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ALGORITHMS AND RESULTS OF SOLVING THE INVERSE HEAT-CONDUCTION 

BOUNDARY PROBLEM IN A TWO-DIMENSIONAL FORMULATION 

O. M. Alifanov and Yu. V. Egorov UDC 536.24 

The effectiveness of gradient algorithms for solving the inverse problem which 
are regulated in terms of the number of iterations is investigated. 

The need to solve inverse heat-conduction boundary problems (IHBP) most often arises in 
analyzing the results of thermal experiments when a quantity characterizing the heat transfer 
at the boundary surface of the body (heat-flux density, heat-transfer coefficient, surface 
temperature of body) must be determined from the results of temperature measurements at a 
series of fixed points of a solid. 

In view of the incorrectness of the initial formulation of IHBP associated with viola- 
tion of the stability conditions, regularizing algorithms are used for their solution [i, 2]. 
Effective algorithms have now been developed for the inverse problem in the one-dimensional 
formulation. The region of practical use of methods of identifying and diagnosing heat- 
transfer processes on the basis of solving one-dimensional IHBP is sufficiently large but 
nevertheless limited. In a series of cases, it is necessary to resort to IHBP in a two- 
dimensional formulation. However, in terms of algorithm development, such problems have been 
inadequately studied. 

As shown in [3], efficient algorithms for solving two-dimensional IHBP may be obtained 
by means of iterative regularization using a different approximation of the heat-conduction 
boundary problem. This approach is developed below for the integral form of the two-dimen- 
sional problem with constant thermophysical characteristics. This formulation covers cases 
of practical application in which the change in properties of the body in the given tempera- 
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ture range may be neglected or the specific features of this change are taken into account 
so as to reduce the problem to this two-dimensional formulation. For example, as noted in 
[2], the condition of constant thermal diffusivity is satisfied for a series of metals and 
nonmetals with acceptable accuracy over a relatively broad temperature range. As a result, 
it is possible to proceed to a linear inverse problem in terms of the model temperature spe- 
cified by the Kirchhoff transformation. In these cases, it is expedient to use an integral 
form of IHBP, which is preferable from the viewpoint of the efficiency of computer realiza- 
tion of the algorithms, in particular in terms of the volume of operative memory required 
and especially the computation time. 

The formulation of the IIqBP for a body of rectangular cross section is now developed. 
Assume that the heat-flux vector at each point of space is parallel to the plane XOY and 
there is no heat transfer in the planes x = 0, x = b, y = O. It is required to find the 
heat-flux density q(x, T) at the boundary y = c on the line y = 0. Thus, the corresponding 
relations are 

OT ( O~T 02T ~, 
= a  ~ g . , /  g 8r Ox ~ - +  xE(O, b), E(O, c), E(O, r~l, (1) 

T(x, g, O) ----- r b'), xE(O, b), gE(O, c), (2) 

OT(x, O, "r) -._ OT(O, y, "Q = OT(b, g, 1:) ~ = O, TE(O, "r,.,~], (3) 
Oy Ox Ox 

T(x, O, "Q= /*(x, "Q, "rE(O, "~m]. (4) 

Here the constant a and the functions ~(x, y) and f*(x, T) are known. 

The formulation of this inverse problem in terms of the Green's function is G(x~ y; x', 
y'; ~ -- z'): 

i , t 'd'd, q(x', "c')G(x, O; x', c; T - - ' ~ ' ) dx '= / (x ,  -c), "~E[O, "r,,,], (5) 
0 0 

where 

b c 1 

f(x, ~) - ~ (bc/*(x, ~ ) - t ' d x ' j ' w ( x ' ,  y')C(x, o; x', v'; ~ - ~ ) @ ' )  
a be ~ o 

G(x, y; x', y'; T - - ~ ) =  l@2Xc~ b cos b"exp b~ • 

• 1 +  2 cos cos exp - . 
r = l  C C C ~ 

Equation (5) with an unknown function q(x', T') is a two-dimensional linear integral 
equation of Fredholm--Volterra type of the first kind. 

It is known that the problem in Eqs. (1)-(4) is unstable; therefore, approximate meth- 
ods must be used for its solution, allowing the measure of closeness of the approximate solu- 
tion to the accurate solution to be controlled. In particular, this category includes itera- 
tive gradient methods; below, the method of steepest descent and the conjugate-gradient meth- 
od will be analyzed. As shown in [4, 5], these methods generate regularizing families of 
operators and, if the approximation process is terminated according to the discrepancy 
criterion, they become regularizing algorithms. 

Introducing the mean-square discrepancy functional 

"r b 

j ( q h ) ~  ( d'cS (Tk(x '  O, "c)--~(x, x)) ~dx, k = O ,  1, 2 . . . .  , 
o 

(6) 

where Tk(x, 0, T) is the solution of the direct problem corresponding to specifying a heat 
flux qk(x, z) at the boundary y = c, qk+1(x, z) is found from the iterative formula 
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q ~ l ( x ,  "r)= c,h(;:, "r)- [2j,~ (x, "t), k::  0, k*. (7) 

Here the direction of descent ~k(x, z) is determined as a function of the method employed: 
in the fastest-descent algorithm 

~ (x, ~) = J' (q~), (8) 

in the conjugate-gradient algorithm 

'~?/r - -  

~h(x, ~) = J '(o,h)q- w;$~-~(x, ~), 
&,. * m o 

= Vo o, = i [ (J' dx, 
/ 

0 0 

(9) 

where j,(qk) is the discrepancy gradient at the k-th iteration. 

The coefficient B k in Eq. (7) is chosen from the condition 

~I~ : rain J (qk ~ ~h  ). (i0) 
~>0 

It is simple to show that 

T m b 

~h= 0 0 (i0') 
T nz  b 

0 b 

Here  ~Tk(x , 0, ~) i s  t he  t e m p e r a t u r e  i n c r e m e n t  c o r r e s p o n d i n g  to  a v a r i a t i o n  in  h e a t - f l u x  
d e n s i t y  o f  ~ k ( x , ' z ) .  Th i s  q u a n t i t y  i s  found f rom th e  s o l u t i o n  o f  t h e  f o l l o w i n g  p rob lem:  

OAT (O"-AT OZAT ) 
= a  + - -  , xC(O, b), 9C(0, c), ~C(O, T~I, 

0~ \ Ox ~ Og ~ 

AT(x, g, O)= O, 

OAT(b, g, "~) 0 A T ( 0 ,  g, T) OAT(x, O, x) = 0 ,  (Ii) 

Ox Ox Og 

__k OAT(x, c, "c) ~'~ (x, % 
@ 

The number of the last iteration k* is established from the discrepancy criterion 

k* : J (@)_~ 6 ~, (12) 

where 6 is the total error, including the error in the temperature information 6 T and the 
error in approximating the heat-conduction boundary problem 6 a (6 = = @2 a + 62T ) 

At iteration number k, the temperature Tk(x, 0, z) will be determined from the solution 
of the direct heat-conduction problem from the specified approximation to the true function, 
i.e., from the solution of Eq. (i) with the boundary conditions in Eqs. (2) and (3) and the 
condition 

@ 

The g r a d i e n t  of  t h e  f u n c t i o n a l  in  Eq. (6) i s  found in  t e rms  o f  t h e  c o n j u g a t e  v a r i a b l e  J ' ( q )  = 
-%,(x, c ,  z ) .  The f u n c t i o n  ~ ( x ,  c ,  r )  s a t i s f i e s  t h e  bounda ry  probt.em 

O'c \ O x  ~ Og'-' ) '  Y 
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(x, y ,  ~ ) -  0 ,  
(13) 

@(x,  c, ~) _ Or y, ~) _ 0~(0,:4,  "0 O, 
0:4 Ox Ox 

0r 0, ~) _ 2 ( T ( x ,  0, ~ ) - - f ( x ,  ~)). 
0:4 

The s o l u t i o n  o f  t h e  d i r e c t  p rob l em  T(x ,  0,  z ) ,  t h e  c o n j u g a t e  p rob lem $ ( x ,  c ,  ~ ) ,  and t he  
problem in terms of the increments AT(x, 0, ~) required for the organization of the iterative 
process are found by means of the Green's function.* The universal form of this procedure is 

T b 

z(x, ~) - f d*' ; F(x', T')G(x, y.;  x', 9:; ~--~')dx' .  (14) 
0 0 

For  t he  d i r e c t  p rob lem 

z(x, ~ ) = g ( x ,  0, ~), F(x' ,  * ' ) = q ( x ' ,  ~'), y , = 0 ,  9 ~ = c ,  

f o r  t he  c o n j u g a t e  p rob lem 

z(x, ~);-~(x,  ~), F(x', z') ...... 2h(T(x' ,  0, ~')-- f (x ' ,  z')), 9,=c,  y ; = 0 ,  

and f o r  t h e  p rob lem in  t e rms  o f  i n c r e m e n t s  

z ~ ,  ~ ) = A T ( x ,  O, ~), F(x', ~ ' )=~(x ' ,  ~'), y . = O ,  G = e .  

In  c a l c u l a t i n g  t he  f u n c t i o n s  T(x ,  0,  ~ ) ,  ~ (x ,  z)  and aT(x ,  0,  z ) ,  an a p p r o x i m a t e - - a n a l y t i c  
method i s  used  [2 ] :  in  t he  r e g i o n  o f  s o l u t i o n  D:{xE[0, b], y~[0, c], ~ [0 ,  ~l} a g r i d  w i t h  
p o i n t s  x I = l a x ,  1 = 0, L, ~j = j a r ,  j = 0,  m, Yk = kay ,  k = 0, K i s  i n t r o d u c e d ,  and Eq. (14) 
t r a n s f o r m s  to  an a p p r o x i m a t i n g  s y s t e m  of  l i n e a r  a l g e b r a i c  e q u a t i o n s .  Th i s  t r a n s f o r m a t i o n  i s  
made unde r  t he  c o n d i t i o n  o f  a n a l y t i c  i n t e g r a t i o n  o f  t h e  k e r n e l  o f  the  r i g h t - h a n d  s i d e  o f  Eq. 
(14) in the grid cell. 

Equation (5) is written in the form 

A q = v ,  q~Q, vCV, (15) 

where Q and V are normalized spaces and A : Q + V is a linear integral operator determining 
the Green's function. After approximating the problem in Eq. (15), the operator A will be 
replaced by the matrix AA and the continuous functions q and v by the vectors q and v, which 
are obtained as a result of stepwise approximation over time and space in the form 

V = =  1 1 ,  L ' 2 1 ,  . . .  , UL1;  V12,  7-'22, . . .  , 7dL2; . . .  ; V l m ,  C ' 2 m ,  . . .  , VLnl] , 

where 
^ 

v z j  - - -  2 ; v ,  - 2 ; v z ( ~ 3  = v (xz, ~ ; ) .  

With the appropriate choice of parameters, the difference grid will be a sufficiently 
accurate approximation of the integral equation, which allows the corresponding error to be 
disregarded in constructing the algorithm for solution of the inverse problem. As an illus- 
tration of this, Table i gives the temperature values at an arbitrarily chosen space--time 
point (x = 0.005 m, r = 0.25 sec) with various difference-grid parameters (L is the number 
of steps along the x axis, and M the number along the ~ axis: Zm = 1.0 sec, b = 0.01 m, 

c = 0.02 m, AFo = 0.014, qmax = 0"92"10+6 W/m=)" 

At the same time, the right-hand side of Eq. (15) may be known with considerable errors 
due to imprecise measurements of the temperature and errors in deciphering the experimental 
information. Therefore, it is assumed below that, instead of the element v, the element 
v~ = v + Av is known, where Av is the noise on the right-hand side of Eq. (15), with the norm 
~,AV]IL~ =6~. Thus, the error in solving Eq. (15) under the assumption that the error in the 
approximation may be neglected will be equal to the error on the right-hand side aT. 

*For this purpose, the conjugate problem in Eq. (13) is reduced to a formulation with "in- 

verse" time by the variable substitution t = Tm -- T. 
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TABLE I. Temperature Values at an Arbitrarily Chosen 
Point with Various Difference-Grid Parameters 

L 
M 

2 4 (5 8 12 

2 
4 
8 

I2 
16 
20 

0,1726 
0,9989 
0,0848 
0,0819 
0,0809 
0,0804 

0,1728 
0,t000 
0,0849 
0,0820 
0,0809 
0,0805 

0,1729 
0,!000 
0,0849 
0,0821 
{),0810 
0,0806 

0,1729 
0,1000 
0,0849 
0,0821 
0,0811 
0,0806 

0,1729 
0,1000 
0,0849 
0 0821 
0,0311 
0,0806 

In calculating the elements of matrix AA, the sum of infinite series must be determined; 
see Eq. (5). Truncating the series leads to the appearance of additional errors, as a re- 

sult of which the matrix AAH = A A + H will be calculated instead of the matrix AA, where H 
is the error matrix. Considerations of machine-time economy demand the summation of only as 
many terms in the series as is necessary for the solution of the problem with no worse than 
the specified accuracy. 

The error appearing on account of truncation of the infinite series must be negligibly 
small in comparison with the error on the right-hand side 

71Hq ItG, ((, I] Av I[G~, (16)  
where II'IIE~ is the norm of the Euclidean space of n-dimensional real vectors; n = Lom. It 
is necessary to estimate IIHq'EIEn. 

It is assumed that all the elements of matrix H are equal to some positive number h, and 
that the series which are calculated in determining the elements of matrix AA are variable 
in sign and absolutely convergent (or may be reduced to this form by means of transformations). 
In that case, it will be simple to establish the majorant error in calculating the series: 
it will be equal to the last term being summed in the series and, of course, this last term 
must be positive. 

The norm II" II~ is used, with the following definition. If x = {Xk}, k = i, n, then 

llx]i~-- max l.v~l It is simple to show that HHq[{~mL~m~flL where qmax is the maximum value 
1 ~l~.~t~ 

of the heat-flux density. Thus, Eq. (16) will be satisfied if mLqmaxh << Afmax, where Afmax 
is the maximum error in measuring the temperature. Hence, if the error appearing as a re- 
sult of the truncation of the infinite series is to be negligibly small in comparison with 

the error on the right-hand side of Eq. (15), the condition h << Afmax/mLqmax must be satis- 
fied. 

In accordance with the above algorithm for IHBP solution, a program has been written 
for use in computational experiments on an EC-I033 computer. In each experiment, the tem- 
perature T(x, 0, r) is determined for some heat-flux distribution at the boundary y = c 

(direct problem) and hence the heat flux acting at the boundary y = c is calculated (inverse 
problem) . 

The criterion adopted for the recovery of the initial function q(x, ~) is the normalized 
functional 

T r~l b 

7(q) -... J (q)l ~" ,!-~ i' (f(~, ~))~&. 

The initial approximation adopted is q~ r) = 0. 

The results of recovering the function q(x, r) using the method of fastest descent with 
accurate input data are shown in Fig. i, I. The quality of the resulting approximation is 
poor, although sufficiently many iterations were taken (k = 75). The time per iteration is 
ti = 12 sec. 

In Fig. i, II, the results of solving the IHBP by the conjugate-gradient method with ac- 
curate input data are shown. It is evident that the recovery of q(x, T) is better over all. 
The computation time is slightly greater; t i = 12.6 sec in this case. Also evident from 
Fig. I, II is the significant deterioration in accuracy of the mean-square approximation ob- 
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Fig. i. Approximation on average to the heat-flux density by 
the method of fastest descent (I) and the conjugate-gradient 
method (II) (c = 0.02 m, b = 0.01 m, AFo = 0.014, q (W/m~). 
i0-~; ~ (sec)): i) actual solution; 2) 75th (I) and 50th (II) 
iteration; a) q(x~, ~); b) q(x~, T); C) q(x~, r). 

rained in the vicinity of the end of the time interval (T = Tm). This may readily be ex- 
plained. In fact, the gradients of the functional in the k-th and (k -- l)-th iterations -- 
j,(qk) and j,(qk-1) _ appear in the expression for ~k(x , r) in Eq. (9). Their accurate 
values at z = z m are zero, which follows from the formulation of the conjugate problem in 
Eq. (13). Thus, with accurate calculation of the gradient, the solution q(x, T) at point 

= Tm in all the iterations must be equal to the initial approximation at this point. 

The deterioration in the recovery of the function in the vicinity of the end of the time 
interval may be eliminated if account is taken of the smoothness of the given function in con- 
structing the iterative algorithm [2]. 

Suppose that the function q(x, T) has a mixed derivatives qxT(X, T) = 02q( x, z)/OxOTEL2 
and the target functional in Eq. (6) is specified. Consider the iterative process of deter- 
mining this derivative by the conjugate-gradient method, where q~ , T) is the specified 
initial approximation 

q ~  (x, T)= q~r z) - -  fihS~r k = 0, 1, 2 . . . . .  (17) 

where Bk is the step in the direction toward the minimum of J(q), and 

S k j, h Sk-1 Ah ~.' i~ ~ x ~ =  ( q ~ ) +  ?h ~ ; Y, ,--  A,~ ~ ; Yo = 0 ;  A h =  j d'~ (J'(q2~)) "zd:c. (18)  
- -  0 0 

Integrating Eq. (17) with respect to x and T gives 

b 

qk+~(x, ~ ) =  qk(x, ~) + A q h ( x ,  0 ) + A q k ( b ,  ~ ) - - A q h ( b ,  0) ~-~h d~'~S~(x', T')dx', (19)  
x 

w h e r e  A q k ( x ,  0 ) ,  Aqk(b  , r ) ,  and Aqk(b  , 0) a r e  i n c r e m e n t s  i n  t h e  f u n c t i o n  q ( x ,  z)  a t  t h e  (k + 
l)-th iteration, respectively, at the boundaries of the region of solution T = 0, x = b, and 
at the point x = b, z = 0. The values of Aqk(x , 0), Aqk(b, z), and Aqk(b, 0) are determined 
as follows 

b 

x 

0 

Aq~ (b, 0) = -- ~j~ S k 

where Skx(x), sk~(T), and S k are defined analogously to Eq. (18); the formulas for the 
gradients of the functional take the following form 
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Fig. 2. Recovery of heat-flux density by the conjugate-gradient 
method, taking account of the smoothness of the solution for the 
cases when all the variations are determined (I) and when the 
variations Aqk(x, 0), Aqk(b, T), and bqk(b, 0) are not determined 
(II): i) the actual solution; 2) 30th (I) and 20th (II) itera- 
tion. Other notation as in Fig. i, 

J '  (q (b, 0)) = w (b, 0), J '  (q~ (b, ~)) -- u~(b, x), �9 ~[0, ~ ] ,  

J '  (q~ (x, 0)) . . . .  w(x, 0), x ~ [0, b], 

J'(q:~.~ (x, "c)) . . . .  w(x, "c), .x ~ [0, b], "c~[O, T,.], 

where 

n~ x 

w(x,  "0::= ,i d~' i~g'(q(x ', "~'))dx', x~[O, b]; ~:~[0, %,], 

and, as already noted, J'(q(x, r)) is determined from the solution of the conjugate problem. 

The step in the descent to the minimum of the functionals ~k, ~xk, ~Tk, and ~bk is found 
from the condition [6]: 

b "~ T b 

- -  S., dx ). 
I'Lch, [~br~ x 0 0 

(20) 

The necessary condition for an extremum of the multidimensional function leads to the follow- 
ing system of algebraic equations 

(21)  

Here 

i f f '~dT ~ b A~j = AT(Ni)  AT(Ns)dx;  Nj = ~d~' I S ~  dx'; 
0 0 0 x 

b T 

S ~ , 

and AT(Ni) is the temperature increment due to the corresponding variation Ni, i = i, 4". 

The results of solving IHBP by the given method are sho~ in Fig. 2, I. Note the bet- 
ter quality of the recovery of the given function over the whole region. The time to per- 
form a single iteration in this case is approximately doubled (t i = 26 sec); however, the 
number of iterations required is reduced, and thus the total computer time required is un- 
changed. 
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Fig. 3. Recovery of heat-flux density by 
the conjugate-gradient method, taking ac- 
count of the smoothness of the solution, 
for perturbed data: i) actual solution; 
2) results of calculation from the tem- 
perature values with random errors dis- 
tributed according to a normal law with a 
spread 3o = 0.01Tma x. Other notation as 
in Fig. i. 

The computation time when using the gradient method of smooth regularization may be re- 
duced if the behavior of the function q(x, ~) is known at the limits of the region of solu- 
tion r = 0 and x = b. In this case, there is no need to determine the increment in the func- 
tion at the limit Aqk(x, 0), Aqk(b, T) and at the point Aqk(b, 0) -- see Eq. (19) -- and hence 
the computation time is considerably reduced. In Fig. 2, II, the results of recovering the 
function q(x, T) are shown, under the assumption that q(x, 0) = q(b, T) = 0. However, this 
approach is not very suitable if the behavior of the function q(x, T) at the limits of the 
region is hard to analyze. 

The influence of perturbations of the initial data on the solution of the inverse prob- 
lem has also been analyzed, by means of computational experiments in which the solution of 
the direct problem is perturbed by a random-number sensor according to a normal law of ran- 
dom-error distribution. Termination of the iterative process is based on the condition in 
Eq. (12), where it is assumed that 

�9 ~ b 

0 0 

~(x, T) is the dispersion of the specified temperature function. The results of solving one 
example are shown in Fig. 3. 

The quality of recovery is better; the results of these computational experiments per- 
mit the conclusion that the given algorithm is suitable for the solution of IHBP using per- 
turbed input data. 

NOTATION 

T, temperature; x, y, spatial coordinates; T, time; X, thermal conductivity; a, thermal 
diffusivity; q, heat-flux density; AFo = aA~/c 2, step in the Fourier number; k, iteration 
number; ~k, direction of descent in k-th iteration; J(q), mean-square discrepancy functional; 
En, Euclidean space of n-dimensional real vectors; A, linear integral operator; AA, matrix of 
approximating operator; 6 a, 0T, errors due to the approximation of the problem and the inac- 
curacy of the temperature information; o =, dispersion of the specified function of the tem- 
perature; ti, time for one computer iteration. 
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