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Abstract. To obtain river flow data, a neural network (NN) is developed and applied to rainfall-runoff 
transformation. The NN has been built considering a hidden two layer net and the sigmoidal has been 
used as a response function. Training is conducted using a back-propagation learning rule. In the 
input layer, both areal and point data values may be considered. The capability to provide a suitable 
forecast of river runoff has been examined for the Araxisi watershed in Sardinia. Experiments have 
been made dividing the total extension of observed data into three ten-year periods, assuming each 
as a training set, learning the NN and simulating the other two decades over the same period. The 
obtained model efficiency confirms the capability of this approach to supplying a useful tool in the 
evaluation of rainfall-runoff transformations. 
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1. Introduction 

River flow forecasts are required to provide basic information on a wide range of 
problems in the design and control of river operations. The availability of extended 
records of rainfall and climatic data that can be used to obtain stream flow data is 
the major reason for the origin of rainfall-runoff modelling. Starting from the end 
of the last century rainfall-runoff modelling was applied in a large variety of meth- 
ods and techniques. Following Dooge (1986), the levels of interest in explanatory 
theories and predictive models in hydrology include observation, understanding, 
prediction and control fields. Within this framework models which provide a phys- 
ically sound description of hydrological processes occurring in a catchment would 
have significant advantages over a purely empirical model. However, as reported 
by Kachroo (1992), the development of physical models is still in its early stages, 
and in operational hydrology two altemative approaches are usually singled out in 
rainfall-runoff modelling. One is the conceptual modelling method which attempts 
to represent in a simplified manner the known physical process occurring in the 
rainfall-runoff transformation. The other approach is systems analysis or the 'black 
box' approach, which affords general and flexible relationships by its application 
to input and output records. 

Within the latter class, a method to predict the runoff response of the watershed 
on the basis of known series could be based on the application of a neural net to the 
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previously observed data. Neural nets (NN) are constructed to obtain a prediction 
of system response without attempting to reach understanding or to provide insight 
into the nature of the phenomena. 

The use of NN in geoscience is relatively new. A recent work by French, 
Krajewski and Cuykendall (1992) indicates that an NN is capable of performing 
the complex relationship by describing the space-time evolution of rainfall as the 
one inherent in a complex rainfall simulation model. 

In the 1980's neural nets have also been applied to difficult and generally 
poorly understood tasks (Dennis and Phillips, 1991). The limit with this kind of 
approach, which is essentially a black box analysis, is that it is not understood 
how the NN has solved the prediction problem. Statistical analysis, as principal 
components analysis and canonical discriminant analysis, is a tool that can be 
used to interpret the behaviour of NN results. However, using NN in rainfall- 
runoff transformation, the amount of available information is generally reduced to 
basic climatic variables, all useful, in such a way that the model-sizing problem 
frequently reduces to determining the number of preceding time steps to consider 
in evaluating the actual watershed response. 

The aim of this study is to verify the possibility of utilising NN to predict 
the runoff when only information about the variation of the basic input variables, 
namely rainfall and temperature, is available. In this first approach to the problem, 
the time step has been established in month periods. It is clear that with this time 
unit the reconstructed hydrologic behaviour of the catchment is suitable for water 
resource studies where storage-yield sequences are usually related to monthly 
periods but not adequate to deal with other proposals such as those related to flood 
flow problems. Furthermore, it is known (Pitman, 1978; Piga and Piras, 1983) that 
if month periods are sufficient to describe the hydrologic behaviour for a design or 
control problem, there is often no benefit in utilising more complex models based 
on daily, even hourly rainfall inputs, since total monthly flow predictions of these 
shorter step models are not more accurate. Undoubtedly, NN modelling could be 
used with any other time step and with as much more information with respect to 
the rainfall-runoff process. 

2. Model Efficiency 

A first requirement is that the model must generate runoff values with first moments 
as close as possible to the observed ones. However, following this criterion, mean 
and variance cannot tell us by how much the synthetic and observed data differ in 
each period. An index of the residual error is the quantity: 

N 

E = ~ ( x i  - :~i) 2, (1) 
i = l  

where xi is the model output in the ith period and 0~i the observed data. Even if this 
criterion can be used to compare different models for the same watershed, it is not 
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possible to utilise E to compare the reliability of modelling in different watersheds. 
To overcome this limitation, the model efficiency R 2 has been defined by Nash 
and Sutcliffe (1970) according to the coefficient of determination in the regression 
theory: 

R2 _ Eo - E 
Eo ' (2) 

where 

N 

Eo =  (xi- 
i=1 

(3) 

and ~ is the mean of observed periods. Dealing with hydrological regimes with 
marked seasonal variations, it has been pointed out by Cao and Piga (1978) and 
Garrick et  al. (1978) that the efficiency (2) gives an optimistic evaluation of 
the runoff reliability prediction. The intrinsic periodic variability of the process 
represents an important part of its total variability and in this situation efficiency 
can be redefined as 

R 2 :  (~~D=I Ed) - -  E 

ED=I Ed ' 
(4) 

where 

Nd 
= Z ( x ,  - 

i=1 
(5) 

is the square variation of the observed runoff in the season d = 1, D. 
In the following for comparison we shall use the latter efficiency expression (4) 

that seems to provide a better evaluation of the model's ability in forecasting flows 
for the studied catchment where seasonal behaviour represents a main portion of 
total flow variation. 

3. N e u r a l  N e t w o r k  M o d e l l i n g  

The NN modelling technique started with an attempt to create a computer method- 
ology that can simulate some important features of the human nervous system; in 
other words, the ability to solve problems that cannot be solved with the classical 
programming techniques available today, the possibility of dealing with a great 
amount of information, and especially, the ability to learn from examples. A lot has 
been said about these features in nervous systems but all lead to the conclusion that 
the human brain works in a different way to modem computers. For instance, it 
seems that computational tasks are not delegated to one complex central processing 
unit but to many, different, simple, and widely distributed processing units. Even 
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Fig. 1. Perceptron model. 

the way in which information is stored is different: it is a 'content-addressable 
memory' (CAM), so that data is found using content rather than address. Finally 
the feature of learning from examples seems to derive from the ability to modify 
nervous associations depending on the problem it has to solve. An extended intro- 
duction to basic concepts and features underlying the NN modelling approach can 
be found in Beale and Jackson (1990). 

A first attempt at reproducing the basic functions of a biological neuron by 
McCulloch and Pitts (1943), simply modelled the sum of electrical inputs as com- 
pared to a threshold value 0: 

xj---- fh [ i=l,N Wijxi--Oj] , (6) 

where fh is the response step function which produces only 1 (positive function 
argument) or 0 (negative or zero function argument) as output x j; wji is the 
effectiveness index of the transmission ability of the 'link', connecting neuron i to 
neuron j ,  called link weight; xi is the input value from neuron i; N the number 
of neurons connected to neuron j.  Another way of achieving the same effect is by 
adding an extra input (input 0) that is fixed to be on all the time (x0 = l) and has 
a link weight equal to minus the threshold value. This value is called the neurons' 
bias or offset. 

In the first artificial neural network, created by Frank Rosenblatt in 1962 called 
perceptron, neurons were arranged within one active layer (output layer). Figure 1 
shows an example of perceptron with two active neurons in the output layer. The 
input layer is only responsible for distributing inputs and does not carry out any 
threshold calculation. The imposition of arbitrary link weights allows the network 
to obtain an output, but, at first run, this is most likely to be very different from the 
desired output. 

Widrow and Hoff (1960) proposed a learning rule, known as delta rule, by which 
the link weights are modified using an error term equal to the difference between 
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Fig. 2. Examples of NN with different layers. 

desired output and actual output. This network link weight adjustment, guided by 
the knowledge of what is to be achieved, is known as 'supervised learning'. The 
error term can be written 

A j  = 2 j  - x j ,  (7) 

where xj is the actual response of the system to a known input at learning cycle t. 
The learning rule is 

wij(t + 1) = wij(t) + BAjxi. (8) 

The gain 0 < ~ < 1 controls the gradual process of adjustment to new link 
values moving towards best values. Minsky and Papert (1969) proved that the 
simple perceptron model is only able to classify a pattern if a linear boundary 
between the pattern classes can be found for it. For instance, it is impossible to find 
a solution to the classic exclusive-or (XOR) problem. The paper effectively put an 
end to research in NN for many years. 

To overcome this, the next step was to arrange the NN neurons in several layers: 
the input layer, the output layer and one or more hidden layers between the two. The 
response function also changed so as to exceed the learning problems showed by 
the original step function for multi-layer perceptrons. A commonly used response 
function for NN is the sigmoid: 

fh = 1/ (1 + e - ~  wl, z~). (9) 

For different problems it might be convenient and would be possible to use different 
response functions such as linear, hyperbolic tangent, sine, Gaussian, etc. 

To choose a proper network configuration for the problem, more layers means 
ability to solve more complex problems, but also more computational complexity. 
However complex, we never need more than three layers in a network (Kolmogorov 
Theorem). In Figure 2 we can see examples of different layer NN. 
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The new learning rule for this multi-layer perceptron is due to Rumelhart and 
McClelland (1986) and is called the 'generalised delta rule' or 'back-propagation 
rule'. This rule essentially implements descendent gradient method in sum-squared 
error function for finding weights. It starts with the definition of the error term 

Ep = 1/2  ~ (:~j - X j )  2, (10) 
j=I,N 

where Ep is the error function for pattern p. The output xj is the value given by 
the response function fh acting on the weighted sum 

sj = ~ wijxi, (11) 
i=l,m 

xj =fh(sj) ,  (12) 

where m is the neuron number in the previous layer. Following Rumelhart and 
McClelland (1986), we can write: 

OE~ 
Owi5 

We also have 

Osj _ 
Owq 

OEp Osj 
Osj Owij" 

(13) 

0 Owjk 
o w  ~_-I,~Z ~jx~ = Z - - x k ~  o~j = x~, (14) 

since Owkj/Owij = 0 except when k = i when it equals 1. If we put 

OEp 
Osj - 6j (15) 

substituting (14) and (15) in (13), we can write: 

OEp _ 5jXi. (16) 
OWij 

Decreasing the value of Ep therefore means making the weight changes propor- 
tional to 5jxi 

Awij = ~Sjxi, (17) 

where ~/is a gain term similar to that used in (8), seen above. To know the value of 
5j for each of the nodes we can write 

OEp _ O& Oxj (18) 
5j = - osj ozj Osa 
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Fig. 3. Behaviour of error function. 

If both target and actual outputs are available (output layer), considering Equations 
(10) and (12), we find 

(19) 

For the hidden layers we need other considerations since their target output is not 
known. Therefore, i f j  is a node in a hidden layer, we can write: 

Oxj - E os~ Oxj - E \ ~ Yxj w~x~ = - E ~wJ~, (20) 
k k k 

where the sum index k ranges over the next layer and i over the same layer and 
since the term Oxi/Oxj = 0 except when i = j when it equals 1. For a hidden 
layer we have: 

5j = f~(sj) ~ 6kwjk. (21) 
k 

The function is proportional to the terms 6k in subsequent units, so the error has to 
be calculated in the output units first, and then passed back throughout the net to 
the previous hidden units in order to allow them to alter their connection weights. 
For this reason the rule is called 'back propagation'. 

If we suppose that only two weights can vary, it is possible to plot a three 
dimensional graph of the error function for a particular pattern versus the two 
weights, which could look as in Figure 3. 

The general behaviour of error function gives a rippling surface with rising and 
falling zones that correspond to points in which the error is lower or higher. The 
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aim of the generalised delta rule is to find the minimum error corresponding to 
the deeper surface zone. We can use different approaches to improve this research. 
Lowering the gain term r/during training allows to overcome local minima with a 
large step at first and, as the gain decreases, the solution is reached without wide 
oscillations. By introducing an extra term called 'momentum' in the learning rule, 
the updated weights become: 

wij( t  + 1) = wij( t )  + rl6jxi + a (wi j ( t )  - wi j ( t  - 1)), (22) 

where a is the momentum factor, 0 < a < 1. The greater the weight changes 
produced by this term, the larger the changes so that convergence may speed 
up. 

4. The Rainfall-Runoff Neural Model 

The NN approach to forecast rainfall-runoff transformation has been implemented 
by linking modules that create specialised self-adaptive NN to the data structure 
here considered, with more general modules utilised in training the net. In the 
present work for this second phase a tool called NeuroWindows (1993) has been 
tested. It is a dynamic link library (DLL) designed for use with Microsoft's Visual 
Basic, Access Basic and C ++ programming languages. 

The developed software allows to create and memorise for the basin under 
study several kinds of two- or three-layered neural networks. Depending on the 
input variables, it is possible to choose for each network the neuron number for the 
input layer and for the hidden layers, whilst the software puts one neuron in the 
output layer (runoff). 

The training period and the evaluation period must be specified before the train- 
ing starts. As the parameter to evaluate training performance the software calculates 
efficiency R 2, and the algorithm runs until a satisfactory value is reached. 

In the following there is a general description of the main routines utilised in the 
rainfall-runoff neural model. These routines have been here developed in Visual 
Basic. The code can be divided in three main parts as follows: 

1) creation of neural network: 
network general characteristic definition 
procedure MakeNet (netmum, Bp=back_propagation) 
layers definition 
procedure MakeLayer (net.hum, layer_hum, neuron_number, layer_type) 
links definition 
procedure MakeLink(net_num, fromAayer, to_layer, init_weight) 

2) training of the network: 
while (end_training) 
begin 
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for i= 1 to training_set 
begin 

training value assignment to the input layer 
procedure PutLayer (net_num, training_values, input layer) 
input value propagation towards output neuron 
procedure Propagate (net_num) 
error calculation and back propagation 
procedure train (net_num, desired_value) 

end 
efficiency evaluation 
procedure evaluate (net_num, evaluating_value, end_training) 

end 

3) evaluation over simulation period: 
simulating value assignment to the input layer 
procedure PutLayer(net_num, training_values, inputAayer) 
input value propagation towards output neuron 
procedure Propagate(net_num) 
get the output value from the output layer 
procedure GetValue(net_num) 

All the input work and the output results are given in a friendly to use and 
graphically-assisted manner. An example of a training frame is given in Figure 4. 

5. Application of the NN Model 

The capability of NN to provide a suitable forecast of river runoff has been exam- 
ined for the Araxisi watershed in Sardinia (Italy). The catchment area is 121.0 km 2 
and the mean quota 740 m above sea level. The basin is almost impermeable and 
the hydrologic regime quite Mediterranean with a dry season during the summer 
and a rainy period from late autumn to the beginning of spring. For this basin the 
measured series of rainfall and runoff has been considered for 30 years from 1946 
to 1975. Figure 5 shows a schematic representation of the basin and the location of 
gauges. Mean areal month values of rainfall over the basin have been simply eval- 
uated by giving fixed values to each station weight. Temperature data are available 
for only three stations in the basin. 

The NN created for modelling rainfall runoff transformation in this basin has 
been built considering a two hidden layer NN for each simulation trial. The sig- 
moidal has been used as a response function. The initial weight of each link was 
chosen at random in the range [-0.5; +0.5] while the learning rate was 0.5 and 
the momentum 0.9. During training the momentum term was automatically halved 
each time the efficiency over the training set started to decrease or remain steady 
after a significant number of cycles. 
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Preliminary experiments have been carried out to examine and compare the 
efficiency of NN, on varying the number of previous month time steps included 
in the input layer. The code will construct a differently-sized NN, as the input 
and hidden layers spread on increasing input variables. With regard to mean areal 
values, the NN model still remains within a very small dimension, considering as 
input nodes, rainfall, temperature and runoff of the preceding months as well as 
rainfall and temperature of the examined month. 

Experiments have been made dividing the total extension of observed data in 
three ten-year periods, assuming each of the ten years as training periods and 
running the training phase up to 400 cycles to reach the best efficiency values. It 
is shown that there is no special advantage in taking into account more than the 
data of the previous month, as for fixed and limited learning cycles this condition 
frequently assures best results. However, the efficiency reached in the training set 
of the 1946-55 ten year period is always more than 0.8 with 400 learning cycles. 
Clearly the validity of the model decreases when evaluating the efficiency over an 
external period. 

Figure 6 shows the behaviour of the efficiency reached on increasing the cycles 
used in learning the NN when considering the training period 1946-55, and when 
evaluating with the same parameters (link weights) also the runoff for the simulating 
periods 1956-65 and 1966-75. The final values reached are 0.856 for the training 
period, and 0.597 and 0.641 for the simulating periods. 

These results have been obtained after 200 learning cycles with a reasonable 
computing time even on a small PC 386. On increasing the number of cycles a 
sort of over-training can often be observed so that when the 'internal' efficiency 
is increased slightly in the training period, a corresponding drop is observed in 
'external' efficiency in the simulating period. 
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Regarding the increase in efficiency obtained using a longer training period, 
Figure 7 shows the behaviour of R 2 evaluated on the 30 available years but 
training the NN model on different lengths of the training period. As expected, 
the increase remains significant until the total length is reached but the values are 
already significantly high for the ten year training assumed here for the testing 
simulation. 

With the NN model it is easy to take into account point rainfall and temperature 
instead of mean areal values. Clearly the NN becomes greater because each rain 
and thermometric gauge determines the necessity of considering a node for each 
input month and a node for the hidden layer. In the Araxisi basin taking into account 
the gauges in Figure 5 and considering the actual and preceding month data in the 
input layer, the NN has 17 nodes in both the input and the hidden layers. The 
computing time remains acceptable also on a small computer. Moreover NN gains 
in efficiency as can be shown in Figure 8 where the results obtained with mean areal 
and point data input are compared. The point-data NN model reaches an efficiency 
of 0.899 for the ten years of the training period. 

The user can carry out this kind of approach even more easily since there is no 
need to evaluate an aggregate of point values and since considerations about the 
geographical position of the gauge can be left out because NN makes an automatic 
evaluation of the best weights for each station in the model. 

With point input data Table I shows the values of efficiency R 2 obtained by 
changing the training period in the three ten year periods available. In Figures 9 
and 10 the behaviour of the observed and calculated runoff flows are compared for 
the best (R 2 = 0.899) and the worst (R 2 = 0.454) case. 
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6. Final Remarks and Conclusions 

The NN model applied to the rainfall-runoff transformation problem seems to 
reach encouraging results for the basin under examination. Moreover, working 

TABLE I. Evaluation period 

training per. 1946-55 1956-65 1966-75 

1946-55 0.899 0.480 0.685 

1956-65 0.597 0.699 0.472 

1966-75 0.559 0.454 0.864 
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with this simple basin the main indications about NN modelling features find 
confirmation: i.e. their ability to reach self organising well balanced link weights 
and the possibility of being applied at the real system level. 

As pointed out by Beale and Jackson (1990) NN are far from being a universal 
panacea for all computing situations. Nevertheless, they are an efficient tool in 
solving many problems where the relationships between inputs and outputs are not 
explained thoroughly. Finally, to give weight to above features we can compare 
them with the results reported by Piga and Piras (1983) on the ability of a conceptual 
model to simulate monthly stream flows for the Araxisi basin. The best results 
obtained considering the calibration period 1951-75 gave an internal efficiency of 
0.558 while in the 12-year periods 1951-63 and 1963-75 intemal efficiency was 
0.632 and 0.537. 

Other comparison values are the efficiency obtained from a simple multivariate 
AR model built essentially by taking into account the same variables as in the NN 
model. The internal efficiencies reached in the 3 decades 1946-1955, 1956-1965 
and 1966-1975 are, respectively, 0.601, 0.429 and 0.504. 

The results obtained with NN are significant better than those reached in the 
two above models and confirm the ability of this approach to provide a useful tool 
in solving problems in hydrology. 
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