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Abstract. A problem of water-table fluctuation in a finite two-dimensional aquifer system in response 
to transient recharge from an overlying rectangular area is studied. An analytical solution is obtained 
by using the method of finite Fourier transform to predict the transient position of the water-table. 
The solution for constant rate of recharge is shown as a special case of the present solution. Effects 
of variation in the rate of recharge on the growth of two-dimensional groundwater mound is illustrated 
with the help of a numerical example. 
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Notation 

A half width of the aquifer [L] 
B half length of the aquifer [L] 
D half width of the recharge basin [L] 
e specific yield 
h varying water-table height [L] 
h 0 initial water-table height [L] 
,~ weighted mean of the depth of saturation [L] 
K hydraulic conductivity [LT 1] 

L half length of the recharge basin [L] 
P(t) time varying rate of recharge [LT -~] 
PI + P0 initial rate of time varying recharge 

[LT -1] 
P1 final rate of time varying recharge [LT -1] 
t time of observation IT] 
x, y coordinate axes 
c~ decay constant IT 1] 

1. Introduction 

Artificial recharging of groundwater is being practised in many regions in order 
to maintain water balance in an aquifer system. Generally, the recharge is applied 
from rectangular or circular basins. The problems of water-table fluctuations in 
response to recharge from such basins have been studied by many workers like 
Baumann (1952), Glover (1960), Hantush (1967), Hunt (1971), and Rao and Sarma 
(198 la, b). In all these studies, the rate of recharge is considered as constant. However, 
the rate of recharge has the same time dependence as the infiltration rate. The 
infiltration rate has been approximated by combination of an exponential function 
and a constant term (Horton, 1940, Bear, 1979). 

Zomorodi (1991) has shown that in the case of time-varying recharge, the analytical 
solutions which are based on the assumption of the constant rate of recharge give 
erroneous results. In this paper, we extend the work of Rao and Sarma (1981a) 
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Fig. 1. Diagrammatic representation of the flow systems. 

to the variable recharge case and obtain an analytical solution which can be used 
to predict the spatio-temporal variation of the water-table in response to time- 
varying recharge from a rectangular basin. 

2. Formulation and Solution 

The aquifer system under consideration is shown in Figure 1. An unconfined aquifer 
of length 2A and width 2B is receiving recharge from an overlying rectangular 
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Fig. 2. Time-varying rate of recharge. 
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basin having the length and width as 2L and 2D, respectively. The rate of recharge 
is considered as exponentially decaying with time from a large value, P1 + P0 to 
a small value P1 and thereafter remains constant (Figure 2). The origin of the 
coordinate axis is taken at the centre of the recharge basin. Because of the sym- 
metry, only the positive quarter of the aquifer system is considered in further inves- 
tigations. 

The groundwater movement in the homogeneous and isotropic phreatic aquifer 
system is described under the Dupuit assumption (Bear, 1979) by the following 
initial boundary-value problem 

02H 02H 2 1 OH 
- - + - - + - - P ( x , y ,  t ) -  - - ,  (1) 

OX 2 Oy 2 K a Ot 

OH (B, y, t) OH 
Ox (x, A, t) = 0 ,  (2) 

P(x, y, t ) = I  P(t)' x<_L;y<_D,  (3) 
t O, otherwise, 

H(x, y, O) = O, (4) 

in which 
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P ( t ) = P l + P o e x p ( - a t ) ,  H = h  2 - h ~ ,  

Other symbols are defined in the list of Notations./~ is approximated by 0.5(h + h0). 
Marino (1967) has discussed a method of successive approximation for the com- 
putation of/~. He has also shown for a one-dimensional form of Equation (1) 
that this assumption describes the water-table fluctuation up to 6% deviation for 
a water-table rise as high as ho/2. 

This boundary-value problem is solved by the method of finite Fourier transform 
following Rao and Sarma (198 la). The finite Fourier cosine transform for the function 
H(x, y, t) is defined as: 

rc[H(x,  y, t)] = S(m, n, t) 

= y ,  

in which m and n are integers. By transforming Equation (1) using (5) with con- 
ditions (2) and (3), we get 

dS(m,  n, t) 
+ X S(m, n, t) = g(m, n) P(t)  , (6) 

dt 

X = arc 2 (m2/B 2 + n2/A 2) 

and 

g(m, n ) =  I 
2aAB 

The solution of Equation (6), subject to the initial condition (4), is given by 

S(m, n, t) = g(m, n) exp(-Xt) P(r)  exp(Xr) d r .  (7) 

H(x, y, t) is obtained from S(m, n, t) by using the inverse Fourier cosine trans- 
form (Sneddon, 1974) as 

H(x,  y, t) = 

1 S(O, O, t) + S(m,  O, t) Cos 
AB AB m=l 

2 n 

AB n=l 

÷ 

Expressions for S(O, O, t), S(m, O, t), S(O, n, t), S(m, n, t) can be obtained from 

+ - -  S(m,  n, t) Cos Cos . (8) 
AB m=l n=l 
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Equat ion  (7). After  substituting these expressions into Equat ion  (8), we get the 

following desired expression for  the variable water-table height. 

hZ(x, y ,  t) = 

2aLDt  [ 1 - e x p ( . a t ) ]  
= h2o ~ P ~ + P o  ' + 

K A B  at  

4aD ~ 1 ( ~ _ _ )  ( _ _ ~ )  
+ - -  - -  Sin Cos × 

rrKA m~ 1 m 

1 - exp( -a trrZmZ/B 2) e x p ( - a t )  - exp(-a trcZm2/B 2) ] 
+Po  . . . . . .  J + × P1 arc2m2/B 2 arr2m2/B 2 - a 

4~ ~ _~ sin(_T)co+~) ~ 
rrKB n=l n 

1 - exp(-atrcZn2/A 2) e x p ( - a t )  - exp(-atrc2n2/A 2) ] 
+ P o  . . . . . .  ] + 

× P1 arc2n2/A 2 arr2n2/A 2 - a 

~ ~ ~ ~ ~ ~m~,,~ ~.~,~ ~m~, ( ~ )  + - -  K~2m=i n=, m. m t ~ - - )  ' n t ~ - - )  ° s t ~ - - ) C ° s  × 

1 - e x p ( - X t )  + P0 e x p ( - a t )  - exp(-Xt)_]  (9) 
× P1 X X - a ' 

3. Solution for Constant Recharge Rate 

By substituting a = 0, Equat ion  (9) reduces to 

h2(x, y ,  t) = 

=~0~ 2~.~.. + 4~.~ ~ _ . ~  ~:1 ~ Sin(~) ~os('~) 

[ ] 4 ~ ~  , 
× 1 - exp( -a t rrZm2/B 2) + - -  

KBrr 3 n=l n 3 
< ~ )  cos(~) 

[ ] ~ 2 . 2 ~ : ~  1 1 
× 1 - e x p ( - a t r c 2 n Z / A  2) + × 

Krc 4 m=l n=l mn mZA 2 + nZB 2 

× [ 1 - e x p ( - a r r 2 ( m 2 A  2 +n2B z) t / A 2 B 2 ) ] ×  

~in(~) ~in(~) ~os(~) ~os(~-) (10) 
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Fig. 3. Comparison of water-table profiles obtained by using the present solution and the Hantush 
solution. 

in which P = P1 + P0- Equation (10) has two more terms, i.e. second and third, 
than Equation (17) of Rao and Sarma (1981a), which we obtained by using the 
inverse Fourier cosine transform (Equation (8)). 

4. Numerical Results and Discussion 

Warner et  al. (1989) have shown that Rao and Sarma's (1981a) solution gives erratic 
results. Here, we first consider their numerical example to compare the results of 
the present solution with the Hantush (1967) solution. In this example, h 0 = 60.96 m, 
L = D = 30.48 m, e = 0.20, and K = 3.048 m/d.  

As Hantush solution is for an infinite aquifer, to simulate the condition of infinite 
aquifer we have taken the length and width of the finite aquifer as 100 times of 
the length and width of the recharge basin. Using Equation (10), the water-table 
profile for t = 20 days is computed and compared in Figure 3 with the profile 
obtained by using the Hantush (1967) solution for a rectangular recharge basin. 
It is evident from the figure that both profiles are in very good agreement. 

Now, in order to see the effect of the variation in the rate of recharge on the 
growth of the water-table, we consider the numerical example used by Rao and 
Sarma (1981a) in which 

h 0 = 4 . 8 7 7 m ,  L = D = 4 4 . 9 5 8 m ,  e = 0 . 0 8 9 ,  

K =  31.699 m / d ,  P l = 0 . 0 6 1 m / d ,  P 0 = 0 . 0 3 6 5 m / d .  
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Fig. 4. Comparison of water-table profiles corresponding to time-varying and constant rates 
of recharge. 

In the computat ion,  the numerical values of A and B are taken as 100 times L. 

Two values of  the decay constant are taken. These are ~ = 0.2 and 0.6 d -1. 
The water-table profiles corresponding to the constant rate of  recharge and time- 

varying rates of  recharge are computed for t = 5.15 day by using Equations (10) 
and (9), respectively, and are compared in Figure 4. The constant rate of recharge  

is taken as being equal to the initial rate of  time-varying recharge, i.e. P1 + P0. 

It is clear from the figure that the rise of the water-table for the constant rate 

of recharge (~ = 0 d -1) is more than the rise of  the water-table for time-varying 

recharge (a = 0.2 and 0.6 d-l). The magnitude of difference between two successive 
profiles is maximum at the centre of the recharge basin and it decreases with distance 

away from the centre. In the case of time-varying recharge, the rise of the water- 

table for ~ = 0.2 d -1 is more than the rise for ~ = 0.6 d-L This is because, for 
a larger value of c~, the decay of recharge rate will be faster than that for a smaller 
value. As a result, the cumulative recharge during a given period for a larger value 
of o~ is comparatively less than that for a smaller value of ~. 

Time history of the growth of the water-table at the centre of the recharge basin 
for a constant rate of  recharge (~ = 0) and for time-varying rates of  recharge 
with a = 0.2 and 0.6 d -1 are shown in Figure 5. As expected, the growth of the 
water-table for ~ = 0.2 d -1 is faster than that for ~ = 0.6 d -~ at the beginning of 
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Fig. 5. Time history of the water-table growth at the centre of the recharge basin for different 
values of a. 

the recharge. As a result, the difference between both curves increases with time. 
But after some time, it decreases and both curves approach the same level. This 
is because, tha t  at a later time, the rates of recharge for a = 0.2 and 0.6 d -1 maintain 
the same lower value of recharge rate, Pv An example of water table contours 
at 5.15 day is shown in Figure 6 for an area of 175 × 175 m 2. These contours 

are computed for a = 0.6 d -~ using Equation (9). 

5. Conclusion 

An analytical solution (Equation (9)) is presented to predict the spatio-temporal 
variation of a water-table in response to time-varying recharge from a rectangular 
basin. Numerical results reveal that the variation in the rate of recharge significantly 
affects the growth of the water-table. The magnitude of reduction in the growth 
of the water-table, due to a decrease in  the rate of recharge, is maximum below 
the central part of the recharge basin and it decreases with distance away from 
the centre. 
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Fig. 6. Water-table contours at 5.15 day. 
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