
Journal of Applied Intelligence 3, 159-172 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Intelligent Scheduling with Tabu Search: An Application to Jobs with
Linear Delay Penalties and Sequence-Dependent Setup Costs and Times

MANUEL LAGUNA
Graduate School of Business and Administration, Campus Box 419, University of Colorado, Boulder, CO 80309-0419

MANUEL@MAYAN.COLORADO. EDU

J. WESLEY BARNES
Graduate Program in Operations Research and Industrial Engineering, Department of Mechanica! Engineering,

ETC 5.128D, The University of Texas at Austin, Austin, Texas 78712
BARNESQ-@EMX. UTEXAS. EDU

FRED GLOVER
Graduate School of Business and Administration, Campus Box 419, University of Colorado, Boulder. CO 80309-0419

GLOVER --F@CUBLDR.COLORADO. EDU.

Received December 27, 1990; Revised January 8, 1993

Abstract. In this article we study the tabu search (TS) method in an application for solving an important
class of scheduling problems. Tabu search is characterized by integrating artificial intelligence and op-
timization principles, with particular emphasis on exploiting flexible memory structures, to yield a
highly effective solution procedure. We first discuss the problem of minimizing the sum of the setup
costs and linear delay penalties when N jobs, arriving at time zero, are to be scheduled for sequential
processing on a continuously available machine. A prototype TS method is developed for this problem
using the common approach of exchanging the position of two jobs to transform one schedule into
another. A more powerful method is then developed that employs insert moves in combination with
swap moves to search the solution space. This method and the best parameters found for it during the
preliminary experimentation with the prototype procedure are used to obtain solutions to a more com-
plex problem that considers setup times in addition to setup costs. In this case, our procedure succeeded
in finding optimal solutions to all problems for which these solutions are known and a better solution
to a larger problem for which optimizing procedures exceeded a specified time limit (branch and bound)
or reached a memory overflow (branch and bound/dynamic programming) before normal termination.
These experiments confirm not only the effectiveness but also the robustness of the TS method, in
terms of the solution quality obtained with a common set of parameter choices for two related but
different problems.

Key words: Production scheduling, tabu search, combinatorial optimization

1. Introduction

In this article, we study an application of tabu
search (TS) to an important class of machine
scheduling problems. Tabu search is founded on
integrating problem-solving principles that span
the fields of artificial intelligence and mathemat-
ical optimization, exploiting flexible memory

structures to obtain optimal or near optimal so-
lutions with a high degree of efficiency. We first
consider the single-machine scheduling problem
with linear delay penalties and setup cost depen-
dencies. At time zero, N jobs simultaneously ar-
rive at a continuously available machine. Each
job i (i = l, 2 N) requires t~ units of time
on the machine, and a penalty p~ is charged for

160 Laguna, Barnes, and Glover

each unit of time that job commencement is de-
layed after time zero; s~j is the setup cost of
scheduling job j immediately after job i. The jobs
are indexed according to their natural order [1],

i.e., i < j implies that ~ _< --.tJ Two dummy jobs,
P~ Pj

0 and N + 1, are included in every schedule,
where to = tN+l = 0andp0 = PN+~ = 0. The
costs s0,j and Si, N + ~ are considered to be the initial
setup cost and the teardown cost, respectively. A
schedule has the form

II = {0, "rr(1), -rr(2) "rr(N), N + 1}

where -rr(/) is the index of the job in position i of
the schedule. The objective is to minimize the
sum of the delay and setup costs for all jobs. In
mathematical terms, we desire to

and BB2 failed to terminate before the time limit
of 100 seconds in all but one of the 20-job prob-
lems. The most promising optimal algorithm for
P1 developed by Barnes and Vanston is DPBB,
which solved all of the 20-job problems in an av-
erage time of 42.9 seconds (which includes 10
seconds taken by BB3 to provide the starting so-
lution). However, DPBB was tested with several
25-job problems, and in each of these problems
storage limitations were encountered at fairly
low stages.

The primary purpose of our current research
is to study larger problem instances of P1 and
the quality of the solutions obtained for them
with the TS method. (For background, see, for
example, [4-7].) This method requires mini-
mal computational resources, allowing relatively

Minimize F(II) = D(H) + S(H)
N

where D(H) = ~ d~¢i)P~¢i)
i - - I

N - - I

S(II) = S0,~¢l) + ~ s~i),~¢i+l) + S=¢N).N+I
i = l

N - - I

and d~¢i) = ~ t~o),i = 2 , . . . , N a n d d ~ ¢ l) = 0
j= l

The available optimal schedule algorithms for P1
are based on branch and bound and dynamic pro-
gramming [2]. Unfortunately, the explosion of di-
mensionality and the fact that existing methods
require an assignment problem (or assignment
problem relaxation) to be solved a very large
number of times has limited their power to the
solution of small problems. Barnes and Vanston
[2] developed three branch and bound algorithms
using natural order branching (BB1), minimum
bound branching (BB2), and priority branching
(BB3). A lower bound obtained by solving the as-
signment problem was used by the BB algo-
rithms; however, after an attempted solution of a
15-job problem did not terminate before 100 CPU
seconds on a CDC 6600, the assignment problem
bound was not used in further BB experiments.
Morin and Marsten's dynamic programming/
branch and bound (DPBB) approach [3] was also
applied in [2] to reduce the memory and compu-
tational requirements. For the solution of 20-job
problems, BB3 was prematurely curtailed, and
the curtailed solution was used as the starting
point for BB1, BB2, and DPBB. Even then, BB1

(pl)

large problems to be approximately solved on
a microcomputer using a general-purpose lan-
guage. Recent studies have demonstrated that
tabu search is able to obtain significantly higher-
quality solutions and optimal solutions with sub-
stantially greater frequency than alternative ap-
proaches in a variety of domains, including graph
coloring [7], vehicle routing [9], and quadratic as-
signment [10] problems. In the area of schedul-
ing, although examining a somewhat different
problem than the one addressed here, the study
by Widmer and Hertz [11] compares tabu search
to six alternative approaches to the m-machine,
n-job flow shop problem. The authors find that
tabu search obtains better solutions than all other
methods in up to 90% of the cases. More recent
studies surveyed in [6,7] encouraged us to de-
velop a tabu search method for the solution of
PI, with the additional challenge of comparing
this approach to a tailored, special-purpose op-
timization method (which has been reported to
be more effective than competing optimization
procedures for this problem). A further goal of
our research effort is to show the robustness of

Intelligent Scheduling with Tabu Search 161

our method by adapting it for the approximate
solution of a related problem that includes setup
times (problem P2 in section 7).

As described in section 2, the TS method was
used to redirect the steps of a simple hill-climb-
ing heuristic as a metaprocedure to overcome lo-
cal optimality. Definitions associated with the TS
method and the data structures we used in the
present setting are given in section 3. In section
4, a prototype TS method tailored for the solu-
tion of PI is described. Section 5 illustrates our
TS procedure by identifying the contents of the
tabu status arrays that guide the solution process
at each iteration when applied to an example
five-job problem. Preliminary computational ex-
periences are reported in section 6. An improved
TS method is described in section 7, and com-
putational experiences with the more complex
problem P2 are presented. Final remarks are
given in section 8.

2. A Hill-Climbing Heuristic

P1 is an optimization problem of the following
form. Given jobs i = 1 N, we seek a per-
mutation, or schedule, that may be described as
assigning each i to one of the N possible posi-
tions. The vector of positions uniquely identifies
the schedule, and the goal is to minimize a func-
tion of this vector, i.e., minimize F(II). The pre-
liminary selection of the class of moves to be
embedded within the TS method consists of com-
mon pairwise exchanges that swap the position
of two jobs to transform one schedule into an-
other. Suppose, in a given schedule, job ~r(i) pre-
cedes, but is not necessarily adjacent to, job v(j).
A move is a recording of only jobs ~r(i) and w(i)
such that job w(i) is moved to position j and job
w(j) is moved to position i. The move value is the
difference between the value of the objective
function after the move, F(1]), and the value of
the objective function before the move, F(II),
i.e.,

move__ value = F(I'I) - F(H)

For comparat ive purposes, it is convenient to be-
gin by noting the form of a simple hill-climbing
heuristic that uses the same swap moves (the
"hill" is inverted for minimization). The organi-

zation of the heuristic presented in figure 1 has
been chosen to allow direct elaboration into a
simple TS procedure. Note in particular that a
best member of the candidate moves was chosen
at each step. Often hill-climbing methods are or-
ganized to accept any improving move. The more
aggressive orientation of choosing the best mem-
ber is particularly relevant to tabu search after a
local optimum has been found. The fact that ex-
amination is limited to candidate moves, how-
ever, allows the chance to define the set of such
moves dynamically. We will superimpose tabu
search on this heuristic, with the goal of provid-
ing a guiding framework to overcome the strong
tendency of the bill-climbing process to become
trapped at a local optimum.

3. Definitions

The fundamental process by which tabu search
seeks to transcend local optimality is to intro-
duce a mechanism to make certain moves forbid-
den (tabu). In this context, there are four key ele-
ments to consider:
I. To identify one or more attributes of a move

that will be used to create the tabu classifica-

Generate starting solution gI*;
Evaluate F(I'I*};
do {

best_move_value ~ ,,~;
for (all candidate moves) {

Evaluate move_value;

if (move_value < bestmove_value) {

bestmove_value ~-- move_value;

bestmove ~-- current move;
}

}

if (best_move_value < 0) {
Execute best_move;

F(1-I*) +- F(II*) + best_move_value;
}

} while (best_move_value < 0);

Fig,. l. A simple hill-climbing heuristic.

162 Laguna, Barnes, and Glover

tion (the conditions that make it possible to
specify that a move is tabu);

2. To identify the actual tabu restrictions based
on the attributes;

3. To identify an effective data structure for up-
dating the tabu status of moves; and

4. To identify aspiration level criteria allowing
the tabu status of a move to be overr idden un-
der appropriate circumstances.

In addition to these elements, a short-term mem-
ory function is used to determine how long a tabu
restriction will be enforced. Also, a long-term
memory function is constructed in such a way as
to allow the investigation of a number of alter-
native " f resh" starting points for the entire

any earlier than position i on subsequent sched-
ules until the short-term memory tenure for this
job has expired. The attribute of a move to be
recorded in order to implement this restriction
becomes "rr(i), the index of the job in position i
prior to the move, and i, the position from which
job w(i) moved to the "r ight" to occupy position
j. Accompanying this, we designed data struc-
tures to keep tract of moves that are classified as
tabu and to free those moves from their tabu con-
dition when their short-term memory tenure has
expired. The data structures used in the solution
of P1 are composed of a tabu state, tabu list, and
tabu position that contain the following infor-
mation:

tabu__ state (v(i)) = number of times job "rr(i) appears in the tabu list, -rr(i) = 1 N.
tabu__ list(ltabu) = ~r(i), if job -rr(i) is prevented from moving at or " lef t" of its tabu position (ltabu =
1 tabu__ extent).
tabu__ position(~(i)) = tabu position for job ~(i), "rr(i) -- 1 N.
aspiration__ level(~r(i)) = aspiration level for job -rr(i), v(i) = 1 N.

search procedure while encouraging selection of
starting points not near those previously se-
lected. The long-term memory function may be
viewed as a means of creating an intelligent di-
versification of the regions to which the solution
process is applied, rather than relying on a blind
randomization process. (Additional roles of TS
memory functions are described in [6].)

In the solution of P1, our main concern is to
create a tabu status that prevents a move from
being reversed while under the jurisdiction of the
short-term memory, which we have chosen for
P1 to be a specified number of future moves. This
tabu status is modified by the application of as-
piration criteria, as indicated below.

There are a variety of ways to create tabu re-
strictions within this context. For example, one
can impose a tabu restriction such that, after a
move of jobs w(i) and w(j), where j > i, job "rr(i)
cannot be placed any earlier, i.e., move to the
" lef t ," on subsequent schedules until the short-
term memory has expired. The performance of
the TS method under this restriction was not as
good as it became under a more flexible tabu re-
striction. After initial experimentat ion with sev-
eral options, we found the following tabu restric-
tion to work well and embodied it in the rest of
our investigation: after a move of jobs w(i) and
v(j), where j > i, job ~(i) cannot be placed at or

If tabu__ state(v(i)) > 0, w(i) has been moved
to the right during the previous tabu__ ex-
tent moves and will reside at least once on the
tabu__ list. Hence, the tabu _ s t a t e vector re-
moves the need to sequentially traverse the tabu
list. In a move of jobs w(i) and w(i), if t a b u _
state(v(j)) > 0 and i -< tabu__ position(~r(j)), then
the move is a tabu move. The tabu__ list keeps
track of the jobs that are being prevented from
moving at or " lef t" of their tabu position, as a
way to record tabu restrictions. The argument of
tabu__ list, ltabu (ltabu = 1 tabu__ ex-
tent), is a pointer to the next available position in
the circular tabu list of length, tabu__ extent. The
tabu__ position contains the most recent tabu po-
sitions of jobs in the tabu list; i .e . , if a job ap-
pears twice in the tabu list, only the most recent
tabu position is considered. This structure im-
plicitly enforces the short-term memory function
by assigning a tabu status to a move for only the
tabu__ extent most recent moves. We discuss the
above structure in more detail in section 4.

Two aspiration-level tests are used in our ap-
plication of the TS method to P1, as means of
overriding tabu status. Both tests allow tabu
moves to be executed but differ in the level of
flexibility that they introduce to the search. The
less flexible criterion, aspiration criterion A, al-
lows a tabu move to be performed, i.e., allows a

tabu job to move to a position earlier than its tabu
position, during its short-term memory tenure, if

F(H) + move__ value < F(II*).

A less restrictive test, aspiration criterion B, al-
lows a tabu move to be performed if

F(H) + move__ value <
a sp i r a t i on_ level (~r(j))

where the aspiration level for each job, aspira-
t i o n _ level(v(i)), is initially set to a large value
and subsequently modified in the following way.
Assume the move that repositions jobs v(i) and
v(j) has the best move value for the current H.

Intelligent Scheduling with Tabu Search 163

Then the modification is performed by the fol-
lowing rule:

if (a s p i r a t i o L level(w(i)) > F(II))
aspiration__ level(~(i)) = F(II)
if (aspiration__ level(Tr(j)) > F(I'I))
aspiration__ level(-rr(j)) = F(fI)

4. A Prototype Tabu Search M e t h o d

In this section we identify how our prototype TS
method operates to take advantage of the data
structures introduced in section 3. We begin by
describing the method in overview (see figure 2),

Initialize long term memory function;

F(H*) e-- ~;

do {

Generate starting solution H;

Evaluate F(FI);
Initialize move_value ma~ix;

Initialize short term memory function;

do {

Update long term memory function;

best_move_value ~ ,,*;

for (all candidate moves) {

if (candidate move is admissible) {

if (movevalue < best_move_value) {

best_move_value ~ move_value;

best_move <---- current move;
}

Execute best_.move;

F(I'I) ~ F(I'I) + best_movevalue;

Update move_value matrix;

Update short term memory function;

if (F(rl) < F(rI*)) {

H* <"- H;

F(FI*) ~-- F(H);
/

} while (moves without improvement < max_moves);

} while (F(H*) has changed in last 4 starting points);

Fig. 2. A prototype tabu search method for P1.

164 Laguna, Barnes, and Glover

followed by a detailed specification of its opera-
tions. In broad terms, our TS method for P1
seeks an optimal schedule by making a succes-
sion of pairwise exchanges, or moves, to trans-
form one schedule into another. The method
starts by initializing the long-term memory func-
tion and generating an initial feasible heuristic
solution, which is saved as the best solution
found so far. The search is restarted from at least
three more different starting solutions that are
generated using the penalties assigned by the
long-term memory function. Every time the
search is restarted, the short- term memory func-
tion is reinitialized.

Given a starting solution, the method per-
forms moves until a specified number of moves
(max__ moves) elapses without obtaining a solu-
tion bet ter than the best solution found on the
current pass. After any change in the schedule,
the long-term memory function is updated. The
move to be made at a given iteration is found by
calculating the move value of all candidate
moves for the current solution. A move is con-
sidered to be a candidate if the jobs being ex-
changed are within a specified distance (number
of positions). Since we are minimizing, the best
candidate move possesses the algebraically
smallest move value. More precisely, the best
move is selected from the set of admissible can-
didates. A candidate is admissible either if it is
not tabu or if its tabu status can be overr idden by
the aspiration criterion. The best move is then
performed and the tabu data structure is up-
dated. The best solution, II*, is updated if the
current solution's F(I/) is less than F(17*). The
procedure is repeated until the termination cri-
terion is met, i.e., until the last four starting so-
lutions fail to improve the best solution found so
far.

4.1. Long-Term Memory Function

The long-term memory function we designed for
P1 is embodied in an NxN matrix that contains
the number of times that each job has been
scheduled in each feasible position; i.e., the (i,j)
element in the matrix contains the number of it-
erations that job i has been scheduled in position
j. This function is used to generate a new starting
solution after the search has been unable to find

a bet ter solution from the current starting point.
Jobs are penalized according to the proportion of
time spent in each position. The more time a job
spends in a particular position, the larger the
penalty assigned. This forces the heuristic that
generates the starting point to find a "good" so-
lution that avoids the scheduling of jobs in posi-
tions frequently occupied in the past. Initially all
the elements in the matrix are zero. The long-
term memory function is updated after every
move in the following way:

Let the current schedule be II = {0, ~r(1), -rr(2),
. . . . ~r(N), N + , 1}; then N elements in the
matrix are changed as follows:

long__ term (rr(i), i) = long__ term
(Tr(i), i) + 1

f o r i = 1 N.

The proport ion of time that each job w(i) has
spent in position j is found by dividing the con-
tent of each element (-rr(i), j), for j = 1 N,
by the current numbers of moves.

4.2. Starting Solutions

Two methods of generating starting solutions,
heuristics 1 and 2 from Vanston [12], are imple-
mented in the application of the TS method to
P1. While heuristic 2 gives consistently "be t t e r "
solutions than heuristic 1, neither heuristic has
proven to be uniformly superior for the TS
method in terms of the number of moves required
to reach the optimal solution. Both are one-pass
heuristics based on the traveling salesman "near-
est unvisited ci ty" rule. The procedure starts by
scheduling job 0 in position 0. Then the available
job j that minimizes the distance from the pre-
vious job i is scheduled at the next position. The
distance measure is a linear function of the setup
cost, s~j. and the delay penalty "pr ice" of sched-
uling job j before fellow available candidates.
The difference between the two heuristics is in
the distance measure. In heuristic 1 the distance
measure is such that it fails to produce a natural-
order schedule in the absence of setup charges.

When the heuristics are used to restart the
search, a penalty that depends on the long-term
memory function is added to the distance mea-
sure. In this way, the distance measure will in-

Intelligent Scheduling with Tabu Search 165

crease if a job is being considered for a position
it has occupied in the past.

4.3. Short-Term Memory Function

The shor t - term m e m o r y Ihnction is managed in
our approach by the tabu state and the tabu list.
The aspirat ion level and the tabu position of each
job are also recorded and handled in parallel. The
shor t - term m e m o r y function is initialized every
time the search is started from a new starting so-
lution. The initialization is as follows:

tabu__ state(v(i)) = 0 for v(i) = 1 N.
tabu__ state(N + 1) -- tabu__ extent.
tabu__ list(ltabu) = N + 1 for ltabu = 1 . . ,
tabu__ extent .
tabu__ position(w(i)) = 0 for "rr(i) = 1 N.
ltabu = 0

The shor t - term m e m o r y function is then updated
after every move. Let ~rB(i) and ~B(J) be the
jobs with the best move value found by the
best__ move function. Then the following oper-
ations are required to update the tabu status of
each job:

Itabu = ltabu + 1
if ltabu > tabu__ extent then ltabu = 1
tabu__ state(tabu __list(ltabu)) =
tabu__ state(tabu__ list(ltabu)) - 1
tabu__ list(ltabu) = vB(i)
tabu__ state('rrB(i)) = tabu__ state(%(i)) + 1
tabu__ position('rrB(i)) = i

4.4. Best Move Function

Given a current solution, the best move is the ad-
missible move that has the minimum or best
move value. In order to find the best move , the

b e s t _ move function evaluates the move values
of all the candidate moves . A move of jobs 7r(i)
and 7r(j) becomes a candidate i f j - i -< d, where
d is the max imum moving distance allowed. The
max imum moving distance, d, has been set equal
to IN/2] - 1 for problems with up to 30 jobs,
where [x] is the largest integer less than or equal
to x. For larger problems (N > 30), we allowed d
to start smaller (to increase processing speed)
and to be gradually increased to its specified
value by the following formula:

(I N / 2] - 1)c
d - f o r c = l 4.

4

The value of c is originally set to 1 and is incre-
mented by one, until 4 is reached, every time that
the search is restar ted after the best solution was
not improved from the previous starting point.
This dynamic change of d significantly reduces
the time to the best solution of the larger prob-
lems. A candidate move becomes an admissible
move if such a move is not tabu, or if it is tabu
and the aspiration criterion is able to overr ide its
tabu status. The best__ move function records
only the best admissible move and its corre-
sponding move value.

A critical part involved in finding the best
move value is the evaluation of the move values
for all candidate moves . For problems with 15
and 20 jobs , there are 63 and 135 candidate
moves , respectively; and in general, there are
3(d 2 - d)/2 candidate moves in a given schedule.
The move value can be calculated (without ac-
tually executing the move) far more efficiently
than by direct application of its definition as fol-
lows:

Consider a move involving jobs w(i) and v(j),
where i < j. Then the difference in setup cost,
AS, between the value of the objective func-
tion after the move, F(I]), and the value of the
objective function before the move, F(II), is

A S ~ . s m (i _ l) ~ (i) ~- s~ (j)~ (i)

-~- Sw(i) ' r r (j+ l) - - S~(i I)w(i) - - S~r(i)~fj) - - S~(j) , r r (j+ l)

i f j = i + 1.

A S = Snv(i l)Tr(1) "~- S~r(j)vr (i+]) ~ - Scr(j 1)nv(i) -[- S ' r r (i)~r(j+l) - -

- - S'rr(i)-rr(i+ 1) - - S-r r (j - I)-rr(j) - - S-rr(j),rr(j+ 1)

i f j g i + 1.

S ~ (i - l)'~(i)

166 Laguna, Barnes, and Glover

The move value is given by

j - I

move value = 2t~(k)
k--i

) - 1

(P~(i) -- P~o)) + Z P ~ (k) (t ~ G) - t~(i)) + A S
k = i

With this streamlined calculation, the evaluation
of all candidate moves at each iteration is still
somewhat expensive, and in fact it is possible to
do better by additionally introducing a memory
scheme that isolates and updates only the rele-
vant evaluations that change from iteration to
iteration. We accomplish this by creating a
move_value matrix that contains the move
value of all candidate moves, i.e., the (i,j) ele-
ment in the matrix contains the move value of the
swap move that exchanges the jobs in position i
and j of the current schedule. This matrix is ini-
tialized every time a new starting point is gener-
ated. The initialization process consists in eval-
uating the move value of all candidate moves for
the current schedule. The matrix is updated at
every iteration as follows:

Let ~r(r) and 7r(q) be the jobs repositioned on
the previous iteration, and let the exchange of
jobs currently in position i and j, i.e., jobs 7r(i)
and ~r(j), be a candidate move. Then, we cal-
culate the new move value if and only if i or j
is between [r - 1, q + 1], and otherwise use
the old move value.

The updating procedure is designed to identify
the subset of candidate moves whose move val-
ues have been affected by the execution of the
best move in the previous iteration. Members of
this subset are the only ones subjected to updat-
ing, while the rest of the candidate moves keep
theirold move values. The introduction of the move
value matrix causes a significant reduction in
CPU time, e.g., requiring on average 62% less
time to approximately solve 35-job problems
than without its use.

5. An Illustrative Example

In this section we illustrate the TS method using
the five-job problem used by Barnes and Vanston
[2] to exemplify their BB and hybrid DPBB ap-
proaches to the problem. The data for the prob-
lem is given in tables 1 and 2.

Table 1. Job pa rame te r s

Dura t ion Delay pena l ty
Job (days) (S/day) Ratio

1 3 700 3/700
2 4 800 1/200
3 1 100 1/100
4 4 300 4/300
5 5 200 5/200

Table 3 summarizes the tabu search process
when the following options are used to start and
direct the search:

Maximum number of moves without
improvement: 2
Maximum moving distance: 1
Starting solution: Heuristic 1
Aspiration criterion: A
Short term memory length: 3

The entries of this table make it possible to trace
in detail each iteration of the approach.
Since the last four starting points resulted in the
same best objective function value, the proce-
dure stopped at the twelfth iteration. The best so-
lution found is in fact the optimal solution.

6. Preliminary Computational Experience

A C language computer code was written for the
prototype TS method designed for P1. Three sets
of problems of different problem sizes have been
used to test the performance of the TS method.
A set of 20-job problems was generated and
used by Barnes and Vanston [2] to test their
BB1, BB2, and DPBB algorithms. The process-
ing times, delay penalties, and setup charges
were randomly generated from uniform distribu-

Table 2. Setup cos ts

j

% 1 2 3 4 5 6

0 1100 600 1200 2000 1400
1 ~ 1300 700 1200 1100 1000
2 900 ~ 1100 1300 600 1200
3 900 1000 ~ 2000 700 1500
4 1000 700 800 ~ 600 1200
5 1400 1300 1200 1300 ~ 900

Intelligent Scheduling with Tabu Search 167

Table 3. Tabu search for a five-job problem

Current Current Best Move Tabu Best
Iteration schedule objective move value Tabu state Tabu list position objective

0* (3,1,2,4,5) 14900 (0,0,0,0,0,3) (6,6,6) (0,0,0,0,0)
1 (3,1,2,4,5) 14900 (3,1) -1000 (0,0,1,0,0,2) (3,6,6) (0,0,1,0,0)
2 (1,3,2,4,5) 13900 (3,2) 1000 (0,0,2,0,0,1) (3,3,6) (0,0,2,0,0)
3 (1,2,3,4,5) 14900 (1,2) - 9 0 0 (1,0,2,0,0,0) (3,3,1) (1,0,2,0,0)
4* (2,4,1,3,5) 15500 (4,1) -2000 (0,0,0,1,0,2) (4,6,6) (0,0,0,2,0)
5 (2,1,4,3,5) 13500 (4,3) 500 (0,0,0,2,0,1) (4,4,6) (0,0,0,3,0)
6 (2,1,3,4,5) 14000 (1,3) 0 (1,0,0,2,0,0) (4,4,1) (2,0,0,3,0)
7* (3,2,1,5,4) 16500 (5,4) 1600 (0,0,0,0,1,2) (5,6,6) (0,0,0,0,4)
8 (3,2,1,4,5) 14900 (3,2) - 900 (0,0,1,0,1,1) (5,3,6) (0,0,1,0,4)
9* (3,1,2,5,4) 15900 (3,1) - 1000 (0,0,1,0,0,2) (3,6,6) (0,0,1,0,0)

10 (1,3,2,5,4) 14900 (5,4) 1000 (0,0,1,0,1,1) (3,5,6) (0,0,1,0,4)
11 * (3,1,4,2,5) 16200 (4,2) - 1300 (0,0,0,1,0,2) (4,6,6) (0,0,0,3,0)
12 (3,1,2,4,5) 14900 (3,1) -1000 (0,0,1,1,0,1) (4,3,6) (0,0,1,3,0)

14900
13900

13500

*Current solution is a new starting point.

tions with 1 -< t~ -< 12, 30 <- p~ -< 110, and 500 -<
s~j -< 1500. Three sets of five test problems with
25, 30, and 35 jobs were constructed using these
same distributions and ranges. Each of the 20-job
problems has been run using different parame-
ters: two starting points (heuristic 1 and 2), two
aspiration criteria (A and B), and three short-
term memory function sizes (5, 6, 7 and 6, 7, 8
for aspiration criterion A and B, respectively). A
maximum of 200 moves without improvement
has been used as a cutoff criterion to terminate
each run. The TS method found the optimal so-
lution of all the problems, before the termination
criterion was met, for at least one of the settings.

The experiments with larger problems (N >
20) were conducted restricting the size of the
short-term memory function to 6 and 7, in two
different sets of tests. For each problem a lower
bound was obtained by calculating, separately,
the delay penalty and the setup cost portions of
the objective function. The delay penalty portion
was found by ignoring the setup costs and order-
ing the jobs in their natural order. The setup cost
portion was calculated by ignoring the process-
ing times and delay penalties and solving the as-
signment problem.

The first four columns of table 4 show the
problem number and the average, worst, and
best solutions found by the TS method for the
test problems. The average solution is calculated
by adding the values of the objective function ob-
tained by each setting and dividing the sum by
the total number of settings. For the 20-job prob-

lems 8 and 9, every possible setting obtained the
optimal solution. The fifth column shows a lower
bound obtained by solving an assignment prob-
lem [12]. The sixth column shows the value of
the proportional deviation of the best solution
from the lower bound for each problem. The pro-
portional deviation is calculated by dividing the
absolute deviation (differences between the best
solution and the lower bound) by the value of the
lower bound. The last three columns show the
average time to the best solution, the average
time to the completion (end) of the search, and
the total time required to run all settings. The
times are given in CPU seconds of an IBM PS/2
Model 80 microcomputer. From the information
shown in table 4, the following observations
can be made about the performance of the TS
method:
• The average proportional deviation of the best

objective value found from its calculated lower
bound, when the best value is in fact known to
be optimal (for the 20-job problems), is similar
to this same average proportional deviation for
problems where an optimum is unknown (with
N > 20). Assuming the percentage gap between
the lower bound value and the optimum value
does not diminish with problem size (the op-
posite would seem more likely), the proximity
of the values obtained to the optimal values is
very close.

• The average and worst solutions indicate that
most of the solutions obtained by the TS
method are closer, in value, to the best solution

168 Laguna, Barnes, and Glover

Table 4. Summary of computational experience for PI

Solutions Lower Proportional Times
Problem Average worst Best bound deviation Best end Total

20-Job
1 86,995 87,086 86,980* 82,932 0.049 7.5 15.7 188
2 79,194 79,363 79,134" 75,120 0.053 3.4 11.3 136
3 98,086 98,163 98,059* 95,680 0.025 5.8 14.2 170
4 83,741 83,823 83,731" 80,569 0.039 4.5 12.8 153
5 98,721 98,755 98,675* 94,374 0.045 3.2 11.7 140
6 90,975 91,301 90,919" 87,631 0.037 8.8 17.1 205
7 81,256 81,410 81,241" 77,307 0.051 2.4 10.3 123
8 81,198" 81,198" 81,198" 77,979 0.041 3.1 11.8 141
9 87,283* 87,283* 87,283* 84,000 0.039 3.3 11.2 134

10 94,237 94,365 94,192" 90,300 0.043 4.7 13.4 161
Average: 0.042 4.7 12.9 155

25-Job
1 87,042 87,226 86,799 82,610 0.051 6.6 19.8 158
2 111,233 111,353 111,182 107,108 0.038 11.6 23.3 186
3 90,760 91,031 90,657 86,628 0.046 8.0 20.1 161
4 107,981 108,154 107,859 102,573 0.051 10.9 22.9 183
5 77,384 77,571 77,274 72,664 0.062 8.1 20.0 160

Average: 0.050 19.1 21.2 170
30-Job

1 105,163 105,493 104,785 99,777 0.050 6.8 24.0 192
2 138,613 138,864 138,414 131,829 0.050 9.0 25.6 205
3 129,197 129,481 128,883 124,656 0.034 8.3 26.0 208
4 105,827 106,332 105,514 99,834 0.057 8.9 26.5 212
5 115,780 115,919 115,625 109,337 0.057 11.0 27.4 219

Average: 0.050 8.8 25.9 207
35-Job

1 177,995 178,459 177,739 171,554 0.036 l l .0 26.8 214
2 227,889 228,079 227,530 220,901 0.030 7.9 22.4 179
3 179,713 180,208 179,404 173,897 0.032 10.8 27.0 216
4 165,621 166,128 165,192 158,819 0.040 14.1 29.8 238
5 164,370 164,577 163,965 157,679 0.039 5.3 17.6 141

Average: 0.035 9.8 24.7 198

*Optimal solution.

t han to the w o r s t one , and even the w o r s t so-
lu t ion is f r equen t l y wi th in 0 .4% of the bes t .

° T h e d y n a m i c c h a n g e o f the m a x i m u m m o v i n g
d i s t a n c e a l lows the p r o b l e m s wi th 35 j o b s to be
s o l v e d w i thou t i nc rea s ing the a v e r a g e to ta l
c o m p u t a t i o n a l t ime. (This to ta l C P U t ime be-
c o m e s 339 s e c o n d s w h e n a c o n s t a n t m o v i n g
d i s t a n c e is used) .

T h e TS m e t h o d s u c c e e d s in so lv ing r ea son -
ab ly la rge p r o b l e m s to n e a r o p t i m a l i t y (as in-
f e r r e d f rom the l o w e r - b o u n d c o m p a r i s o n) . T h e
c o m p u t a t i o n t ime for e ach so lu t ion t r ia l is re la-
t ive ly smal l (an a v e r a g e o f 24.7 s e c o n d s for 35-
j o b p r o b l e m s) , bu t the fac t tha t a n u m b e r o f pa -
r a m e t e r se t t ings are u s e d resu l t s in a s o m e w h a t

large to ta l c o m p u t a t i o n a l effor t . We m u s t a l so
a d d tha t the a v e r a g e p r o p o r t i o n a l dev i a t i ons
f rom the l o w e r b o u n d s o f the ini t ia l so lu t ions
g e n e r a t e d wi th heu r i s t i c s 1 and 2 are 0.091 and
0.063, r e spec t ive ly .

7. An Improved TS Method

In o r d e r to fu r the r r e d u c e the to ta l c o m p u t a t i o n a l
e f for t l inked wi th ob ta in ing a so lu t ion to each
p r o b l e m , an add i t i ona l s t r a t egy to m o v e f rom one
so lu t ion to a n o t h e r was i n c o r p o r a t e d into ou r
p r o t o t y p e TS m e t h o d . This s t r a t egy cons i s t s o f
i n t roduc ing a m o v e tha t t r ans fe r s one j o b f rom its

Intelligent Scheduling with Tabu Search 169

current position to an earlier or later position in
the schedule. The direct consequence of adding
this class of moves (referred to as insert moves)
to the local search for the best move is an in-
crease of the computational burden associated
with each iteration. However, it was expected
that the added searching power would allow the
TS method to obtain solutions of the same or bet-
ter quality than before, starting from any given
initial solution.

This speculation proved correct. In fact, the
modified TS method that incorporated insert as
well as exchange moves proved so successful
that it became unnecessary to restart the method
from alternative initial solutions. We selected the
same set of parameter values found most consis-
tent in our previous experiments, i.e., the one
that most often yielded the best solution to a
problem. This set of parameters employs heuris-
tic 2 to provide the starting solution, aspiration
level criterion A, and a tabu size of 7. Moreover,
with the speedup provided by using only a single
starting point, we did not bother to start d at a
smaller value and increment it for problems with
N > 30, but set d to [N/2] - 1 for problems of
all sizes. The new termination criterion used
stopped the search after a predetermined total
number of iterations (500 for our experiment).
The results of this experiment can be summa-
rized as follows:
• The average CPU time per solution attempt

was 16.6, 22.8, 31.4, and 40.9 seconds for prob-
lems with 20, 25, 30, and 35 jobs, respectively.

• The average CPU time to obtain the best solu-
tion found in each attempt was 4.8, 7.4, 9.1,
and 19.0 seconds, respectively, for these prob-
lem sizes.

• Optimal solutions were found for all but one of
the 20-job problems. (The best solution found
for problem 2 deviated from optimality by
0.04%.)

• Better solutions were found by the modified
method for the following problems: 25-job
problem 5 (77,185), 30-job problems 2 (138,
301) and 5 (115,600), and 35-job problems 1
(177,333), 2 (227,121), 3 (179,340), and 5
(163,602).

• For the larger problems (N > 20), the modified
method did not give solutions as good as the
original method in only three instances: the 30-

job problems 2 (138,440) and 4 (105,568), and
35-job problem 4 (165,243).

Furthermore, since the improved method does
not include a restarting mechanism, we can mea-
sure the improvement achieved over the initial
solution (i.e., the one generated by heuristic 2).
On the average, the best solution found by the
improved TS is 98% of the initial solution. Our
success in combining the insert and swap moves
within the TS framework raises the question of
whether this combination might also work well
independently, i.e., by simply employing a hill-
climbing procedure with these moves that re-
starts multiple times. To test this, we also com-
pared our method against a refinement of the
multiple-start hill-climbing procedure known as
GRASP [13], which seeks improved starting can-
didates by a randomized adaptive greedy pro-
cess. Our approach obtains significantly better
solutions overall in considerably less time. A
fuller report of this experimentation and its out-
comes appears in [14].

In order to test the ability of our method to
obtain high quality solutions in an alternative set-
ting, the TS procedure was adapted to handle a
more complex version of problem P1. This new
problem can be represented mathematically as
follows:

where

and

Minimize F(II) = C(II) + S(II)

N

C(lq) = 2 c-~(i) P-.(i) (P2)
i=l

i

j--I

In this model, aij is the time required for the ma-
chine to be changed from processing job i to pro-
cessing job j, i.e., the setup time between job i
and j. Also, the delay penalties are charged for
every unit of time that the completion of the jobs
is delayed from time zero. The non-identical,
multiple-machine version of this problem was ad-
dressed by Vanston in [12]. Since his DPBB pro-
cedure was limited to very small instances of the
more general case, he conducted experiments us-
ing problem instances with up to 24 jobs for the
single-machine case. (The method is incapable of
handling problems with 25 jobs or larger.) We

170 Laguna, Barnes, and Glover

used this set of nine problems to perform an ad-
ditional and final computational experiment.

Although the substantial difference in the
sizes of problems capable of being addressed by
tabu search and the DPBB optimizing method al-
ready argues for the practicality of the TS ap-
proach, we sought to determine the relative effi-
ciencies of these approaches for the problems the
DPBB method was able to handle. Our experi-
ment consists of a single solution attempt of 500
iterations for each problem. A modified heuristic
2 was used to provide the initial solutions, and
the short-term memory was set to [N/2] moves
for problems with up to 12 jobs and to 7 moves
for larger problems. Table 5 presents a compari-
son of the solutions obtained and CPU times re-
quired by the optimizing algorithms BB and
DPBB and the approximate procedure TS. (This
comparison does not include the performance of
a DP algorithm, since this approach was aban-
doned in [12] after proving inferior to BB and
DPBB for small problems.) The CPU times (in
seconds) reported for BB and DPBB were
achieved with FORTRAN implementations of
these algorithms in a CDC 6600 using the MNF
compiler. (The TS method, as before, was imple-

mented in C on an IBM PS/2 Model 80 micro-
computer.)

As shown in table 5, the computational effort
involved in solving the test problems by means
of BB and DPBB increases rapidly with the prob-
lem size. The BB algorithm reaches the time limit
of 1000 seconds, imposed by Vanston in [12],
without confirming optimality for problems with
20, 22, and 24 jobs. (The most recent upper
bound found by this approach unfortunately was
not reported, as indicated in table 5. Hence we
do not know if this bound was as good as that
obtained by the tabu search solutions.) DPBB is
able to solve, within the time limit, problems
with up to 22 jobs, but it terminates with a mem-
ory overflow while attempting the solution of the
24-job problem. At this point the most recent up-
per bound of 252,887 is inferior to the TS solution
of 246,821. It can be also observed that the time
to reach the termination criterion of 500 iteration
for the TS method increases with the number of
jobs, but the increments are not as significant as
those experienced by the optimizing techniques.
The times to obtain the best solution found by
the TS method show that, although TS is in-
structed to execute 500 moves on all problems,

Table 5. Summary of computational experience for P2

Solution CPU seconds

DPBB t TS**

Problem Total Time to Chosen Time to
size BB DPBB TS BBt time best limit best

8 47,544* 47,544* 47,544* 0.2 0.8 0.18 9.56 0.00
10 67,563* 67,563* 67,563* 0.9 2.0 0.36 14.78 0.11
12 76,656* 76,656* 76,656* 2.8 6.2 1.74 21.70 0.44
14 96,135" 96,135" 96,135" 10.4 8.6 2.41 29.11 0.49
16 141,130" 141,130" 141,130" 67.4 47.4 13.27 34.16 0.33
18 191,320" 191,320' 191,320" 194.2 187.0 52.36 44.38 32.46
20 n . r . 185,459" 185,459" > 1000 916.2 256.54 55.58 3.46
22 n . r . 213,756" 213,756" >1000 417.9 117.01 64.60 11.10
22 n . r . 252,887 u 246,821 >1000 m . o . - - 72.06 6.92

tCDC 6600.
*tlBM PS/2 Model 80.
*Optimal solution.
uMost recent upper bound.
n. r. Not reported.
m. o. Memory overflow.
(If adjusted for relative speeds of the computers used, the times for the TS method would be approximately twice as fast as
those shown.)

Intelligent Scheduling with Tabu Search 171

the best solutions were generally found early in
the search (i.e., somewhat before the first 100 it-
erations). With the exception of the 18-job prob-
lem, all other solutions are found during the first
12 seconds of search. By contrast, the DPBB
procedure is reported to require an average 28%
of its total solution time to reach the best solution
obtained, which results in a significant difference
in the "Time to Best" columns for these methods
shown in table 5. To have a better base for com-
paring the CPU times across machines, we have
empirically determined that the CDC 6600 main-
frame computer used by the DPBB approach op-
erates at least twice as fast as the IBM PS/2
Model 80 microcomputer used by the TS ap-
proach. This was achieved by comparing the ex-
ecution time of a code originally implemented in
the CDC 6600, which has been recently adapted
for the IBM PS/2 Model 80.

Table 5 also shows the consistently high qual-
ity of the solutions obtained by the TS method.
This approach not only found the optimal solu-
tions to all problems for which these solutions
are known, but also it was able to improve the
best-known solution to the 24-job problem by
6,066 units (i.e., a 2.4% reduction on the pre-
vious best-known value).

8. Final Remarks

Our experimentation shows that the TS method
we have designed for the single-machine sched-
uling problems Pl and P2 is remarkably effective.
Solution quality rivals and generally surpasses
that of optimizing methods tailored for this
problem, under conditions where the optimizing
methods are allowed to consume much greater
amounts of time (not only to verify optimality,
but to obtain the best solution found). In addi-
tion, our application of tabu search employs
much less memory and is capable of generating
high-quality solutions very quickly for problems
with N > 20, which the optimizing methods are
incapable of handling within either reasonable
time or reasonable memory restrictions.

We have shown that the the TS method origi-
nally designed for P1 was successflJlly adapted to
provide solutions to the related problem P2. In
the same way, this procedure can be modified to

approximately solve other single machine sched-
uling (SMS) problems with different objective
functions. As presented by Gupta and Kyparisis
[15], the SMS problem can be classified on the
basis of objective functions and problem con-
straints. Simple objective functions based on
completion times include total completion time,
mean completion time, total weighted comple-
tion time, and maximum completion time. Typi-
cal objective functions considered for problems
with due dates include total tardiness, mean tar-
diness, mean lateness, total weighted tardiness,
maximum tardiness, number of tardy jobs, and
weighted number of tardy jobs. Composite objec-
tive functions (like the one used in P1 and P2) can
be formed by combining single objective func-
tions. By changing only the generation of starting
solutions and the definition of the move value,
the general structure of the TS in its current form
can be used when other types of objective func-
tions and constraints are incorporated within the
SMS problem. Considerations for future research
with applications to additional settings are found
in [6].

Acknowledgment

This research was supported in part by the Joint
Air Force of Scientific Research and Office of
Naval Research Contract No. F49620-90-C-0033
at the University of Colorado.

References

I. S.E. Elmaghraby and S.H. Park, "Scheduling jobs on
a number of identical machines, AIIE Trans., vol. 16,
no. 1, pp. 1-13, March 1974.

2. J.W. Barnes and L.K. Vanston, "Scheduling jobs with
linear delay penalties and sequence dependent setup
costs," Operations Res., vol. 29, no. 1, pp. 146-160,
January-February 1981.

3. T.L. Morin and R.F. Marsten, "Branch-and-bound
strategies for dynamic programming," Operations
Res., vol. 24, no. 4, pp. 611-627, July-August 1976.

4. D. de Werra and A. Hertz, "Tabu search techniques: A
tutorial and an application to neural networks, OR
Spectrum, vol. 11, pp. 131-141, 1989.

5. F. GIover, "Tabu search: A tutorial," Interfaces, vol.
20, no. 4, pp. 74-94, July-August 1990.

6. F. Glover and M. Laguna, "Tabu search," in Modern
Heuristics for Combinatorial Optimization, C.R.

172 Laguna , Barnes , and Glover

Reeves (Ed.), Blackwell Scientific Publications, Ox-
ford, 1993.

7. A. Hertz and D. de Werra, "Using tabu search tech-
niques for graph coloring," Computing, vol. 29, pp.
345-351, 1987.

8. F. Glover, E. Taillard, and D. de Werra, "A user 's
guide to tabu search," Ann. Operations Res. (in press).

9. I.H. Osman, "Metastrategy simulated annealing and
tabu search algorithms for the vehicle routing problem,
Ann. Operations Res. (in press).

10. J. Chakrapani and J. Skorin-Kapov, "Massively paral-
lel tabu search for the quadratic assignment problem,"
Ann. Operations Res. (in press).

11. M. Widmer and A. Hertz, "A new method for the flow
sequencing problem," Eur. J. Operations Res., vol. 41,
pp. 186-193, 1989.

12. L.K. Vanston, "A hybrid dynamic programming/
branch-and-bound algorithm to solve multiple-machine
scheduling problems," Ph.D. Dissertation, Mechanical
Engineering Department, The University of Texas at
Austin, 1979.

13. T.A. Feo and M.G.C. Resende, "A probabilistic heu-
ristic for a computationally difficult set covering prob-
lem," Operations Res. Lett., vol. 8, pp. 67-71, 1989.

14. M. Laguna, J.W. Barnes, and F. Glover, "Tabu search
methods for a single machine scheduling problem," J.
Intell. Manufact., vol. 2, pp. 63-74, 1991.

15. S.K. Gupta and J. Kyparisis, "Single machine sched-
uling research," OMEGA Int. J. Mgmt. Sci., vol. 15,
no. 3, pp. 207-227, 1987.

Manuel Laguna is an Assistant Professor of Management
Science in the Graduate School of Business Administration
of the University of Colorado at Boulder. He received mas-
ter 's and doctoral degrees in Operations Research and In-
dustrial Engineering from the University of Texas at Aus-
tin. Dr. Laguna has done extensive research in the interface
between artificial intelligence and operations research to
develop solution methods for problems in the areas of pro-
duction scheduling, telecommunications, and facility lay-
out. As part of the University of Colorado and US West
Partnership, Dr. Laguna collaborates with the Advanced
Knowledge Systems Research Group of US West Ad-
vanced Technologies. He is Editor of the special issue on
tabu search of Annals of Operations Research and a mem-
ber of the Operations Research Society of America and the
International Honor Society Omega Rho.

J. Wesley Barnes, Cullen Trust for Higher Education En-
dowed Professor in Engineering, is the Coordinator of the
Graduate Program in Operations Research and Industrial
Engineering at the University of Texas at Austin. He is a
past Associate Editor of the Transactions of the Institute
of Industrial Engineers and is a Registered Professional En-
gineer in the State of Texas. He is the author of several
books, among which are Network Flow Programming, win-
ner of the Institute of Industrial Engineers Book-of-the-
Year Award for 1980, and Statistical Analysis for Engi-
neers, a Computer-Based Approach, Prentice Hall Publish-
ing, 1988.

Fred Glover is the US West Chaired Professor in Systems
Science at the University of Colorado, Boulder. He has
authored or co-authored more than 200 published articles
in the fields of mathematical optimization, computer sci-
ence, and artificial intelligence, with particular emphasis
on practical applications in industry and government. In
addition to holding editorial posts for journals in the U.S.
and abroad, Dr. Glover has been featured as a National Vis-
iting Lecturer by the Institute of Management Science and
the Operations Research Society of America and has
served as a host and lecturer in the U.S. National Academy
of Sciences Program of Scientific Exchange.

Professor Glover is the recipient of numerous awards
and honorary fellowships, including those from the Amer-
ican Association for the Advancement of Science, the
NATO Division of Scientific Affairs, the Institute of Man-
agement Science, the Operation Research Society, the De-
cision Science Institute, the U.S. Defense Communications
Agency, the Energy Research Institute, the American As-
sembly of Collegiate Schools of Business, Alpha Iota
Delta, and the Miller Institute for Basic Research in Sci-
ence. He serves on the advisory boards of several organi-
zations and is co-founder of Optimization Technologies,
Inc., Analysis and Research and Computation, Inc., and
the nonprofit research organization Decision Analysis and
Research Institute.

