and their ions. The MHD(S) and CEFF equations of  state therefore treat the 
heavy elements identically. Since, in addition, MHD(S)  and CEFF have the same 
Coulomb term, the difference effectively shows the effect of the excited states of H, 
He, and He + . It might be pointed out that there are some very small differences also 
in the treatment of  the heavy elements: in the MHD equation of state the ground-state 
weight can be reduced by plasma effects, and this is not taken into account in CEFF; 
however, these differences are probably insignificant in the present comparison. 

Figure 16 shows relative differences, in the sense MHD(S) - CEFF, in p and/~1 
at fixed (p, T)  corresponding to conditions in Model  Cl l ;  to minimize the effects of 
interpolation errors, the CEFF equation of  state was used in the form of tables, on 
the same mesh in (p, T)  as used for the MHD(S) values. A dominant feature is the 
large negative ~/~1 at low temperature, corresponding to the atmosphere of the model; 
this is caused by the dissociation of the H2 molecule which is taken into account in 
MHD(S)  but not in CEFF. This region has little effect on the oscillation frequencies, 
however. Otherwise the dominant differences are again associated with the helium 
ionization zones. 

The comparison of  MHD(S) with CEFF reveals the influence of the excited states 
of hydrogen and helium (and to a small degree that of H2 molecules). Simple estimates 
of the partition functions of hydrogen and helium (done in the MHD formalism) show 
that at first the influence of  the excited states seems non-negligible compared with that 
of  the ground state. The contribution of the excited states reaches more than 10 per cent 
of the internal partition function at some places in the ionization zones of  hydrogen 
and helium. Christensen-Dalsgaard et al. (1988b) thought that this effect of excited 
states was responsible for the success the MHD equation of  state had, especially with 
the high-degree modes, which probe the hydrogen and helium ionization zones. 
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Fig. 16. Relative differences between values of pressure p ( . . . . . .  ) and adiabatic exponent/"1 ( ) 
evaluated with the stripped MHD [MHD(S)] and the CEFF equations of state, in the sense [MHD(S)] - 
(CEFF). The quantities were computed at the conditions (p, T) defined by the envelope Model C1 / (cf. 
Table 1). The lower abscissa shows logT, the upper ab~,issa the fractional radius r/R in the model 
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The abscissa is fractional radius r/~ 

However, since the MHD equation of state simultaneously incorporates several 
different types of non-ideal corrections, it did not become immediately clear which 
particular correction was mainly contributing to this success. From a detailed com- 
parison with the alternative non-ideal Livermore equation of state (see Sect. 3.4), it 
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turned out, rather surprisingly, that the net effect of the hydrogen and helium bound 
states on thermodynamic quantities was to a large degree eclipsed beneath the in- 
fluence of the Coulomb term, which was thus recognized as the dominant non-ideal 
correction in the hydrogen and helium ionization zones. 

As in Sect. 4.2.1 it is of interest to consider the effect of the change in equation 
of state on the helium hump, defined by the function O (see Fig. 12a, at r ~ 0.98/~). 
The difference in O at fixed (p,p) in Model C11 as determined with MHD(S) and 
with CEFF is shown in Fig. 17. This rather substantial difference shows that unlike 
FI itself (see Fig. 16) the derivatives of F1 (contained in O) clearly reveal the effect 
of the excited states of the bound systems, which is here principally He + . 

Differences between Models MS1 and C11, computed with the MHD(S) and the 
CEFF equations of state using interpolation on the same mesh, are shown in Fig. 18. 
As in the case of EFF - CEFF, discussed in the previous section, the differences are 
predominantly concentrated in the hydrogen and helium ionization zones; in particular, 
the differences in c and f l  are small in the deeper parts of the convection zone. Also, 
it should be noticed that/fF1 is quite similar to the difference at fixed thermodynamic 
conditions, shown in Fig. 16. This again indicates that the intrinsic change in Ft 
dominates and that therefore the response of the envelope is directly related to the 
change in the properties of the equation of state. 

Asymptotically scaled frequency differences, and the results of the separation in 
Eq. (4.4), are shown in Fig. 19. The behaviour of HI(cv/L) can again be related 
to the sound-speed difference shown in Fig. 16; particularly prominent is the feature 
associated with the hump in ~5e/c at r _~ 0.99R. The dip and hump between r = 0.98/~ 
and r = 0.99R in the difference of f l  are caused by a shift of the position of the 
second ionization zone of helium, where F1 is lowered from about 5/3 to 1.55 (cf. 
Fig. 1 la). 

This shift is due to the sheer number of excited states of He + included in the 
internal partition functions of the MHD equation of state. As a result, the correction 
of the total statistical weight of the He + ion can be sizable, even though the weight of 
the ground state (with [negative] energy E0) dominates that of a single excited state 
(with [negative] energy Ej)  by a factor of exp [ - (E j  - E0)/kT].  This modification 
of the internal partition function immediately translates into a change of the same 
order in the ionization degrees [see Eqs (3.8a) and (3.8b)]. The difference of /71 
between r = 0.98R and r = 0.99// precisely reflects this change of depth of the 
ionization zones. Also, the dominant oscillatory component in H2(cv/L) reflects the 
rapid variation in/fc and fFl  in the vicinity of the helium ionization zones. 

4.2.3 Comparison of MHD(S) and MHD(F) 

As a final case, we consider differences between the full MHD treatment [MHD(F)] 
and the stripped-down version [MHD(S)]. In the stripped-down version MHD(S), 
only hydrogen and helium are treated with full internal partition functions, whereas 
the partition functions of heavier elements and their ions contain only ground states 
[having the same weight as in the full MHD(F)]. The motivation for a comparison of 
MHD(S) with MHD(F) is that it will show the effects of the treatment of the excited 
states of the heavy elements. As we have mentioned in Sect. 3.5.3b, it is precisely the 
influence of excited states of the heavy elements which reveals a distinct signature 
of the MHD formalism that could be tested by helioseismology. For hydrogen and 
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helium, the signature is hidden beneath the Coulomb correction, which is of course 
the fortunate circumstance that makes the CEFF equation of state useful. 

Relative differences between p and F:, in the sense MHD(F) - MHD(S), at fixed 
(p, T) in Model MS 1, are shown in Fig. 20. Since MHD(S) and MHD(F) treat hydro- 
gen and helium in the same way, the differences are relatively small in the hydrogen 
and helium ionization zones; this is unlike the cases considered previously. The dom- 
inant effects are associated with the ionization zones of heavier elements. This is 
reflected in the differences in O, shown in Fig. 21. Thus in this case we see poten- 
tially observable effects of what must be considered fine details of the physics of 
the solar plasma. We note that the modulation of @ due to the ionization of heavy 
elements was discussed by D~ppen and Gough (1984). Indeed, it might be recorded 
that already then Gough (private communication) believed in the possibility of a 
helioseismic probing of this effect. 

Whether or not such effects can be observed in practice obviously depends on 
the extent to which they affect the structure of the Sun and hence its oscillation 
frequencies. Figure 22 shows differences between Models M1 and MS1, computed 
with MHD(F) and MHD(S), respectively. It is evident that the dominant effects are 
now associated with deeper-lying ionization zones, giving rise to a complex structure 
in the differences. Nonetheless, it is still the case that ~5/~1 between the models reflects 
the purely thermodynamical differences shown in Fig. 20, although to a lesser extent 
than for the cases considered in Sects. 4,2.1 and 4.2.2. The complicated variation of 
the model differences gives rise to a similarly complex behaviour of the corresponding 
frequency differences, shown in Fig. 23. 

In fact, the asymptotic separation in Eq. (4.4) is less successful in this cases 
than for the differences between the EFF and CEFF, or the MHD(S) and CEFF, 
models. This is illustrated by the difference shown in Fig. 23c between H2(c~) obtained 
from fits over the full and the restricted range in u/L. This failure of asymptotics 
is no doubt caused by the comparatively sharp features in ~5c and ~F1, located at 
considerable depth. On the other hand, it is evident that the variation of HI(a3/L) 
shown in Fig. 23b to some extent reflects (5c/c. 

It should be noted that the frequency differences obtained here, although cer- 
tainly small, are nevertheless considerably larger than the errors in the currently most 
precisely determined observed frequencies. This offers considerable hope that, particu- 
larly with coming improvements in the observed data, it will be possible to investigate 
the properties of the equation of state to this level of detail. Libbrecht (1992) made an 
estimate of the limiting accuracy of solar p-mode frequency determinations; he found 
that with three years of continuous observations, a relative accuracy o-(U,nZ,~)/u~,~, 
for individual frequencies u~t,~, of about 1.4 • 10 -5 should be achievable. Assuming 
that the effects of departures from spherical symmetry are small, it should be possible 

4 

Fig. 19. a Asymptotically scaled relative frequency differences (cf. Eq. [4.4]), between Models MS1 and 
C1 ~ computed with the MHD(S) and CEFF equations of state, respectively, in the sense (Model MSI) 
- (Model CI~). Points corresponding to the same value of the degree l have been connected. The lower 
abscissa gives uni/(1 + 1/2), where unl is the cyclic frequency; the upper abscissa shows the corresponding 
fractional turning-point position rt /R,  which is related to unl/(l + 1/2) through Eq. (2.29). b The function 
H:(w/L) resulting from the asymptotic fit in Eq. (4.4) to the differences shown in panel a. e The function 
H2(w) resulting from the fit, shown against cyclic frequency u. The solid curve shows the result of the fit to 
the full mode set, whereas the dashed curve is based on a fit to the modes with 20 #Hz _< unl/L <_ 50 #Hz 
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to d e t e r m i n e  the  m - a v e r a g e d  f r e q u e n c i e s  Unl, w h i c h  re f l ec t  t he  s p h e r i c a l l y  s y m m e t r i c  

c o m p o n e n t  o f  so l a r  s t ruc ture ,  w i t h  an  e r r o r  tha t  is s m a l l e r  b y  r o u g h l y  a f a c t o r  ~ 1. 
H e n c e  re l a t ive  e r ro r s  in zJnz o f  o r d e r  10 - 6  do  n o t  s e e m  unrea l i s t i c .  Th i s  a p p e a r s  to 
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be amply sufficient to study the equation of state at the level of detail exemplified by 
the difference between MHD(S) and MHD(F). 

4.2.4 Other properties of the model 

Although the main emphasis here is on the effects of the equation of state, it is of 
interest to consider also the sensitivity of the frequencies to other assumed properties 
of the model. It was argued in Sect. 2.1.2 that the structure of the convection zone 
is determined largely by the equation of state, the composition and the value of 
the specific entropy. In this subsection we illustrate the dependence of the envelope 
model and its frequencies on the helium abundance and on the value of the mixing- 
length parameter c~c which determines the specific entropy. There is an additional 
influence on the structure of the envelope of the assumed properties of the solar 
atmosphere; such effects are discussed briefly in Sect. 4.3, in connection with a 
comparison between the observed and the computed frequencies. It should be noted 
that, if the equation of state and the atmospheric structure are assumed to be fixed, any 
changes of the structure of the convective envelope and of the frequencies of modes 
trapped entirely within it can be obtained as linear combinations of the differences 
illustrated in this subsection, provided that the differences are sufficiently small that 
they can be linearized in the change in Y and c~c. 

Figure 24 shows the changes resulting at fixed thermodynamic conditions, defined 
by the structure of Model C1, if Y is reduced by 0.005. In panel (a) relative differences 
in p and F~ are shown, at fixed (p, T). It should be noticed that here, unlike the 
cases of changing the equation of state discussed in Sects. 4.2.1 - 4.2.3, there are 
substantial changes in p also outside the ionization zones; indeed, it follows from 
Eq. (3.7) that (@/P)(p,T) ~-- --(5#/~ ~ -0.76~5Y in the region of full ionization; this 
is in approximate agreement with panel (a). From Eq. (4.1) and Fig. 8 one might 
now expect substantial differences between the changes in/71 at fixed (p, T) and at 
fixed (p,p); this is confirmed by comparing panel (a) with panel (b) which shows 
differences in T and/71 at fixed (p, p). 

The effect of the decrease in Y on the function @ defined in Eq. (4.8), evaluated at 
given (p, p) in Model C1, is illustrated in Fig. 25. It is evident that the dominant effect 
is associated with the second helium ionization zone. This graphically illustrates the 
sensitivity of @ as a measure of the helium abundance. 

Figure 26a shows how a decrease in the helium abundance by 0.005 affects the 
sound speed and F1; as before, C~c was chosen such as to fix the depth of the con- 
vection zone to 0.287R. Results are shown only for the outer parts of the convection 
zone; deeper in the convection zone the changes are considerably smaller. The largest 
effect on c is in the atmosphere and in the hydrogen and first helium ionization zones; 
however, there is also a substantial effect on c, and even more so on/71, in the second 
helium ionization zone. It is interesting that even in this case the change in F1 appears 
to be dominated by the intrinsic change, at fixed (p,p), shown in Fig. 24b; the only 
exception is the substantial peak in ((SFl/F1)(p,p) at log T _~ 4, no doubt associated 
with the hydrogen ionization zone, which has no obvious counterpart in Fig. 26a. 

The changes in the oscillation frequencies resulting from the model differences 
are illustrated in terms of the asymptotic separation (4.4) in Fig. 27; here H1 was 
obtained from the full mode set, whereas for //2 only those modes with 20 #Hz _< 
~,/L <_ 50 #Hz were used. Disregarding modes penetrating beyond the convection 
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zone, it is evident that the behaviour of H1 is dominated by the change in c in the 
ionization zones, H1 being essentially constant for modes whose lower turning point 
is deeper than the second helium ionization zone. H2 is dominated by an oscillatory 
behaviour at frequencies below approximately 3000 #Hz. As shown by Christensen- 
Dalsgaard and P6rez Hern{mdez (1988, 1991, 1992) this arises principally as a result 
of the relatively sharp change in Fl in the second helium ionization zone. 

Figure 26b shows effects of increasing c~c by 0.04, corresponding to an increase in 
the depth of the convection zone of about 0.003R. The change in the thermodynamic 
state brought about by modifying the specific entropy changes c and F1, although again 
predominantly in the ionization zones of hydrogen and helium; the changes are smaller 
in the remainder of the convection zone. In the radiative interior, the modification in 
c is substantially larger as a result of the increased depth of the convection zone; 
however, here we mainly concentrate on modes trapped within the convection zone. 
The changes in frequency are shown in Fig. 27, in terms of HI(a~/L) and H2(cv) 
determined as before. Again, Hl(cJ/L) is dominated by the changes in the ionization 
zones for modes trapped in the convection zone; for modes penetrating beyond it H1 
increases rapidly with increasing penetration depth due to a sharp positive feature 
in (5c just beneath the convection zone, resulting from the increase in its depth. The 
variation in H1 associated with the ionization zones is superficially similar to, but 
different in detail from, the effect of changing the helium abundance. The same is 
true of Hz(cd). There is an oscillatory component arising from the sharp variation of 
F1 in the second helium ionization zone, but unlike the case of modifying Y there 
is also a substantial slowly varying component; this may be caused by the somewhat 
more pronounced change in c in the hydrogen and first helium ionization zones. The 
details of the behaviour of H2 can in principle be understood in terms of the behaviour 
of the kernels which relate H2 to (5c/c and (SF1/F1 (see Christensen-Dalsgaard and 
P6rez Hernfindez 1992); however, such an analysis is beyond the scope of this paper. 

The results obtained here are of considerable interest in connection with attempts 
at helioseismic determination of the helium abundance in the solar convection zone. 
In particular, the helium hump method (cf. Sect. 4.1.2) is based on fitting to a grid of 
envelope models with varying Y and c~c the function W computed from the sound 
speed inferred from inversion of the observed frequencies. Hence it requires linear 
independence of the effects of modifications in Y and c~c on the changes in the rel- 
evant aspects of the oscillation frequencies. If the inversion is carried out by means 
of the differential asymptotic method in Eq. (2.43), this requirement translates into 
independence of the I-I1 resulting from the two types of modification. Indeed it is 
clear from Fig. 27 that the behaviour of H1 is somewhat different in the two cases, 
suggesting that a fit is possible. This was in fact found to be the case by Dfippen et 
al. (1988) when testing the method on artificial data analyzed by means of asymptotic 
differential inversion, and assuming the equation of state to be known. Additional 
information about Y and c~c is contained in H2(cJ). From Fig. 27b it appears that 

Fig.22a-e.  Logarithmic differences between Models M1 and MS1 computed with the MHD(F) and 
MHD(S) equations of state, respectively, in the sense (Model M1) - (Model MS1). The quantities plot- 
ted are ~51np ( . . . . . . . . . .  ); 61np ( . . . .  ); tSlnT ( . . . . . . .  ); 61nF1 ( . . . . . . . . . . . .  ); and ~51ne 
( ). The abscissa is fractional radius r/R. a The complete envelope model; b behaviour in the 
outer layers of the model; e behaviour in the outmost layers of the model 
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Fig.24a,b.  The effect on the thermodynamic state of a decrease 6Y = -0 .005  in the helium abundance, 
evaluated with the CEFF equation of state in Model C1. a Relative differences at fixed (p, T)  in pressure 
p (- . . . . .  ) and adiabatic exponent F] ( - ) ,  in the sense (reduced helium) - (default case), b 
Corresponding relative differences at fixed (p, p) in temperature T (--  - -  - -  - - )  and F] ( ). 
The lower abscissa shows log T,  the upper abscissa the fractional radius r /R in the model 

the //2 resulting from changing Y and c~c are rather more independent than is the 
case for HI, particularly if modes with frequencies as low as 1000 #Hz are included 
in the analysis. It must be kept in mind, however, that I-I2 is only determined to 

Fig. 23. a Asymptotically scaled relative frequency differences (cf. Eq. [4.4]), between Models M1 and 
MS1 computed with the MHD(F) and MHD(S) equations of state, respectively, in the sense (Model M1) 
- (Model MS1). Points corresponding to the same value of the degree l have been connected. The lower 
abscissa gives unz/(1 + ]/2), where unt is the cyclic frequency; the upper abscissa shows the corresponding 
fractional turning-point position rt/R, which is related to u~t/(l + 1/2) through Eq. (2.29). b The function 
HI(w/L) resulting from the asymptotic fit in Eq. (4.4) to the differences shown in panel a. c The function 
H2(w) resulting from the fit, shown against cyclic frequency u. The solid curve shows the result of the fit to 
the full mode set, whereas the dashed curve is based on a fit to the modes with 20 #Hz < u~t/L < 50 ttHz 
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Model C1 (cf. Table l) 

within a slowly varying function of  frequency, associated with the uncertainties in 
the treatment of the superficial layers of the Sun (cf. Sect. 4.1.1). 

The possibility of determining the solar envelope helium abundance from analysis 
of the behaviour of the Duvall phase c~(cJ), the related Vorontsov phase function 3(co) 
or other similar properties of  the oscillation frequencies has been considered in a 
number of  investigations. Baturin and Mironova (1990) analyzed the effect on /3 of 
changes in the helium abundance. From a similar analysis of  the observed frequencies, 
Vorontsov et al. (1991) inferred that Y -~ 0.25. Christensen-Dalsgaard and P6rez 
Hernfindez (1991) attempted to estimate the solar envelope helium abundance from 
a fit of H2(a0 obtained from differences between solar frequencies and those of  a 
reference model, to the/-/2 resulting from a change in Y, obtaining a value similar to 
that of Vorontsov et al. (1991). More generally, helioseismic determinations of  Y can 
be carried out by means of  inversion techniques which do not impose the asymptotic 
behaviour of  the frequencies. Dziembowski et al. (1991) carried out a least-squares fit 
to differences between solar frequencies and those of a reference model of corrections 
to both the ratio p/p and the helium abundance, to obtain a solar Y _~ 0.23. D~ippen et 
al. (1991) performed an inversion by means of  optimally localized averages (cf. Sect. 
2.3.3) to obtain the difference between the solar Y and that of a reference model; their 
result, based on data similar to those used by Dziembowski et al., was Y- ~- 0.27. 
A detailed analysis of  these inversion techniques, to evaluate their sensitivity to the 
various parameters entering the references model and the inversion methods, was 
carried out by Kosovichev et al. (1992). 

A general problem with these determinations is that in all techniques Y is mea- 
sured through its effect on/71; hence the result is sensitive to details of the equation 
of state. Indeed, Kosovichev et al. (1992) found that the equation of state, and the 
assumed detailed composition of  the heavy elements, was the major source of un- 
certainty in helioseismic determinations of  Y. This is illustrated by a comparison of 
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c~ C. The quantities plotted are 6 In Fl  ( . . . . . . . . . . . .  ) and 6 In c ( ). The abscissa is fractional 
radius r/R. a Differences between Model  C2 with a hel ium abundance Y = 0.260 and the reference 
Model  C1, with Y = 0.265, in the sense (Model C2) - (Model C1). b Differences between Model  C3, 
with increased c~ C, and Model C1, in the sense (Model C3) - (Model C1) 

Fig. 27 with the results presented in Sects. 4.2.1 - 4.2.3. It is evident that the effects of 
a change of 0.005 in Y are far smaller than the H1 and H2 resulting from going from 
the EFF to the CEFF equation of state. Although this change presumably drastically 
overestimates the uncertainty in current equations of state, Fig. 19 shows that even 
the change from the CEFF equation of state to the MHD(S) formulation causes H1 
and //2 of a somewhat greater magnitude than those resulting from the change in 
Y, although with a different detailed behaviour. On the other hand, the differences 
between MHD(F) and MHD(S) give rise to H1 and H2 that are smaller by approxi- 
mately a factor four than the effect of a change of Y" by 0.005, suggesting that this 
level of uncertainty in the equation of state would introduce errors of order 10  - 3  

in the helioseismic determination of Y. This is roughly consistent with the results 
obtained by Kosovichev et al. (1992) [note that the equations of state here labelled 
MHD(S) and MHD(F) correspond to MHD3 and MHD5 of Kosovichev et al.]. 
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Fig. 27a,b. The effects on the frequencies of changing the helium abundance or the mixing-length parameter 
c~ C, illustrated in terms of the functions HI and //2 resulting from the asymptotic fit in Eq. (4.4). a 
HI(W/L) obtained from the frequency differences for reduced heIium abundance ([Model C2] - [Model 
C1]) ( ) and for increased mixing-length parameter ([Model C3] - [Model CI]) ( . . . . . .  ). Here 
the full mode set was used. The lower abscissa gives v~i/(1 + i/2), where v, nz is the cyclic frequency; 
the upper abscissa shows the corresponding fractional turning-point position r , /R ,  which is related to 
Unl/(1 + ]/2) through Eq. (2.29). b Corresponding functions H2(a;), using the same line styles as in panel 
a, but based on a fit including only those modes with 20 ~Hz <_ v ,~/L <_ 50 ~Hz 

A n  i m p o r t a n t  goal  is ev iden t ly  to assess  the  ex ten t  to w h i c h  uncer ta in t i e s  in  the  
equa t ion  of  state can  be  separa ted  f rom the  unce r t a in ty  in the  va lue  of  Y and  the  
specif ic  ent ropy,  h e n c e  a l lowing  the  use  o f  o b s e r v e d  f requenc ies  b o t h  to d e t e r m i n e  Y 
and  to inves t iga te  the  p roper t i es  of  the  equa t i on  o f  state. Th i s  requi res  fu r ther  careful  

inves t iga t ion ,  howeve r .  
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4.3 Comparison with observed frequencies 

The central issue of this paper is evidently the extent to which the computed mod- 
els match the observed frequencies, and the sensitivity of the match to the assumed 
properties of the equation of state. The simplest form of such an analysis is to make 
a direct comparison of the observed frequencies with frequencies computed under 
different assumptions. At a somewhat higher level of sophistication, one may attempt 
to construct combinations of the frequencies that are sensitive to specific aspects of 
the model or the physics; examples are the Vorontsov phase function/3(co) (cf. Eq. 
[2.33]), the functions /-1-1 and H2 resulting from fitting the asymptotic expression 
(4.4) to frequency differences between the Sun and a reference model, or the fre- 
quency separations between low-degree modes discussed in Sect. 4.4. More complete 
information about solar structure can be obtained from performing detailed inverse 
analyses, as discussed in Sect. 2.3; however, it is not evident that the results will 
necessarily provide more information about the physics of the solar interior, in par- 
ticular the equation of state, than do the simpler comparisons. As discussed in Sect. 
2.3.1 one may eventually be able to carry out tertiary inversions aimed specifically 
at isolating properties of the physics; such analyses have apparently not been carried 
out so far for the equation of state, however. 

Here we concentrate on the comparisons of frequencies and simple derived quanti- 
ties, specifically H1 and t/2 between observations and models. To illustrate the ability 
of the observations to distinguish between different formulations of the physics, we 
consider in some detail results for some of the models discussed in Sect. 4.2. Frequen- 
cies for these models are compared with observed frequencies from the compilation 
by Libbrecht et al. (1990). In addition, we provide a brief review of other, similar 
investigations. 

An additional uncertainty in the comparisons is introduced by our incomplete 
knowledge about the properties of the solar surface layers. To indicate their possible 
effect on the analysis of the observations we consider models computed both with the 
CT and the LAOL opacities. For the present purpose the most significant difference 
between these tables is that the LAOL values are larger by approximately a factor 
two at conditions corresponding to the solar atmosphere. This introduces substantial 
differences in the superficial layers of the model, while having very minor effects 
in the interior of the solar convection zone (see ChIistensen-Dalsgaard [1990b] for a 
more detailed analysis). As before, the mixing-length parameter is fixed by requiring 
that the depth of the convection zone is 0.287/L 

Figure 28 shows frequency differences, scaled in the manner of Eq. (4.3), between 
the observations and models computed with the EFF and CEFF equations of state, 
and the CT and LAOL opacities. It is immediately obvious that there are consider- 
able differences, depending on the physics used in the computations. In the models 
computed with the EFF equation of state there is a substantial variation with 1 in the 
frequency differency at given frequency; this reflects a dependence of the frequency 
differences on the location of the lower turning point, as a result of errors in the 
interior of the model. It is clear from panels (a) and (c) of the figure that this effect is 
much reduced if the CEFF equation of state is used. On the other hand, going from 
the CT to the LAOL opacities predominantly changes the frequency dependence of 
the frequency differences; they vary less with frequency, and are generally smaller, 
in the LAOL case. 
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These effects become clearer if the asymptotic separation in Eq. (4.4) is carried 
out. Since we are mainly interested in the qualitative behaviour of the result, we have 
for simplicity used a uniform weight in the least-squares fit implicit in the separation; 
a preferable procedure would have been to base the weight on the estimated error 
in each observed frequency. We first consider, in Fig. 29, the details of the analysis 
for the case of using the the EFF equation of state and the LAOL opacities. Figure 
29a shows asymptotically scaled frequency differences, plotted against u/L; already 
here the separate dependence on u/L and u is quite evident. After performing the 
spline fit over the entire mode set and subtracting H2(a~) we obtain the residuals 
shown in Fig. 29b; although there remains some scatter, it is clear that we have 
succeeded in isolating what is predominantly a function of u/L. Similarly, after 
subtraction of the fitted H~ (toiL) we obtain a residual that is predominantly a function 
of u, as illustrated Fig. 29c; here we restricted the fit to the modes in the interval 
20 #Hz < u/L <_ 50 #Hz, in accordance with the discussion in Sect. 4.1.1 (this mode 
set is used for the subsequent comparisons of H2 as obtained for different reference 
models). 

Figure 30 compares H1 for the four different cases shown in Fig. 28. In addition, 
we include H1 as obtained by using as reference models Models M1 and M2 computed 
with the full MHD equation of state [results computed with the stripped-down version 
MHD(S) would be indistinguishable on this scale]. It is evident that for modes trapped 
in the convection zone (with rt > 0.71R) the choice of opacity table has relatively 
little effect on HI. This is in accordance with the fact that the opacity does not directly 
influence the structure of the bulk of the convection zone; as discussed below, the 
effect on the superficial layers of the Sun is absorbed into H2(cJ). Modes that penetrate 
more deeply sense the effects of the opacity differences in the radiative region beneath 
the convection zone. On the other hand, there is evidently a substantial effect on H1 
of the choice of equation of state. For the models computed with the EFF equation of 
state, H1 Varies considerably when the turning point is within the convection zone; 
this indicates, according to Eq. (2.37) that there are significant differences between the 
sound speed in the Sun and in the model. On the other hand, when models based on 
the CEFF equation of state are used, H1 is essentially constant for the modes probing 
the convection zone; it follows from Eq. (2.43) that 6c is small. Hence the CEFF 
equation of state achieves a better representation of the properties of the solar plasma 
than does the EFF formulation. The difference between the results using CEFF and 
those obtained with MHD(F) are substantially smaller, as expected. It is interesting 
that the CEFF models are apparently in better agreement with the solar data than are 
the models computed with MHD. Little significance can be attached to this result at 
present, however. 

,I 

Fig. 28a-d.  Frequency differences, scaled by the inertia ratio Q~l (cf. Eq. [4.3]), between observed fre- 
quencies in the compilation by Libbrecht et al. (1990) and four sets of computed frequencies, in the 
sense (observation) - (theory). The abscissa is cyclic frequency u~l. The points have been connected 
with lines according to the value of the degree l: l = 20, 30: , I = 40, 50, 60, 80, 100: . . . . . .  ; 
l = 120, 150,200,300, 400: . . . . . . .  ; and I = 500,600,700,800,900,  1000: . The models 
are distinguished by their equation of state and opacity, as described in Table 1. a Model E1 (EFF equation 
of state, CT opacity); b Model E2 (EFF equation of state, LAOL opacity); c Model C1 (CEFF equation 
of state, CT opacity); d Model C2 (CEFF equation of state, LAOL opacity) 
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A similar conclusion is reached from consideration of the H2(w) obtained from the 
fit, illustrated in Fig. 31. In the cases where the EFF equation of state was used there 
is a substantial oscillatory component of / /2 ;  it follows from the results presented in 
Sect. 4.2 that such a component would result from rapidly varying differences between 
the Sun and a model, in the region of second He ionization. In contrast, for the models 
computed with the CEFF equation of state the H2 are dominated by a slowly varying 
component, indicating again that the CEFF equation of state is the better. The results 
obtained with the MHD(F) models are similar to those obtained using CEFF, although 
they differ in detail. Both for CEFF and MHD(F) there remains a small rapidly varying 
component, although it appears to have opposite sign in the two cases. This could 
evidently be due to remaining errors in the equation of state. Alternatively, it may 
reflect a deviation of the assumed helium abundance of 0.265, or the specific entropy 
obtained from the assumed depth of the convection zone, from the actual values in the 
solar envelope. The effects of changing Y or a c  may be estimated from the curves 
shown in Fig. 27b. The oscillatory component in H2 for the [MHD(F), LAOL] case in 
Fig. 31 can in fact be reduced considerably by subtracting three times the/ /2 resulting 
from a change of Y by -0.005 (the solid curve in Fig. 27b). This suggests that the 
solar helium abundance is closer to 0.25; indeed, the estimate of Y -~ 0.25 made by 
Christensen-Dalsgaard and P6rez Hernfindez (1991) was based on precisely this type 
of analysis. In contrast, it appears more difficult to suppress the oscillatory component 
in/-/-2 obtained with the (CEFF, LAOL) reference model by a simple change in Y; 
also, the oscillatory components apparently cannot be substantially reduced by changes 
in a c .  It is evident that these results can only be regarded as indicative; a proper 
analysis along these lines requires consideration of combinations of changes in Y and 
c~c, and a precise method for defining the oscillatory component o f / /2  (Christensen- 
Dalsgaard and P6rez Hernfindez, in preparation); we recall also that Vorontsov et al. 
(1992) have introduced a procedure for isolating the rapidly varying component of 
the Duvall phase. 

The behaviour of H2 is evidently strongly affected by the choice of opacity ta- 
bles. This effect arises solely from the modification of the structure of the atmosphere 
and outermost, significantly superadiabatic, part of the convection zone. As discussed 
in Sect. 4.1.1 the result of such a modification is a component of/-/2 which varies 
slowly with frequency (see also Christensen-Dalsgaard and P6rez Hern~ndez 1991; 
Vorontsov et al. 1992). This component is substantially larger for the models based 
on the CT opacity tables than for those using the LAOL tables, hence accounting 
for the larger frequency differences obtained in Fig. 28 for the CT models. Although 
this might suggest that the LAOL tables are to be preferred over the CT tables, such 

p 

Fig. 29a-c. Asymptotic analysis of the differences between the observed frequencies and the computed 
frequencies for Model E2 (EFF, LAOL), i.e., the case shown in Fig. 28b. a Asymptotically scaled relative 
frequency differences (cf. Eq. [4.4]). Points corresponding to the same value of the degree l have been 
connected. The lower abscissa gives unt/(l + 1/2), where u,~z is the cyclic frequency; the upper abscissa 
shows the corresponding fractional turning-point position r t /R ,  which is related to u~l/(1 + 1/2) through 
Eq. (2.29). b Residual after subtraction of the function H2(c~z) resulting from the asymptotic fit in Eq. 
(4.4), for all modes in the set; the abscissas are as in panel a. e Residual after subtraction of the fitted 
Hl(a;nl/L), plotted against cyclic frequency u~l; the fit and the plot include only those modes with 
20#Hz _< u~z/L < 50#Hz 
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Fig.30. The function H[(a~/L) resulting from the asymptotic fit in Eq. (4.4) to differences between the 
observed frequencies of Libbrecht et al. (1990) and various sets of computed frequencies, in the sense 
(observation) - (theory). The full mode set was used. The lower abscissa gives ~,nl/(I + ]/2), where ~'nl is 
the cyclic frequency; the upper abscissa shows the corresponding fractional turning-point position r t /R ,  
which is related to ~%l/(l + 1/2) through Eq. (2.29). The models are distinguished by the equation of state 
and opacity (see also Table 1), as indicated by the line style: Model E1 (EFF, CT) ( -); Model 
E2 (EFF, LAOL) (- -); Model C1 (CEFF, CT) ( . . . . . .  ); Model C2 (CEFF, LAOL) ( . . . . . . . . . . . . .  ); 
Model M1 [MHD(F), CT] (-- . . . . . .  ); Model M2 [MHD(F), LAOL] ( . . . . .  ) 

a conclusion would be premature: the models that have been used were based on a 
highly simplified calculation of convection; in particular, it neglected the non-local 
nature of convective transport, and effects of  turbulent stresses that may contribute 
substantially to hydrostatic balance just beneath the photosphere; and the frequency 
calculation assumed that the oscillations are adiabatic and neglected effects of the 
perturbation of the convective stresses. Since these effects are concentrated in the 
superficial layers of the Sun, they might be expected to contribute to the slowly varying 
component o f / / 2 .  Baimforth (1992b) found that inclusion of  turbulent pressure and 
non-locality in the treatment of convection in the calculation of the equilibrium models 
caused frequency changes that would account for a substantial part of  t h e / / 2  obtained 
for the differences between the Sun and the model  computed with the CT opacity 
tables; smaller effects, of the opposite sign, resulted from aspects of  the physics of 
the oscillations which have been neglected here. 

From the results presented so far it is evident that current observations can dis- 
tinguish between models computed with the EFF and the CEFF equation of state, the 
latter being definitely prefen'ed. It behoves us then to consider the extent to which 
finer details of  the equation of state can be probed; as discussed in Sect. 4.2.4 it must 
be kept in mind also that the composition of the envelope, particularly the helium 
abundance, and the specific entropy are uncertain. No complete analysis of  these ques- 
tions can be attempted here; however, an indication can be obtained by comparing the 
magnitude of H1 a n d / / 2  obtained in Sects. 4.2.1 - 4.2.4 for various modifications of 
equation of state or parameters with the scatter in Figs. 29b and 29c. From the scatter 
one may estimate the uncertainty in the detelanination of  HI a n d / / 2  from comparing 
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Fig.31. The function H2(cJ) resulting from tile asymptotic fit in Eq. (4.4) to differences between the 
observed frequencies of Libbmcht et al. (1990) and various sets of computed frequencies, in the sense 
(observation) - (theory). The fit used only those modes with 20 ffHz < Vr~I/L <_ 50 #Hz. The abscissa is 
cyclic frequency v. The models and line styles are as described in the caption to Fig. 30 

the observed frequencies with a reference model to be of order 10 -4. This is substan- 
tially smaller than the effect of  going from the CEFF to the MHD(S) equation of  state 
(cf. Fig. 19), offering some hope that properties of  the equation of  state can be probed 
at least to a somewhat finer level than the mere addition of the Coulomb terms. On 
the other hand, the transition from MHD(S) to MHD(F) causes frequency differences 
that are probably below what can be studied with present observations, at least by 
using the comparatively simple techniques employed here (see Fig. 23). It should be 
noted, however, that the asymptotic separation appears to be rather less successful for 
this pair of models than for the other cases considered, perhaps indicating that a more 
detailed analysis would have a greater chance of  distinguishing between MHD(S) and 
MHD(F). Finally, we note that the change in helium abundance of 0.005 considered in 
Sect. 4.2.4 caused H] and/-/2 that were slightly larger than the estimated uncertainty 
in the fit to the observations (cf. Fig. 27), indicating that if other properties of the 
Sun, including the equation of state, are assumed to be known Y can be determined 
from analysis of the oscillation frequencies to roughly this level of precision. This 
is not inconsistent with the estimates of Christensen-Dalsgaard and Pdrez Hernfindez 
(1991), Vorontsov et al. (1991) and Kosovichev et al. (1992). 

The principal conclusion of  the present comparison is that the simple EFF equation 
of  state is not consistent with the observed frequencies, whereas many aspects of  the 
observations can be reproduced with an equation of state incorporating the features 
of CEFF or MHD. This was already noted by Christensen-Dalsgaard et al. (1988b) 
who used the MHD equation of state with a somewhat simplified chemical mixture. A 
similar conclusion was reached by Baturin et al. (1991) from analysis of the Vorontsov 
phase/3(us) (cf. Eq. [2.33]), when comparing with models computed with an equation 
of state including the Coulomb terms and a partition function with a number of  excited 
states estimated from the confined-atom model (D~ppen 1980). Pamyatnylda et al. 
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(1991) fitted the observed/3(co) to a grid of envelope models of varying composition 
and convective efficiency; they found that while a reasonable fit was possible when the 
MHD equation of state was used, this was not the case for models based on the simple 
Saha equation. Christensen-Dalsgaard and P6rez Hernfindez (1991) found that when 
a version of MHD was used H2(co) could be reduced essentially to a slowly varying 
part, presumably arising from errors in the superficial layers, by a proper choice of 
the helium abundance. Finally, a careful analysis of the Duvall phase, including an 
explicit separation into a rapidly and a slowly varying part, was made Vorontsov et al. 
(1992). As did the previous investigations they found that a simple equation of state, 
based on the Saha equation and ignoring electrostatic corrections was inconsistent with 
the observations. Interestingly enough they concluded that the simplest Debye-Hfickel 
treatment of the collective Coulomb interaction, which ignores the ~- correction for 
extended charged particles (see Sect. 3.1), provided the best fit to the data, but even 
then discrepancies remained; the discrepancies were slightly larger if instead the ~- 
corrections were included, or if the full MHD equation of state was used. To assess 
the detailed significance of these results requires further work, however. 

It might also be noted that Kim et al. (1991) investigated the effects of the choice 
of equation of state and opacity on the structure and oscillations of complete solar 
models. They only considered low-degree modes and, as a result, did not notice the 
improvement resulting from the use of the MHD equation of state; however they 
did point out the apparently improved agreement between observed and computed 
frequencies resulting from the increase in the atmospheric opacity. 

Although somewhat outside the main topic of the present paper, it behoves us to 
remark that the investigation of the equation of state constitutes only a part of the 
use of the observed solar oscillation frequencies. Determinations of the solar helium 
abundance based on the observed frequencies were reviewed in Sect. 4.2.4. More 
generally, inverse analyses may be used to determine corrections to the solar models. 
The principles of such analyses were discussed in Sect. 2.3. The sound speed, or 
corrections to it, can be obtained from the asymptotic techniques discussed in Sect. 
2.3.2 (see, for example, Christensen-Dalsgaard et al. 1985; Brodsky and Vorontsov 
1987, 1988a; Kosovichev 1988; Shibahashi and Sekii 1988; Vorontsov 1988a, 1989; 
Sekii and Shibahashi 1989; Christensen-Dalsgaard et al. 1988c, 1991; Vorontsov and 
Shibahashi 1990, 1992). From numerical inversions (cf. Sect. 2.3.3) corrections can 
be obtained for two independent properties of solar structure, which may, for example, 
be chosen as sound speed and density, or density and the ratio ~z = pip. A number 
of such inversions have been carried out (e.g. Gough and Kosovichev 1988, 1990; 
Dziembowski et al. 1990; Thompson 1991). In much of the Sun the results of these 
inversions are in broad agreement. It appears that in most of the convection zone 
the sound speed in typical models agrees with that of the Sun; this is in accordance 
with Eq. (2.38) which suggests that in much of the convection zone the sound speed 
is determined largely by the surface gravity of the Sun. Below the convection zone, 
however, the solar sound speed is generally higher than that of the models by 1 - 
2 per cent, at least in the outer parts of the radiative region; this could be caused 
by fairly modest errors in the opacity tables used to construct the models. In fact, 
Dziembowski et al. (1992) recently performed an inversion relative to a reference 
model which employed new opacities from Iglesias and Rogers (1991); this caused a 
substantial reduction in the discrepancy between the model and the Sun. Dziembowski 
et al. (1992) also found evidence for inadequacies in the version of the MHD equation 
of state which was used for the model computation, in a region extending over much 



Solar oscillations and the equation of state 349 

of the convection zone. This, however, was largely due to the fact that the heavy 
elements were assumed to consist of only oxygen. 

The results for the solar core are substantially more uncertain, largely due to the 
fact that only the low-degree modes penetrate into the core. Early results gave a slight 
indication that the sound speed, and hence quite likely the temperature, of the solar 
core might be substantially higher than in standard solar models; there were also 
indications that the central density was higher by perhaps as much as 20 per cent than 
in the models. This has not been confirmed by analysis of more recent data, however, 
although there remain interesting, and apparently significant, differences between the 
Sun and the models, the origin of which is currently not understood. 

4.4 Effects in the core o f  the Sun 

It follows from Fig. 4 that to obtain helioseismic information about the solar core, 
modes of low degree must be considered. Also, it is evident that the interpretation of 
the results must be based on complete solar models. As discuSsed in Sect. 2.2.3, a 
suitable quantity for probing the core is the frequency separation ~Su~t = u ~ l -  u~-i  t+2. 
The asymptotic expression (2.36) suggests that/~u~l is sensitive to conditions in the 
solar core while being less sensitive to the outer parts of the Sun. In particular, the 
uncertain aspects in the modelling of the the superficial layers of the Sun largely 
cancel in the difference defining ~u~z. It follows from Eq. (2.36) that asymptotically 
~u~t (x 21 + 3; this motivates considering instead the scaled quantity 

3 

21 + 3/~u~l ' 
(4.9) 

which is then expected to depend little on 1. Equation (2.36) shows that d~z decreases 
with u roughly as u 1. 

As an example, Fig. 32 shows d~l in a standard solar model, for I = 0 , . . .  ; 3. It is 
evident that, as predicted by asymptotic theory, d~z depends only rather weakly on I. 

For comparisons between different models, or between computed and observed 
frequencies, it is convenient to parameterize the behaviour of d~l in terms of a few 
parameters. Elsworth et al. (1990) proposed using a linear least-squares fit of the form 

d~l = dl + s l (n  - n~) , (4.10) 

where nl is a suitable reference value of the order n. Here we consider the sensitivity 
of the coefficients in this fit to conditions in the core. 

ChristensemDalsgaard (1991a,b) made an extensive investigation of the effects of 
modifications of the physics, within the framework of standard solar models, on dnl,. 
The conclusion was that for models of fixed age d,~z varied relatively little, compared 
with the uncertainty in the observed values, over a wide range of opacity tables, 
nuclear energy generation parameters, and equations of state. 

Table 2 shows a few representative values of the average scaled separations do 
and dl arising from a least-squares fit of Eq. (4.10) to the computed frequencies, 
together with the corresponding observed values from Elsworth et al. (1990). Details 
about the computations were given by Christensen-Dalsgaard (1982, 1991a,b). The 
computations used the CT and LAOL opacity tables that have been used here (although 
for Model 6 Z was taken to be 0.0192); the version of the MHD equation of state was 
the same as used by Christensen-Dalsgaard et al. (1988b). In all cases, the models 
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Fig. 32. Scaled frequency separations dnl (cf. Eq. [4.9]) based on computed frequencies for a standard 
model of the present Sun, Each curve correspond to a value of the degree l, according to the following 
line styles:l=0( ) ; l = l  (- ..... ) ; l = 2 ( - -  . . . . . .  ) ; l = 3 ( - -  . . . . . . . . . . .  ) 

were calibrated by adjusting the mixing-length parameter c~c and the initial helium 
abundance Y0 to have the observed solar radius and luminosity at the age of  the 
present Sun, which, unless otherwise noted, was assumed to be 4.75 • 109 years. The 
resulting values of Y0 and ctc depend rather strongly on the opacity table. In the case 
of Y0 this is due to the fact that the LAOL opacities are somewhat higher than those 
obtained from the CT tables in much of  the radiative interior, requiring a higher value 
of Y0 to achieve the correct luminosity. The increase in c~c for LAOL is caused by 
the substantially higher opacities in the solar atmosphere; a similar effect was noted 
in the calibration of the envelope models to obtain a fixed depth of the convection 
zone (cf. Sect. 4.2). 

It is striking that for the standard models of age 4.75 • 109 years (i.e., Models 1 - 
5) the computed values of  dz are higher than the observed values by an amount that is 
at least formally statistically significant, although only barely so. This is true despite 
the rather wide range in physics and initial composition. Although this discrepancy 
is marginal, it is nevertheless interesting to consider how it might be explained. It 
was pointed out by Christensen-Dalsgaard (1988a) and Gough and Novotny (1990) 
that the frequency separation is quite sensitive to the assumed age of  the Sun. In fact, 
Model 6 in Table 2 shows that the computed do can be brought into agreement with 
the observations by increasing the age of the model to 5.05 • 109 years, although a 
small discrepancy remains for all. Such an age of the Sun is probably inconsistent 



Solar oscillations and the equation of state 351 

Table2. Results for complete solar models. All models have been calibrated to have solar radius and 
luminosity. The first column gives an identification number. The columns labelled "EOS" and "Opacity" 
identifies the equation of state and opacity tables, as defined in the text. Y0 and c~ o are the initial helium 
abundance and mixing length parameter required to calibrate the model, and Tc is the central temperature. 
The columns labelled "do" and "all" give the results of linear least-squares fits to frequency Separations 
d~t, for I = 0 and 1. The fit was of the form given in Eq. (4.10) and included modes with r~ in the range 
15 - 27, and taking r~ 1 = 21. The bottom r_2ow gives the results of a corresponding fit by Elsworth et al. 
(1990) to observed frequency separations; do and d~ were obtained with a standard error of 0.06/~Hz. 

Model EOS Opacity Y0 c~o Tc do dl 
No. (106 K) (#Hz) (/zHz) 

1 EFF CT 0.2496 1.6425 15.052 9 . 2 3 3  9.688 
2 EFF LAOL 0.2806 2.5167 15.685 9.250 9.681 
3 CEFF CT 0 .2404  1.6840 15.009 9 . 2 4 9  9.685 
4 MHD CT 0 .2393  1.6896 15.001 9 . 3 0 3  9.724 
5 MHD LAOL 0.2706 2.5752 15.624 9.304 9.714 

6 (a) EFF LAOL 0.2747 2.5598 15.703 9 . 0 1 0  9.496 
7 ~ EFF LAOL 0.2863 2.3546 15.131 12.434 12.202 
8 (c) EFF LAOL 0.2650 2.7200 14.313 7 . 3 3 1  8.575 

Obs. 9.00 9.36 

a assuming the age of the present Sun to be 5.05 • 109 years (rather than the default value of 4.75 • 109 
years); 
b hydrogen profile obtained by scaling from the partially mixed model (with "turbulent Reynolds number" 
Re* = 100) of Schatzman et al. (1981); 
c model with core opacity reduced to match observed neutrino flux (see Christensen-Dalsgaard 1992b) 

with inferred ages of  meteor i tes  and general  ideas about the format ion of  the Sun and 
the solar sys tem (Guenther  1989). However ,  the example  illustrates the sensit ivi ty of  
d~z to changes in the mean  molecu la r  we igh t  #~ in the centre of  the Sun, brought  
about in this case by a change in the central  he l ium abundance Yc. 

Other  effects  may  modi fy  the mean  molecu la r  weight.  Proffitt and Michaud  (1991) 
found that settl ing of  he l ium in the solar core may  increase Y'c by about 0.015, i.e., 
by  an amount  s imilar  to the increase arising in Mode l  6 in Table 2. F r o m  the point  of  
v i ew of  the present  paper  it is more  re levant  to note that #c would  also be increased 
re la t ive  to standard models  i f  he l ium were  not comple te ly  ionized  in the solar core. 
Indeed,  it is easy to see that i f  roughly 10 per  cent  o f  he l ium were  in the singly 
ionized  state, the effect  on #c would  be the same as that arising f rom an increase of  
Y~ by 0.015. Such a degree  of  recombina t ion  of  he l ium probably cannot  be excluded 
(cf. Sect. 3.3.3). 

It should be noted that other  modif icat ions may  have  a more  substantial effect  
on the f requency separation. This  is part icularly true of  modif icat ions  that have  been  
proposed  to account  for the discrepancy be tween  the predicted and the observed  flux of  
neutrinos f rom the Sun (for an ove rv iew of  this so-cal led solar neutrino problem, see, 
for example ,  Bahcal l  1989). Partial mix ing  of  the core, which  reduces the computed  
neutr ino flux, also leads to a substantial increase of  d~l (Schatzman et al. 1981; 
Cox  and Kidman  1984; Provost  1984; Chr is tensen-Dalsgaard  1986; see Mode l  7 in 
Table 2). The  effect  is the opposi te  of  the changes induced by, for example ,  increasing 
the age, since mix ing  reduces Yo and hence the mean  molecu la r  weight  in the core. 
On the other  hand, i f  it is assumed that a part o f  the energy transport in the solar core 
takes place through the mot ion  of  the so-cal led WIMPs ,  d,~z is decreased (Faulkner  
et al. 1986; Dfippen et al. 1986; Cox  et al. 1990). The  effect  can be s imulated by 
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reducing the opacity in a region localized to the core (Christensen-Dalsgaard 1992b); 
this is illustrated by Model 8 in Table 2, where the opacity reduction has been chosen 
such as to reduce the neutrino flux of the model to the observed value. In all the 
cases that have been considered modifications of a magnitude sufficient to account 
for the observed neutrino flux lead to values of dnz that are totally incompatible with 
the observed frequencies (see, for example, Elsworth et al. 1990; Cox et al. 1990; 
Christensen-Dalsgaard 1992b). On the other hand, a small contribution to the energy 
transport from WIMPs, or a small localized reduction in the opacity in the core, could 
in principle explain the discrepancy between the computed dnz and the observations 
of Elsworth et al. (1990). 

Finally, it must be pointed out that the observational situation is not yet entirely 
settled: a recent analysis by Toutain and Fr6hlich (1992) of observations made by the 
IPHIR instrument on the Soviet PHOBOS Mars mission gave separations that were 
closer to the computed values for standard models than those obtained by Elsworth 
et al. (1990). 

It is evident that the present data can in no way be used to constrain the degree 
of ionization of matter in the solar core. However, the results discussed here indicate 
the potential sensitivity of such measurements to the thermodynamic state of the 
core, provided that improved observations become available and that effects of other 
possible uncertainties in the structure of the core can be limited. 

5. Discussion and conclusion 

It was stressed in Sects. 2 and 4 that the solar convection zone is especially suited 
for a study of the equation of state: its structure is nearly adiabatic (except very close 
to the surface) and thus virtually independent of opacity; furthermore, because of the 
rapid mixing the composition of the convection zone is homogeneous. The equation 
of state is, of course, equally important in other regions of the Sun; but there it is more 
difficult to disentangle its helioseismic signature from other factors, principally the 
opacity and spatial variations in the helium abundance. For this reason, most of the 
efforts towards helioseismic probing of the equation of state (including those reported 
here) have concentrated on effects in the convection zone. 

It was suggested in a number of early papers (Berthomieu et al. 1980; Lubow et 
al. 1980; Ulrich 1982; Ulrich and Rhodes 1983; Shibahashi et al. 1983, 1984; Noels 
et al. 1984) that improvements in the equation of state can indeed reduce discrep- 
ancies between theory and observations. More recently, Christensen-Dalsgaard et al. 
(1988b) showed that the MHD (Mihalas, Hummer and D~ippen) equation of state 
significantly reduced these discrepancies for a large range of oscillation modes. The 
MHD equation of state was especially successful with the high-degree modes which 
probe the hydrogen and helium ionization zones. Compared with the prediction of the 
simple Saha equation [in the form of the EFF (Eggleton, Faulkner and Flannery) equa- 
tion of state], MHD pushes upward the hydrogen and helium ionization zones, and 
the resulting change in F1 and sound speed explains the better agreement. However, 
since the MHD equation of state simultaneously incorporates several different types 
of non-ideal corrections, it did not become immediately clear which one of these cor- 
rections was mainly contributing to this success. Christensen-Dalsgaard et al. (1988b) 
thought that the specific MHD treatment of bound states of hydrogen and helium 
was responsible. However, from a detailed comparison with the alternative non-ideal 
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Livermore equation of state (see Sect. 3.4), it turned out, rather surprisingly, that the 
net effect of the hydrogen and helium bound states on thermodynamic quantities was 
to a large degree eclipsed beneath the influence of the Coulomb term, which was 
thus recognized as the dominant non-ideal correction in the hydrogen and helium 
ionization zones. This discovery suggested an upgrade of the simple EFF equation 
of state through the inclusion of the Coulomb interaction term. The resulting CEFF 
equation of state became a very useful and welcome tool for solar physics; at the same 
time, however, it became also clear that a helioseismic test of the important issue of 
models in the chemical picture versus models in the physical picture would be more 
difficult than first thought. The terms chemical and physical picture classify the two 
basic approaches with which partially ionized plasmas are treated (see Sect. 3.1) We 
recall that in the chemical picture, bound configurations (atoms, ions and molecules) 
are introduced and treated as new and independent species. Plasma interactions are 
dealt with through modifications of atomic states, i.e., the quantum mechanical prob- 
lem is solved before statistical mechanics is applied. In the physical picture, only 
fundamental particles (nuclei and electrons) are explicitly introduced. The question of 
bound states is dealt with implicitly, through the Hamiltonian describing the interac- 
tion between the fundamental particles, and the problems of quantum mechanics and 
statistical mechanics are tackled simultaneously. 

For reasons not yet fully understood it seems that the signature of internal par- 
tition functions, such as employed in models based on the chemical picture (e.g. in 
the MHD equation of state), is much less visible in the thermodynamic quantities 
than a naive estimation of the shift in the ionization equilibrium would predict. It is 
likely that, in the chemical picture, there are cancellations in the derivatives of the 
free energy. Notice that these cancellation have nothing to do with those appearing 
in the physical picture (see Sect. 3.4) which lead to the Planck-Larkin partition func- 
tion. The cancellations of the chemical picture seem to be greatest for the ionization 
zone of hydrogen and somewhat less for those of helium. However, for the heavier 
elements it appeared that, still in the chemical picture, the internal partition functions 
finally entail the consequences for the thermodynamic quantities that are intuitively 
expected. The heavy elements could thus become the ideal testing ground for the ef- 
fects of bound states ir~ partially ionized plasmas. Unfortunately, the small abundance 
of heavy elements in the Sun will make a diagnosis difficult and stretch the power of 
helioseismology to its limits. On the other hand, this small sensitivity of the models 
to the precise formulation of the equation of state has obvious advantages when the 
models are needed for purposes other than testing the detailed thermodynamics. For 
instance, the seismological helium-abundance determination (Kosovichev et al. 1992) 
will benefit from all circumstance that reduce the uncertainty in the equation of state. 

In Sect. 4 we have discussed in detail the connection between changes in the equa- 
tion of state and various quantities related to solar models and oscillation frequencies. 
Ordering the effects by decreasing importance, we have examined, on a first level, 
the greatest change, encountered when going from the EFF to the CEFF equation of 
state. This comparison allows to isolate the influence of the Coulomb term. We em- 
phasize that there are different practical realizations of the Coulomb term: the CEFF 
and MHD equations of state include the so-called ~- cut-off as adopted by Graboske 
et al. (1969) (see Sect. 3.1). Different forms of the Coulomb term, with and without 
the ~- cut-off, were recently compared by Vorontsov et al. (1992). On a second level, 
we have examined the substantially smaller transition from the CEFF equation of 
state to a "stripped-down" version of the MHD equation of state MHD(S), which is 
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identical to the full version for hydrogen and helium, but which contains only the 
ground-state contribution in the internal partition functions of all heavier elements 
and their ions. Thus the difference between the CEFF and MHD(S) equations of state 
reveals the influence of the bound states of hydrogen and helium (in the chemical 
picture). Finally, on an already sophisticated third level, we have examined the con- 
sequences when going from the stripped MHD(S) to the full MHD(F) formalism. As 
we have explained in Sect. 3.5.3b, it is precisely this small difference that carries the 
greatest diagnostic potential for a helioseismic answer to the fundamental test of the 
two classes of models, based either on the chemical or physical picture. 

What has emerged from these comparisons? On the first level, the EFF-CEFF 
comparison, we have found that the observations definitively prefer the CEFF equation 
of state. We have been able to draw this conclusion despite some uncertainties related 
to finer things, such as the helium abundance or the specific entropy of the adiabat. 
On the next level, the CEFF-MHD(S) comparison, no such clear conclusion can be 
made, but the consequences for helioseismic analysis appear to be well within reach 
of present observational data. There are some hints that CEFF might be the better 
equation of state (see Sect. 4.3 and Vorontsov et al. 1992), but they are not conclusive. 
If further progress is made at this level, a helioseismic diagnosis of the appropriateness 
of one or the other treatment of bound states will become possible. The reason for 
this is that the Livermore equation of state, which is realized in the physical picture, 
mainly differs from MHD in its treatment of bound states. This is correct at least at the 
rather low densities of the hydrogen and helium ionization zones. The comparisons 
discussed in Sect. 3.5.2 have confirmed the intuitive expectation that the net effect of 
the physical picture with a Planck-Larkin partition function (3.16) is about the same 
as the analogous effect obtained in a simplified chemical-picture formalism, where the 
bound-state partition functions only contain their ground-state contribution. (However, 
at higher densities, the Livermore equation of state incorporates higher-order Coulomb 
terms in contrast to MHD, which never goes beyond the Debye-Hfickel treatment.) If 
it turns out that observations can really distinguish between the CEFF and MHD(S) 
equation of state, i.e., between the different treatments of the hydrogen and helium 
bound states, then the difference between the Livermore and CEFF equation of state 
will also become accessible. Finally, on the third and finest level, the difference 
between the MHD(S) and MHD(F) equations of state seems to be small for present 
observational data. 

These considerations provide an indication of the degree of detail to which the 
thermodynamic state of the solar interior can be probed at present. However, it should 
be noted that the observational basis for helioseismology is expected to expand greatly 
in the coming years, as a result of new facilities which are being established. These 
include ground-based networks of stations for whole-disk observations of low-degree 
modes (Aindow et al. 1988; Fossat 1991), and the GONG network to observe os- 
cillations of degrees up to around 250 (see, for example, Harvey et al. 1987). Even 
higher resolution, and with that even better data on the important ionization regions 
near the solar surface, will be provided by the SOI-MDI instrument (Scherrer et al. 
1991) on the satellite SOHO. Given the frequency accuracy expected from such mea- 
surements, it should be feasible to distinguish between, for example, MHD(S) and 
MHD(F). A further expansion of our ability to investigate details of the thermody- 
namic state will result from analysis of solar-like oscillations in other stars, where 
conditions differ from those found in the Sun. In particular, we note the possibility 
of probing conditions at higher density and lower temperature in main-sequence stars 
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of mass below that of the Sun. Oscillations of such stars may be within reach from 
the satellite PRISMA (see Lemaire et al. 1991) which is currently being considered 
by the European Space Agency ESA. 

The previous comparisons were concentrating on equation-of-state effects in the 
solar convection zone. Beneath the convection zone there are of course further inter- 
esting effects, but their diagnosis becomes more difficult, because in that part of the 
Sun opacity also affects the stratification. Opacity and equation of state can be disen- 
tangled only under the tentative assumption that the equation of state is better known 
than opacity. Iteratively, a helioseismic diagnosis of the opacity could become possi- 
ble. There is already a precedent for such a procedure. It has been realized for some 
time that for the layers below the convection zone, an opacity some 10 - 20 per cent 
above the LAOL values would remove important disagreements between theoretical 
and observed oscillation frequencies (Christensen-Dalsgaard et al. 1985; Korzennik 
and Ulrich 1989; Cox et al. 1989). Two independent efforts to recalculate stellar opac- 
ities have recently been made, one by the international so-called "Opacity Project" 
(Seaton 1987; in the following OP), and the other by a group at Livermore (Iglesias 
et al. 1987; in the following OPAL). In fact, the improved atomic and plasma physics 
of both projects has led to the desired increase. As mentioned above, Dziembowski 
et al. (1992) applied the most recent OPAL results to a solar model and verified the 
correctness of the earlier conjecture. This result will certainly be confirmed by the OP 
results as well, because selected comparisons (Yah 1992; Seaton 1992) have shown 
general good agreement between the results from the two projects. The remaining 
discrepancies (of the order of one magnitude less than the change with respect to 
the LAOL values) were supposed to be related to the role of the equation of state 
in the opacity calculations (Iglesias 1992). Indeed, OP uses the MHD equation of 
state based on the chemical picture (3.3.4), and OPAL the Livermore equation of 
state based on the physical picture (3.4). The fact that helioseismology predicted the 
direction of opacity improvement clearly demonstrates its potential to put constraints 
on the opacity. If it turns out that the "ultimate" uncertainty in the opacity is due 
to the equation of state and its underlying basic conceptual issue, opacity constraints 
will serve as further tests of the equation of state. 

A final area of interest, also outside the solar convection zone and therefore less 
straightforward to probe, is the possibility of partial recombination of He + ions in 
the solar centre (see Sect. 3.3.3); this would affect the sound speed and hence the 
oscillation frequencies to an extent that may be observable. As was emphasized in 
Sect. 4.4, the solar centre is evidently a difficult region to probe; with helioseismic 
data alone, it is impossible to determine the ionization degree. Currently there are 
substantial uncertainties related to the opacity in the core, as well as to modifications 
in the chemical composition caused by helium settling or weak mixing. Such uncer- 
tainties must be reduced, or eliminated, before we can unambiguously investigate the 
ionization properties in the core. However, given the importance of the solar neu- 
trino problem, a great deal of attention is given to these problems; hence it is not 
unlikely that helioseismology will be able to address also this rather exotic issue in 
the equation of state. 
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