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Abstract. In this article we study the tabu search (TS) method in an application for solving an important 
class of scheduling problems. Tabu search is characterized by integrating artificial intelligence and op- 
timization principles, with particular emphasis on exploiting flexible memory structures, to yield a 
highly effective solution procedure. We first discuss the problem of minimizing the sum of the setup 
costs and linear delay penalties when N jobs, arriving at time zero, are to be scheduled for sequential 
processing on a continuously available machine. A prototype TS method is developed for this problem 
using the common approach of exchanging the position of two jobs to transform one schedule into 
another. A more powerful method is then developed that employs insert moves in combination with 
swap moves to search the solution space. This method and the best parameters found for it during the 
preliminary experimentation with the prototype procedure are used to obtain solutions to a more com- 
plex problem that considers setup times in addition to setup costs. In this case, our procedure succeeded 
in finding optimal solutions to all problems for which these solutions are known and a better solution 
to a larger problem for which optimizing procedures exceeded a specified time limit (branch and bound) 
or reached a memory overflow (branch and bound/dynamic programming) before normal termination. 
These experiments confirm not only the effectiveness but also the robustness of the TS method, in 
terms of the solution quality obtained with a common set of parameter choices for two related but 
different problems. 
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1. Introduction 

In this article, we study an application of tabu 
search (TS) to an important class of machine 
scheduling problems. Tabu search is founded on 
integrating problem-solving principles that span 
the fields of artificial intelligence and mathemat- 
ical optimization, exploiting flexible memory 

structures to obtain optimal or near optimal so- 
lutions with a high degree of efficiency. We first 
consider the single-machine scheduling problem 
with linear delay penalties and setup cost depen- 
dencies. At time zero, N jobs simultaneously ar- 
rive at a continuously available machine. Each 
job i (i = l, 2 . . . . .  N) requires t~ units of time 
on the machine, and a penalty p~ is charged for 
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each unit of time that job commencement is de- 
layed after time zero; s~j is the setup cost of 
scheduling job j immediately after job i. The jobs 
are indexed according to their natural order [1], 

i.e., i < j implies that ~ _< --.tJ Two dummy jobs, 
P~ Pj 

0 and N + 1, are included in every schedule, 
where to = tN+l = 0andp0  = PN+~ = 0. The 
costs s0,j and Si, N + ~ are considered to be the initial 
setup cost and the teardown cost, respectively. A 
schedule has the form 

II = {0, "rr(1), -rr(2) . . . . .  "rr(N), N + 1} 

where -rr(/) is the index of the job in position i of 
the schedule. The objective is to minimize the 
sum of the delay and setup costs for all jobs. In 
mathematical terms, we desire to 

and BB2 failed to terminate before the time limit 
of 100 seconds in all but one of the 20-job prob- 
lems. The most promising optimal algorithm for 
P1 developed by Barnes and Vanston is DPBB, 
which solved all of the 20-job problems in an av- 
erage time of 42.9 seconds (which includes 10 
seconds taken by BB3 to provide the starting so- 
lution). However, DPBB was tested with several 
25-job problems, and in each of these problems 
storage limitations were encountered at fairly 
low stages. 

The primary purpose of our current research 
is to study larger problem instances of P1 and 
the quality of the solutions obtained for them 
with the TS method. (For background, see, for 
example, [4-7].) This method requires mini- 
mal computational resources, allowing relatively 

Minimize F(II) = D(H) + S(H) 
N 

where D(H) = ~ d~¢i)P~¢i ) 
i - - I  

N - - I  

S(II) = S0,~¢l) + ~ s~i),~¢i+l) + S=¢N).N+I 
i = l  

N - - I  

and d~¢i) = ~ t~o),i = 2 , . . . , N a n d d ~ ¢ l )  = 0 
j= l  

The available optimal schedule algorithms for P1 
are based on branch and bound and dynamic pro- 
gramming [2]. Unfortunately, the explosion of di- 
mensionality and the fact that existing methods 
require an assignment problem (or assignment 
problem relaxation) to be solved a very large 
number of times has limited their power to the 
solution of small problems. Barnes and Vanston 
[2] developed three branch and bound algorithms 
using natural order branching (BB1), minimum 
bound branching (BB2), and priority branching 
(BB3). A lower bound obtained by solving the as- 
signment problem was used by the BB algo- 
rithms; however, after an attempted solution of a 
15-job problem did not terminate before 100 CPU 
seconds on a CDC 6600, the assignment problem 
bound was not used in further BB experiments. 
Morin and Marsten's dynamic programming/ 
branch and bound (DPBB) approach [3] was also 
applied in [2] to reduce the memory and compu- 
tational requirements. For the solution of 20-job 
problems, BB3 was prematurely curtailed, and 
the curtailed solution was used as the starting 
point for BB1, BB2, and DPBB. Even then, BB1 

(pl) 

large problems to be approximately solved on 
a microcomputer using a general-purpose lan- 
guage. Recent studies have demonstrated that 
tabu search is able to obtain significantly higher- 
quality solutions and optimal solutions with sub- 
stantially greater frequency than alternative ap- 
proaches in a variety of domains, including graph 
coloring [7], vehicle routing [9], and quadratic as- 
signment [10] problems. In the area of schedul- 
ing, although examining a somewhat different 
problem than the one addressed here, the study 
by Widmer and Hertz [11] compares tabu search 
to six alternative approaches to the m-machine, 
n-job flow shop problem. The authors find that 
tabu search obtains better solutions than all other 
methods in up to 90% of the cases. More recent 
studies surveyed in [6,7] encouraged us to de- 
velop a tabu search method for the solution of 
PI, with the additional challenge of comparing 
this approach to a tailored, special-purpose op- 
timization method (which has been reported to 
be more effective than competing optimization 
procedures for this problem). A further goal of 
our research effort is to show the robustness of 
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our method by adapting it for the approximate 
solution of a related problem that includes setup 
times (problem P2 in section 7). 

As described in section 2, the TS method was 
used to redirect the steps of  a simple hill-climb- 
ing heuristic as a metaprocedure  to overcome lo- 
cal optimality. Definitions associated with the TS 
method and the data structures we used in the 
present setting are given in section 3. In section 
4, a prototype TS method tailored for the solu- 
tion of  PI is described. Section 5 illustrates our 
TS procedure by identifying the contents of  the 
tabu status arrays that guide the solution process 
at each iteration when applied to an example 
five-job problem. Preliminary computational  ex- 
periences are reported in section 6. An improved 
TS method is described in section 7, and com- 
putational experiences with the more complex 
problem P2 are presented. Final remarks are 
given in section 8. 

2. A Hill-Climbing Heuristic 

P1 is an optimization problem of the following 
form. Given jobs i = 1 . . . . .  N, we seek a per- 
mutation, or schedule, that may be described as 
assigning each i to one of the N possible posi- 
tions. The vector  of  positions uniquely identifies 
the schedule, and the goal is to minimize a func- 
tion of  this vector,  i.e., minimize F(II). The pre- 
liminary selection of the class of  moves to be 
embedded within the TS method consists of com- 
mon pairwise exchanges that swap the position 
of two jobs to transform one schedule into an- 
other. Suppose,  in a given schedule, job ~r(i) pre- 
cedes, but is not necessarily adjacent to, job v(j). 
A move is a recording of only jobs ~r(i) and w(i) 
such that job w(i) is moved to position j and job 
w(j) is moved to position i. The move value is the 
difference between the value of  the objective 
function after the move, F(1]), and the value of  
the objective function before the move, F(II), 
i.e., 

move__ value = F(I'I) - F(H) 

For  comparat ive purposes,  it is convenient  to be- 
gin by noting the form of  a simple hill-climbing 
heuristic that uses the same swap moves (the 
"hill" is inverted for minimization). The organi- 

zation of the heuristic presented in figure 1 has 
been chosen to allow direct elaboration into a 
simple TS procedure.  Note  in particular that a 
best member  of the candidate moves was chosen 
at each step. Often hill-climbing methods are or- 
ganized to accept any improving move. The more 
aggressive orientation of choosing the best mem- 
ber is particularly relevant to tabu search after a 
local optimum has been found. The fact that ex- 
amination is limited to candidate moves,  how- 
ever, allows the chance to define the set of such 
moves dynamically. We will superimpose tabu 
search on this heuristic, with the goal of provid- 
ing a guiding framework to overcome the strong 
tendency of  the bill-climbing process to become 
trapped at a local optimum. 

3. Definitions 

The fundamental process by which tabu search 
seeks to transcend local optimality is to intro- 
duce a mechanism to make certain moves forbid- 
den (tabu). In this context,  there are four key ele- 
ments to consider: 
I. To identify one or more attributes of  a move 

that will be used to create the tabu classifica- 

Generate starting solution gI*; 
Evaluate F(I'I*}; 
do { 

best_move_value ~ ,,~; 
for (all candidate moves) { 

Evaluate move_value; 

if (move_value < bestmove_value) { 

bestmove_value ~-- move_value; 

bestmove ~-- current move; 
} 

} 

if (best_move_value < 0) { 
Execute best_move; 

F(1-I*) +- F(II*) + best_move_value; 
} 

} while (best_move_value < 0); 

Fig,. l. A simple hill-climbing heuristic. 
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tion (the conditions that make it possible to 
specify that a move is tabu); 

2. To identify the actual tabu restrictions based 
on the attributes; 

3. To identify an effective data structure for up- 
dating the tabu status of moves;  and 

4. To identify aspiration level criteria allowing 
the tabu status of  a move to be overr idden un- 
der appropriate circumstances.  

In addition to these elements,  a short-term mem- 
ory function is used to determine how long a tabu 
restriction will be enforced. Also, a long-term 
memory function is constructed in such a way as 
to allow the investigation of  a number  of  alter- 
native " f resh"  starting points for the entire 

any earlier than position i on subsequent sched- 
ules until the short-term memory  tenure for this 
job has expired. The attribute of a move to be 
recorded in order to implement this restriction 
becomes "rr(i), the index of  the job in position i 
prior to the move, and i, the position from which 
job w(i) moved to the "r ight"  to occupy position 
j. Accompanying this, we designed data struc- 
tures to keep tract of  moves that are classified as 
tabu and to free those moves from their tabu con- 
dition when their short-term memory  tenure has 
expired. The data structures used in the solution 
of P1 are composed of  a tabu state, tabu list, and 
tabu position that contain the following infor- 
mation: 

tabu__ state (v(i)) = number  of  times job "rr(i) appears in the tabu list, -rr(i) = 1 . . . . .  N. 
tabu__ list(ltabu) = ~r(i), if job -rr(i) is prevented from moving at or " lef t"  of its tabu position (ltabu = 
1 . . . . .  tabu__ extent).  
tabu__ position(~(i)) = tabu position for job ~(i), "rr(i) -- 1 . . . . .  N. 
aspiration__ level(~r(i)) = aspiration level for job -rr(i), v(i) = 1 . . . . .  N. 

search procedure while encouraging selection of  
starting points not near those previously se- 
lected. The long-term memory  function may be 
viewed as a means of creating an intelligent di- 
versification of the regions to which the solution 
process is applied, rather than relying on a blind 
randomization process.  (Additional roles of  TS 
memory  functions are described in [6].) 

In the solution of  P1, our main concern is to 
create a tabu status that prevents a move from 
being reversed while under the jurisdiction of the 
short-term memory,  which we have chosen for 
P1 to be a specified number  of future moves. This 
tabu status is modified by the application of as- 
piration criteria, as indicated below. 

There are a variety of ways to create tabu re- 
strictions within this context.  For  example,  one 
can impose a tabu restriction such that, after a 
move of jobs w(i) and w(j), where j > i, job "rr(i) 
cannot  be placed any earlier, i.e., move to the 
" lef t ,"  on subsequent schedules until the short- 
term memory  has expired. The performance of 
the TS method under this restriction was not as 
good as it became under a more flexible tabu re- 
striction. After initial experimentat ion with sev- 
eral options, we found the following tabu restric- 
tion to work well and embodied it in the rest of 
our investigation: after a move of jobs w(i) and 
v(j), where j > i, job ~(i) cannot be placed at or 

If tabu__ state(v(i)) > 0, w(i) has been moved 
to the right during the previous tabu__ ex- 
tent moves and will reside at least once on the 
tabu__ list. Hence,  the tabu _ s t a t e  vector  re- 
moves the need to sequentially traverse the tabu 
list. In a move of jobs w(i) and w(i), if t a b u _  
state(v(j)) > 0 and i -< tabu__ position(~r(j)), then 
the move is a tabu move. The tabu__ list keeps 
track of  the jobs that are being prevented from 
moving at or " lef t"  of  their tabu position, as a 
way to record tabu restrictions. The argument of 
tabu__ list, ltabu (ltabu = 1 . . . . .  tabu__ ex- 
tent), is a pointer to the next available position in 
the circular tabu list of length, tabu__ extent.  The 
tabu__ position contains the most recent tabu po- 
sitions of  jobs in the tabu list; i .e . ,  if a job ap- 
pears twice in the tabu list, only the most recent 
tabu position is considered. This structure im- 
plicitly enforces the short-term memory  function 
by assigning a tabu status to a move for only the 
tabu__ extent  most  recent moves.  We discuss the 
above structure in more detail in section 4. 

Two aspiration-level tests are used in our ap- 
plication of the TS method to P1, as means of 
overriding tabu status. Both tests allow tabu 
moves to be executed but differ in the level of 
flexibility that they introduce to the search. The 
less flexible criterion, aspiration criterion A, al- 
lows a tabu move to be performed,  i.e.,  allows a 



tabu job to move to a position earlier than its tabu 
position, during its short-term memory  tenure, if 

F(H) + move__ value < F(II*). 

A less restrictive test, aspiration criterion B, al- 
lows a tabu move to be performed if 

F(H) + move__ value < 
a sp i r a t i on_  level (~r(j)) 

where the aspiration level for each job,  aspira- 
t i o n _  level(v(i)), is initially set to a large value 
and subsequently modified in the following way. 
Assume the move that repositions jobs v(i) and 
v(j) has the best move value for the current  H. 
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Then the modification is performed by the fol- 
lowing rule: 

if ( a s p i r a t i o L  level(w(i)) > F(II)) 
aspiration__ level(~(i)) = F(II) 
if (aspiration__ level(Tr(j)) > F(I'I)) 
aspiration__ level(-rr(j)) = F(fI) 

4. A Prototype  Tabu Search M e t h o d  

In this section we identify how our prototype TS 
method operates to take advantage of the data 
structures introduced in section 3. We begin by 
describing the method in overview (see figure 2), 

Initialize long term memory function; 

F(H*) e-- ~; 

do { 

Generate starting solution H; 

Evaluate F(FI); 
Initialize move_value ma~ix; 

Initialize short term memory function; 

do { 

Update long term memory function; 

best_move_value ~ ,,*; 

for (all candidate moves) { 

if (candidate move is admissible) { 

if (movevalue < best_move_value) { 

best_move_value ~ move_value; 

best_move <---- current move; 
} 

Execute best_.move; 

F(I'I) ~ F(I'I) + best_movevalue; 

Update move_value matrix; 

Update short term memory function; 

if (F(rl) < F(rI*)) { 

H* <"- H; 

F(FI*) ~-- F(H); 
/ 

} while (moves without improvement < max_moves); 

} while (F(H*) has changed in last 4 starting points); 

Fig. 2. A prototype tabu search method for P1. 
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followed by a detailed specification of  its opera- 
tions. In broad terms, our TS method for P1 
seeks an optimal schedule by making a succes- 
sion of  pairwise exchanges,  or moves,  to trans- 
form one schedule into another. The method 
starts by initializing the long-term memory  func- 
tion and generating an initial feasible heuristic 
solution, which is saved as the best  solution 
found so far. The search is restarted from at least 
three more different starting solutions that are 
generated using the penalties assigned by the 
long-term memory  function. Every  time the 
search is restarted,  the short- term memory  func- 
tion is reinitialized. 

Given a starting solution, the method per- 
forms moves until a specified number of moves 
(max__ moves) elapses without obtaining a solu- 
tion bet ter  than the best solution found on the 
current  pass. After any change in the schedule, 
the long-term memory  function is updated. The 
move to be made at a given iteration is found by 
calculating the move value of all candidate 
moves for the current  solution. A move is con- 
sidered to be a candidate if the jobs being ex- 
changed are within a specified distance (number 
of positions). Since we are minimizing, the best 
candidate move possesses the algebraically 
smallest move value. More precisely, the best 
move is selected from the set of admissible can- 
didates. A candidate is admissible either if it is 
not tabu or if its tabu status can be overr idden by 
the aspiration criterion. The best move is then 
performed and the tabu data structure is up- 
dated. The best solution, II*, is updated if the 
current  solution's F(I/) is less than F(17*). The 
procedure is repeated until the termination cri- 
terion is met,  i.e., until the last four starting so- 
lutions fail to improve the best solution found so 
far. 

4.1. Long-Term Memory Function 

The long-term memory  function we designed for 
P1 is embodied in an NxN matrix that contains 
the number  of  times that each job has been 
scheduled in each feasible position; i.e., the (i,j) 
element in the matrix contains the number of it- 
erations that job i has been scheduled in position 
j. This function is used to generate a new starting 
solution after the search has been unable to find 

a bet ter  solution from the current  starting point. 
Jobs are penalized according to the proportion of 
time spent in each position. The more time a job 
spends in a particular position, the larger the 
penalty assigned. This forces the heuristic that 
generates the starting point to find a "good"  so- 
lution that avoids the scheduling of jobs in posi- 
tions frequently occupied in the past. Initially all 
the elements in the matrix are zero. The long- 
term memory  function is updated after every 
move in the following way: 

Let  the current  schedule be II = {0, ~r(1), -rr(2), 
. . . .  ~r(N), N + ,  1}; then N elements in the 
matrix are changed as follows: 

long__ term (rr(i), i) = long__ term 
(Tr(i), i) + 1 

f o r i  = 1 . . . . .  N. 

The proport ion of time that each job w(i) has 
spent in position j is found by dividing the con- 
tent of each element (-rr(i), j), for j = 1 . . . . .  N, 
by the current numbers of moves.  

4.2. Starting Solutions 

Two methods of  generating starting solutions, 
heuristics 1 and 2 from Vanston [12], are imple- 
mented in the application of  the TS method to 
P1. While heuristic 2 gives consistently "be t t e r "  
solutions than heuristic 1, neither heuristic has 
proven to be uniformly superior for the TS 
method in terms of the number of moves required 
to reach the optimal solution. Both are one-pass 
heuristics based on the traveling salesman "near-  
est unvisited ci ty" rule. The procedure starts by 
scheduling job 0 in position 0. Then the available 
job j that minimizes the distance from the pre- 
vious job i is scheduled at the next position. The 
distance measure is a linear function of the setup 
cost, s~j. and the delay penalty "pr ice"  of sched- 
uling job j before fellow available candidates. 
The difference between the two heuristics is in 
the distance measure. In heuristic 1 the distance 
measure is such that it fails to produce a natural- 
order schedule in the absence of setup charges. 

When the heuristics are used to restart the 
search, a penalty that depends on the long-term 
memory  function is added to the distance mea- 
sure. In this way, the distance measure will in- 
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crease if a job is being considered for a position 
it has occupied in the past.  

4.3. Short-Term Memory  Function 

The shor t - term m e m o r y  Ihnction is managed in 
our approach by the tabu state and the tabu list. 
The aspirat ion level and the tabu position of each 
job are also recorded and handled in parallel. The 
shor t - term m e m o r y  function is initialized every  
time the search is started from a new starting so- 
lution. The initialization is as follows: 

tabu__ state(v(i)) = 0 for v(i) = 1 . . . . .  N. 
tabu__ state(N + 1) -- tabu__ extent.  
tabu__ list(ltabu) = N + 1 for ltabu = 1 . . , 
tabu__ extent .  
tabu__ position(w(i)) = 0 for "rr(i) = 1 . . . . .  N. 
ltabu = 0 

The shor t - term m e m o r y  function is then updated 
after every  move.  Let  ~rB(i) and ~B(J) be the 
jobs  with the best  move  value found by the 
best__ move  function. Then the following oper- 
ations are required to update  the tabu status of  
each job: 

Itabu = ltabu + 1 
if ltabu > tabu__ extent  then ltabu = 1 
tabu__ state(tabu __list(ltabu)) = 
tabu__ state(tabu__ list(ltabu)) - 1 
tabu__ list(ltabu) = vB(i) 
tabu__ state('rrB(i)) = tabu__ state(%(i))  + 1 
tabu__ position('rrB(i)) = i 

4.4. Best  Move Function 

Given a current  solution, the best move is the ad- 
missible move  that has the minimum or best 
move value. In order  to find the best move ,  the 

b e s t _  move  function evaluates the move values 
of  all the candidate moves .  A move  of jobs 7r(i) 
and 7r(j) becomes  a candidate i f j  - i -< d, where 
d is the max imum moving distance allowed. The 
max imum moving distance,  d, has been set equal 
to IN/2] - 1 for problems with up to 30 jobs,  
where [ x ] is the largest integer less than or equal 
to x. For larger problems (N > 30), we allowed d 
to start  smaller (to increase processing speed) 
and to be gradually increased to its specified 
value by the following formula: 

( I N / 2 ] -  1)c 
d -  f o r c  = l . . . .  4. 

4 

The value of c is originally set to 1 and is incre- 
mented by one, until 4 is reached,  every  time that 
the search is restar ted after the best  solution was 
not improved from the previous starting point. 
This dynamic change of d significantly reduces 
the time to the best  solution of the larger prob- 
lems. A candidate move  becomes  an admissible 
move if such a move is not tabu, or if it is tabu 
and the aspiration criterion is able to overr ide its 
tabu status. The best__ move function records 
only the best  admissible move  and its corre- 
sponding move  value. 

A critical part  involved in finding the best  
move value is the evaluation of the move  values 
for all candidate moves .  For  problems with 15 
and 20 jobs ,  there are 63 and 135 candidate 
moves ,  respectively;  and in general, there are 
3(d 2 - d)/2 candidate moves  in a given schedule. 
The move  value can be calculated (without ac- 
tually executing the move)  far more  efficiently 
than by direct application of its definition as fol- 
lows: 

Consider  a move  involving jobs  w(i) and v(j), 
where i < j. Then the difference in setup cost,  
AS, between the value of the objective func- 
tion after the move,  F(I]), and the value of the 
objective function before the move,  F(II),  is 

A S ~ .  s m ( i _ l ) ~ ( i )  ~-  s~ ( j )~ ( i )  

-~- Sw( i ) ' r r ( j+ l )  - -  S~( i  I)w(i) - -  S~r(i)~fj) - -  S~( j ) , r r ( j+ l )  

i f j  = i +  1. 

A S  = Snv(i l)Tr(1) "~- S~r( j )vr ( i+])  ~ -  Scr(j 1)nv(i) -[- S ' r r ( i )~r( j+l)  - -  

- -  S'rr(i)-rr(i+ 1) - -  S-r r ( j -  I)-rr(j) - -  S-rr(j),rr(j+ 1) 

i f j g i  + 1. 

S ~ ( i -  l)'~(i) 
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The move value is given by 

j - I  

move value = 2t~(k) 
k--i 

) - 1  

(P~(i) --  P~o)) + Z P ~ ( k ) ( t ~ G )  - t~(i)) + A S  
k = i  

With this streamlined calculation, the evaluation 
of all candidate moves at each iteration is still 
somewhat expensive, and in fact it is possible to 
do better by additionally introducing a memory 
scheme that isolates and updates only the rele- 
vant evaluations that change from iteration to 
iteration. We accomplish this by creating a 
move_value matrix that contains the move 
value of all candidate moves, i.e., the (i,j) ele- 
ment in the matrix contains the move value of the 
swap move that exchanges the jobs in position i 
and j of the current schedule. This matrix is ini- 
tialized every time a new starting point is gener- 
ated. The initialization process consists in eval- 
uating the move value of all candidate moves for 
the current schedule. The matrix is updated at 
every iteration as follows: 

Let ~r(r) and 7r(q) be the jobs repositioned on 
the previous iteration, and let the exchange of 
jobs currently in position i and j, i.e., jobs 7r(i) 
and ~r(j), be a candidate move. Then, we cal- 
culate the new move value if and only if i or j 
is between [r - 1, q + 1], and otherwise use 
the old move value. 

The updating procedure is designed to identify 
the subset of candidate moves whose move val- 
ues have been affected by the execution of the 
best move in the previous iteration. Members of 
this subset are the only ones subjected to updat- 
ing, while the rest of the candidate moves keep 
theirold move values. The introduction of the move 
value matrix causes a significant reduction in 
CPU time, e.g., requiring on average 62% less 
time to approximately solve 35-job problems 
than without its use. 

5. An Illustrative Example 

In this section we illustrate the TS method using 
the five-job problem used by Barnes and Vanston 
[2] to exemplify their BB and hybrid DPBB ap- 
proaches to the problem. The data for the prob- 
lem is given in tables 1 and 2. 

Table 1. Job pa rame te r s  

Dura t ion  Delay pena l ty  
Job (days)  (S/day) Ratio 

1 3 700 3/700 
2 4 800 1/200 
3 1 100 1/100 
4 4 300 4/300 
5 5 200 5/200 

Table 3 summarizes the tabu search process 
when the following options are used to start and 
direct the search: 

Maximum number of moves without 
improvement: 2 
Maximum moving distance: 1 
Starting solution: Heuristic 1 
Aspiration criterion: A 
Short term memory length: 3 

The entries of this table make it possible to trace 
in detail each iteration of the approach. 
Since the last four starting points resulted in the 
same best objective function value, the proce- 
dure stopped at the twelfth iteration. The best so- 
lution found is in fact the optimal solution. 

6. Preliminary Computational Experience 

A C language computer code was written for the 
prototype TS method designed for P1. Three sets 
of problems of different problem sizes have been 
used to test the performance of the TS method. 
A set of 20-job problems was generated and 
used by Barnes and Vanston [2] to test their 
BB1, BB2, and DPBB algorithms. The process- 
ing times, delay penalties, and setup charges 
were randomly generated from uniform distribu- 

Table 2. Setup cos ts  

j 

% 1 2 3 4 5 6 

0 1100 600 1200 2000 1400 
1 ~ 1300 700 1200 1100 1000 
2 900 ~ 1100 1300 600 1200 
3 900 1000 ~ 2000 700 1500 
4 1000 700 800 ~ 600 1200 
5 1400 1300 1200 1300 ~ 900 
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Table 3. Tabu search for a five-job problem 

Current Current Best Move Tabu Best 
Iteration schedule objective move value Tabu state Tabu list position objective 

0* (3,1,2,4,5) 14900 (0,0,0,0,0,3) (6,6,6) (0,0,0,0,0) 
1 (3,1,2,4,5) 14900 (3,1) -1000  (0,0,1,0,0,2) (3,6,6) (0,0,1,0,0) 
2 (1,3,2,4,5) 13900 (3,2) 1000 (0,0,2,0,0,1) (3,3,6) (0,0,2,0,0) 
3 (1,2,3,4,5) 14900 (1,2) - 9 0 0  (1,0,2,0,0,0) (3,3,1) (1,0,2,0,0) 
4* (2,4,1,3,5) 15500 (4,1) -2000  (0,0,0,1,0,2) (4,6,6) (0,0,0,2,0) 
5 (2,1,4,3,5) 13500 (4,3) 500 (0,0,0,2,0,1) (4,4,6) (0,0,0,3,0) 
6 (2,1,3,4,5) 14000 (1,3) 0 (1,0,0,2,0,0) (4,4,1) (2,0,0,3,0) 
7* (3,2,1,5,4) 16500 (5,4) 1600 (0,0,0,0,1,2) (5,6,6) (0,0,0,0,4) 
8 (3,2,1,4,5) 14900 (3,2) - 900 (0,0,1,0,1,1) (5,3,6) (0,0,1,0,4) 
9* (3,1,2,5,4) 15900 (3,1) - 1000 (0,0,1,0,0,2) (3,6,6) (0,0,1,0,0) 

10 (1,3,2,5,4) 14900 (5,4) 1000 (0,0,1,0,1,1) (3,5,6) (0,0,1,0,4) 
11 * (3,1,4,2,5) 16200 (4,2) - 1300 (0,0,0,1,0,2) (4,6,6) (0,0,0,3,0) 
12 (3,1,2,4,5) 14900 (3,1) -1000  (0,0,1,1,0,1) (4,3,6) (0,0,1,3,0) 

14900 
13900 

13500 

*Current solution is a new starting point. 

tions with 1 -< t~ -< 12, 30 <- p~ -< 110, and 500 -< 
s~j -< 1500. Three sets of five test problems with 
25, 30, and 35 jobs were constructed using these 
same distributions and ranges. Each of the 20-job 
problems has been run using different parame- 
ters: two starting points (heuristic 1 and 2), two 
aspiration criteria (A and B), and three short- 
term memory function sizes (5, 6, 7 and 6, 7, 8 
for aspiration criterion A and B, respectively). A 
maximum of 200 moves without improvement 
has been used as a cutoff criterion to terminate 
each run. The TS method found the optimal so- 
lution of all the problems, before the termination 
criterion was met, for at least one of the settings. 

The experiments with larger problems (N > 
20) were conducted restricting the size of the 
short-term memory function to 6 and 7, in two 
different sets of tests. For each problem a lower 
bound was obtained by calculating, separately, 
the delay penalty and the setup cost portions of 
the objective function. The delay penalty portion 
was found by ignoring the setup costs and order- 
ing the jobs in their natural order. The setup cost 
portion was calculated by ignoring the process- 
ing times and delay penalties and solving the as- 
signment problem. 

The first four columns of table 4 show the 
problem number and the average, worst, and 
best solutions found by the TS method for the 
test problems. The average solution is calculated 
by adding the values of the objective function ob- 
tained by each setting and dividing the sum by 
the total number of settings. For the 20-job prob- 

lems 8 and 9, every possible setting obtained the 
optimal solution. The fifth column shows a lower 
bound obtained by solving an assignment prob- 
lem [12]. The sixth column shows the value of 
the proportional deviation of the best solution 
from the lower bound for each problem. The pro- 
portional deviation is calculated by dividing the 
absolute deviation (differences between the best 
solution and the lower bound) by the value of the 
lower bound. The last three columns show the 
average time to the best solution, the average 
time to the completion (end) of the search, and 
the total time required to run all settings. The 
times are given in CPU seconds of an IBM PS/2 
Model 80 microcomputer. From the information 
shown in table 4, the following observations 
can be made about the performance of the TS 
method: 
• The average proportional deviation of the best 

objective value found from its calculated lower 
bound, when the best value is in fact known to 
be optimal (for the 20-job problems), is similar 
to this same average proportional deviation for 
problems where an optimum is unknown (with 
N > 20). Assuming the percentage gap between 
the lower bound value and the optimum value 
does not diminish with problem size (the op- 
posite would seem more likely), the proximity 
of the values obtained to the optimal values is 
very close. 

• The average and worst solutions indicate that 
most of the solutions obtained by the TS 
method are closer, in value, to the best solution 
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Table 4. Summary of computational experience for PI 

Solutions Lower Proportional Times 
Problem Average worst Best bound deviation Best end Total 

20-Job 
1 86,995 87,086 86,980* 82,932 0.049 7.5 15.7 188 
2 79,194 79,363 79,134" 75,120 0.053 3.4 11.3 136 
3 98,086 98,163 98,059* 95,680 0.025 5.8 14.2 170 
4 83,741 83,823 83,731" 80,569 0.039 4.5 12.8 153 
5 98,721 98,755 98,675* 94,374 0.045 3.2 11.7 140 
6 90,975 91,301 90,919" 87,631 0.037 8.8 17.1 205 
7 81,256 81,410 81,241" 77,307 0.051 2.4 10.3 123 
8 81,198" 81,198" 81,198" 77,979 0.041 3.1 11.8 141 
9 87,283* 87,283* 87,283* 84,000 0.039 3.3 11.2 134 

10 94,237 94,365 94,192" 90,300 0.043 4.7 13.4 161 
Average: 0.042 4.7 12.9 155 

25-Job 
1 87,042 87,226 86,799 82,610 0.051 6.6 19.8 158 
2 111,233 111,353 111,182 107,108 0.038 11.6 23.3 186 
3 90,760 91,031 90,657 86,628 0.046 8.0 20.1 161 
4 107,981 108,154 107,859 102,573 0.051 10.9 22.9 183 
5 77,384 77,571 77,274 72,664 0.062 8.1 20.0 160 

Average: 0.050 19.1 21.2 170 
30-Job 

1 105,163 105,493 104,785 99,777 0.050 6.8 24.0 192 
2 138,613 138,864 138,414 131,829 0.050 9.0 25.6 205 
3 129,197 129,481 128,883 124,656 0.034 8.3 26.0 208 
4 105,827 106,332 105,514 99,834 0.057 8.9 26.5 212 
5 115,780 115,919 115,625 109,337 0.057 11.0 27.4 219 

Average: 0.050 8.8 25.9 207 
35-Job 

1 177,995 178,459 177,739 171,554 0.036 l l .0  26.8 214 
2 227,889 228,079 227,530 220,901 0.030 7.9 22.4 179 
3 179,713 180,208 179,404 173,897 0.032 10.8 27.0 216 
4 165,621 166,128 165,192 158,819 0.040 14.1 29.8 238 
5 164,370 164,577 163,965 157,679 0.039 5.3 17.6 141 

Average: 0.035 9.8 24.7 198 

*Optimal solution. 

t han  to the  w o r s t  one ,  and  even  the  w o r s t  so-  
lu t ion  is f r equen t l y  wi th in  0 .4% of  the  bes t .  

° T h e  d y n a m i c  c h a n g e  o f  the  m a x i m u m  m o v i n g  
d i s t a n c e  a l lows  the  p r o b l e m s  wi th  35 j o b s  to  be  
s o l v e d  w i thou t  i nc rea s ing  the  a v e r a g e  to ta l  
c o m p u t a t i o n a l  t ime.  (This  to ta l  C P U  t ime  be-  
c o m e s  339 s e c o n d s  w h e n  a c o n s t a n t  m o v i n g  
d i s t a n c e  is used) .  

T h e  TS  m e t h o d  s u c c e e d s  in so lv ing  r ea son -  
ab ly  la rge  p r o b l e m s  to n e a r  o p t i m a l i t y  (as in- 
f e r r e d  f rom the  l o w e r - b o u n d  c o m p a r i s o n ) .  T h e  
c o m p u t a t i o n  t ime  for  e ach  so lu t ion  t r ia l  is re la-  
t ive ly  smal l  (an a v e r a g e  o f  24.7 s e c o n d s  for  35- 
j o b  p r o b l e m s ) ,  bu t  the  fac t  tha t  a n u m b e r  o f  pa -  
r a m e t e r  se t t ings  are  u s e d  resu l t s  in a s o m e w h a t  

large  to ta l  c o m p u t a t i o n a l  effor t .  We m u s t  a l so  
a d d  tha t  the  a v e r a g e  p r o p o r t i o n a l  dev i a t i ons  
f rom the  l o w e r  b o u n d s  o f  the  ini t ia l  so lu t ions  
g e n e r a t e d  wi th  heu r i s t i c s  1 and  2 are  0.091 and  
0.063, r e spec t ive ly .  

7. An Improved TS Method 

In o r d e r  to  fu r the r  r e d u c e  the  to ta l  c o m p u t a t i o n a l  
e f for t  l inked  wi th  ob ta in ing  a so lu t ion  to each  
p r o b l e m ,  an add i t i ona l  s t r a t egy  to m o v e  f rom one  
so lu t ion  to a n o t h e r  was  i n c o r p o r a t e d  into ou r  
p r o t o t y p e  TS  m e t h o d .  This  s t r a t egy  cons i s t s  o f  
i n t roduc ing  a m o v e  tha t  t r ans fe r s  one  j o b  f rom its 
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current position to an earlier or later position in 
the schedule. The direct consequence of adding 
this class of moves (referred to as insert moves) 
to the local search for the best move is an in- 
crease of the computational burden associated 
with each iteration. However, it was expected 
that the added searching power would allow the 
TS method to obtain solutions of the same or bet- 
ter quality than before, starting from any given 
initial solution. 

This speculation proved correct. In fact, the 
modified TS method that incorporated insert as 
well as exchange moves proved so successful 
that it became unnecessary to restart the method 
from alternative initial solutions. We selected the 
same set of parameter values found most consis- 
tent in our previous experiments, i.e., the one 
that most often yielded the best solution to a 
problem. This set of parameters employs heuris- 
tic 2 to provide the starting solution, aspiration 
level criterion A, and a tabu size of 7. Moreover, 
with the speedup provided by using only a single 
starting point, we did not bother to start d at a 
smaller value and increment it for problems with 
N > 30, but set d to [ N/2 ] - 1 for problems of 
all sizes. The new termination criterion used 
stopped the search after a predetermined total 
number of iterations (500 for our experiment). 
The results of this experiment can be summa- 
rized as follows: 
• The average CPU time per solution attempt 

was 16.6, 22.8, 31.4, and 40.9 seconds for prob- 
lems with 20, 25, 30, and 35 jobs, respectively. 

• The average CPU time to obtain the best solu- 
tion found in each attempt was 4.8, 7.4, 9.1, 
and 19.0 seconds, respectively, for these prob- 
lem sizes. 

• Optimal solutions were found for all but one of 
the 20-job problems. (The best solution found 
for problem 2 deviated from optimality by 
0.04%.) 

• Better solutions were found by the modified 
method for the following problems: 25-job 
problem 5 (77,185), 30-job problems 2 (138, 
301) and 5 (115,600), and 35-job problems 1 
(177,333), 2 (227,121), 3 (179,340), and 5 
(163,602). 

• For the larger problems (N > 20), the modified 
method did not give solutions as good as the 
original method in only three instances: the 30- 

job problems 2 (138,440) and 4 (105,568), and 
35-job problem 4 (165,243). 

Furthermore, since the improved method does 
not include a restarting mechanism, we can mea- 
sure the improvement achieved over the initial 
solution (i.e., the one generated by heuristic 2). 
On the average, the best solution found by the 
improved TS is 98% of the initial solution. Our 
success in combining the insert and swap moves 
within the TS framework raises the question of 
whether this combination might also work well 
independently, i.e., by simply employing a hill- 
climbing procedure with these moves that re- 
starts multiple times. To test this, we also com- 
pared our method against a refinement of the 
multiple-start hill-climbing procedure known as 
GRASP [13], which seeks improved starting can- 
didates by a randomized adaptive greedy pro- 
cess. Our approach obtains significantly better 
solutions overall in considerably less time. A 
fuller report of this experimentation and its out- 
comes appears in [14]. 

In order to test the ability of our method to 
obtain high quality solutions in an alternative set- 
ting, the TS procedure was adapted to handle a 
more complex version of problem P1. This new 
problem can be represented mathematically as 
follows: 

where 

and 

Minimize F(II) = C(II) + S(II) 

N 

C( lq)  = 2 c-~(i) P-.(i) (P2)  
i=l  

i 

j--I 

In this model, aij is the time required for the ma- 
chine to be changed from processing job i to pro- 
cessing job j, i.e., the setup time between job i 
and j. Also, the delay penalties are charged for 
every unit of time that the completion of the jobs 
is delayed from time zero. The non-identical, 
multiple-machine version of this problem was ad- 
dressed by Vanston in [12]. Since his DPBB pro- 
cedure was limited to very small instances of the 
more general case, he conducted experiments us- 
ing problem instances with up to 24 jobs for the 
single-machine case. (The method is incapable of 
handling problems with 25 jobs or larger.) We 
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used this set of nine problems to perform an ad- 
ditional and final computational experiment. 

Although the substantial difference in the 
sizes of problems capable of being addressed by 
tabu search and the DPBB optimizing method al- 
ready argues for the practicality of the TS ap- 
proach, we sought to determine the relative effi- 
ciencies of these approaches for the problems the 
DPBB method was able to handle. Our experi- 
ment consists of a single solution attempt of 500 
iterations for each problem. A modified heuristic 
2 was used to provide the initial solutions, and 
the short-term memory was set to [ N/2 ] moves 
for problems with up to 12 jobs and to 7 moves 
for larger problems. Table 5 presents a compari- 
son of the solutions obtained and CPU times re- 
quired by the optimizing algorithms BB and 
DPBB and the approximate procedure TS. (This 
comparison does not include the performance of 
a DP algorithm, since this approach was aban- 
doned in [12] after proving inferior to BB and 
DPBB for small problems.) The CPU times (in 
seconds) reported for BB and DPBB were 
achieved with FORTRAN implementations of 
these algorithms in a CDC 6600 using the MNF 
compiler. (The TS method, as before, was imple- 

mented in C on an IBM PS/2 Model 80 micro- 
computer.) 

As shown in table 5, the computational effort 
involved in solving the test problems by means 
of BB and DPBB increases rapidly with the prob- 
lem size. The BB algorithm reaches the time limit 
of 1000 seconds, imposed by Vanston in [12], 
without confirming optimality for problems with 
20, 22, and 24 jobs. (The most recent upper 
bound found by this approach unfortunately was 
not reported, as indicated in table 5. Hence we 
do not know if this bound was as good as that 
obtained by the tabu search solutions.) DPBB is 
able to solve, within the time limit, problems 
with up to 22 jobs, but it terminates with a mem- 
ory overflow while attempting the solution of the 
24-job problem. At this point the most recent up- 
per bound of 252,887 is inferior to the TS solution 
of 246,821. It can be also observed that the time 
to reach the termination criterion of 500 iteration 
for the TS method increases with the number of 
jobs, but the increments are not as significant as 
those experienced by the optimizing techniques. 
The times to obtain the best solution found by 
the TS method show that, although TS is in- 
structed to execute 500 moves on all problems, 

Table 5. Summary of computational experience for P2 

Solution CPU seconds 

DPBB t TS** 

Problem Total Time to Chosen Time to 
size BB DPBB TS BBt time best limit best 

8 47,544* 47,544* 47,544* 0.2 0.8 0.18 9.56 0.00 
10 67,563* 67,563* 67,563* 0.9 2.0 0.36 14.78 0.11 
12 76,656* 76,656* 76,656* 2.8 6.2 1.74 21.70 0.44 
14 96,135" 96,135" 96,135" 10.4 8.6 2.41 29.11 0.49 
16 141,130" 141,130" 141,130" 67.4 47.4 13.27 34.16 0.33 
18 191,320" 191,320' 191,320" 194.2 187.0 52.36 44.38 32.46 
20 n . r .  185,459" 185,459" > 1000 916.2 256.54 55.58 3.46 
22 n . r .  213,756" 213,756" >1000 417.9 117.01 64.60 11.10 
22 n . r .  252,887 u 246,821 >1000 m . o .  - -  72.06 6.92 

tCDC 6600. 
*tlBM PS/2 Model 80. 
*Optimal solution. 
uMost recent upper bound. 
n. r. Not reported. 
m. o. Memory overflow. 
(If adjusted for relative speeds of the computers  used, the times for the TS method would be approximately twice as fast as 
those shown.) 



Intelligent Scheduling with Tabu Search 171 

the best solutions were generally found early in 
the search (i.e., somewhat before the first 100 it- 
erations). With the exception of the 18-job prob- 
lem, all other solutions are found during the first 
12 seconds of search. By contrast, the DPBB 
procedure is reported to require an average 28% 
of its total solution time to reach the best solution 
obtained, which results in a significant difference 
in the "Time to Best" columns for these methods 
shown in table 5. To have a better base for com- 
paring the CPU times across machines, we have 
empirically determined that the CDC 6600 main- 
frame computer used by the DPBB approach op- 
erates at least twice as fast as the IBM PS/2 
Model 80 microcomputer used by the TS ap- 
proach. This was achieved by comparing the ex- 
ecution time of a code originally implemented in 
the CDC 6600, which has been recently adapted 
for the IBM PS/2 Model 80. 

Table 5 also shows the consistently high qual- 
ity of the solutions obtained by the TS method. 
This approach not only found the optimal solu- 
tions to all problems for which these solutions 
are known, but also it was able to improve the 
best-known solution to the 24-job problem by 
6,066 units (i.e., a 2.4% reduction on the pre- 
vious best-known value). 

8. Final Remarks 

Our experimentation shows that the TS method 
we have designed for the single-machine sched- 
uling problems Pl and P2 is remarkably effective. 
Solution quality rivals and generally surpasses 
that of optimizing methods tailored for this 
problem, under conditions where the optimizing 
methods are allowed to consume much greater 
amounts of time (not only to verify optimality, 
but to obtain the best solution found). In addi- 
tion, our application of tabu search employs 
much less memory and is capable of generating 
high-quality solutions very quickly for problems 
with N > 20, which the optimizing methods are 
incapable of handling within either reasonable 
time or reasonable memory restrictions. 

We have shown that the the TS method origi- 
nally designed for P1 was successflJlly adapted to 
provide solutions to the related problem P2. In 
the same way, this procedure can be modified to 

approximately solve other single machine sched- 
uling (SMS) problems with different objective 
functions. As presented by Gupta and Kyparisis 
[15], the SMS problem can be classified on the 
basis of objective functions and problem con- 
straints. Simple objective functions based on 
completion times include total completion time, 
mean completion time, total weighted comple- 
tion time, and maximum completion time. Typi- 
cal objective functions considered for problems 
with due dates include total tardiness, mean tar- 
diness, mean lateness, total weighted tardiness, 
maximum tardiness, number of tardy jobs, and 
weighted number of tardy jobs. Composite objec- 
tive functions (like the one used in P1 and P2) can 
be formed by combining single objective func- 
tions. By changing only the generation of starting 
solutions and the definition of the move value, 
the general structure of the TS in its current form 
can be used when other types of objective func- 
tions and constraints are incorporated within the 
SMS problem. Considerations for future research 
with applications to additional settings are found 
in [6]. 

Acknowledgment 

This research was supported in part by the Joint 
Air Force of Scientific Research and Office of 
Naval Research Contract No. F49620-90-C-0033 
at the University of Colorado. 

References 

I. S.E. Elmaghraby and S.H. Park, "Scheduling jobs on 
a number of identical machines, AIIE Trans., vol. 16, 
no. 1, pp. 1-13, March 1974. 

2. J.W. Barnes and L.K. Vanston, "Scheduling jobs with 
linear delay penalties and sequence dependent setup 
costs," Operations Res., vol. 29, no. 1, pp. 146-160, 
January-February 1981. 

3. T.L. Morin and R.F. Marsten, "Branch-and-bound 
strategies for dynamic programming," Operations 
Res., vol. 24, no. 4, pp. 611-627, July-August 1976. 

4. D. de Werra and A. Hertz, "Tabu search techniques: A 
tutorial and an application to neural networks, OR 
Spectrum, vol. 11, pp. 131-141, 1989. 

5. F. GIover, "Tabu search: A tutorial," Interfaces, vol. 
20, no. 4, pp. 74-94, July-August 1990. 

6. F. Glover and M. Laguna, "Tabu search," in Modern 
Heuristics for Combinatorial Optimization, C.R. 



172 Laguna ,  Barnes ,  and  Glover 

Reeves (Ed.), Blackwell Scientific Publications, Ox- 
ford, 1993. 

7. A. Hertz and D. de Werra, "Using tabu search tech- 
niques for graph coloring," Computing, vol. 29, pp. 
345-351, 1987. 

8. F. Glover, E. Taillard, and D. de Werra, "A user 's  
guide to tabu search," Ann. Operations Res. (in press). 

9. I.H. Osman, "Metastrategy simulated annealing and 
tabu search algorithms for the vehicle routing problem, 
Ann. Operations Res. (in press). 

10. J. Chakrapani and J. Skorin-Kapov, "Massively paral- 
lel tabu search for the quadratic assignment problem," 
Ann. Operations Res. (in press). 

11. M. Widmer and A. Hertz, "A new method for the flow 
sequencing problem," Eur. J. Operations Res., vol. 41, 
pp. 186-193, 1989. 

12. L.K. Vanston, "A hybrid dynamic programming/ 
branch-and-bound algorithm to solve multiple-machine 
scheduling problems,"  Ph.D. Dissertation, Mechanical 
Engineering Department,  The University of Texas at 
Austin, 1979. 

13. T.A. Feo and M.G.C. Resende, "A probabilistic heu- 
ristic for a computationally difficult set covering prob- 
lem," Operations Res. Lett., vol. 8, pp. 67-71, 1989. 

14. M. Laguna, J.W. Barnes,  and F. Glover, "Tabu search 
methods for a single machine scheduling problem," J. 
Intell. Manufact., vol. 2, pp. 63-74, 1991. 

15. S.K. Gupta and J. Kyparisis, "Single machine sched- 
uling research,"  OMEGA Int. J. Mgmt. Sci., vol. 15, 
no. 3, pp. 207-227, 1987. 

Manuel Laguna is an Assistant Professor of Management 
Science in the Graduate School of Business Administration 
of the University of Colorado at Boulder. He received mas- 
ter 's  and doctoral degrees in Operations Research and In- 
dustrial Engineering from the University of Texas at Aus- 
tin. Dr. Laguna has done extensive research in the interface 
between artificial intelligence and operations research to 
develop solution methods for problems in the areas of pro- 
duction scheduling, telecommunications,  and facility lay- 
out. As part of the University of Colorado and US West 
Partnership, Dr. Laguna collaborates with the Advanced 
Knowledge Systems Research Group of US West Ad- 
vanced Technologies. He is Editor of the special issue on 
tabu search of Annals of Operations Research and a mem- 
ber of the Operations Research Society of America and the 
International Honor Society Omega Rho. 

J. Wesley Barnes, Cullen Trust for Higher Education En- 
dowed Professor in Engineering, is the Coordinator of the 
Graduate Program in Operations Research and Industrial 
Engineering at the University of Texas at Austin. He is a 
past Associate Editor of the Transactions of the Institute 
of Industrial Engineers and is a Registered Professional En- 
gineer in the State of Texas. He is the author of several 
books, among which are Network Flow Programming, win- 
ner of the Institute of Industrial Engineers Book-of-the- 
Year Award for 1980, and Statistical Analysis for Engi- 
neers, a Computer-Based Approach, Prentice Hall Publish- 
ing, 1988. 

Fred Glover is the US West Chaired Professor in Systems 
Science at the University of Colorado, Boulder. He has 
authored or co-authored more than 200 published articles 
in the fields of mathematical optimization, computer sci- 
ence, and artificial intelligence, with particular emphasis 
on practical applications in industry and government. In 
addition to holding editorial posts for journals in the U.S. 
and abroad, Dr. Glover has been featured as a National Vis- 
iting Lecturer by the Institute of Management Science and 
the Operations Research Society of America and has 
served as a host and lecturer in the U.S. National Academy 
of Sciences Program of Scientific Exchange. 

Professor Glover is the recipient of numerous awards 
and honorary fellowships, including those from the Amer- 
ican Association for the Advancement  of Science, the 
NATO Division of Scientific Affairs, the Institute of Man- 
agement Science, the Operation Research Society, the De- 
cision Science Institute, the U.S. Defense Communications 
Agency, the Energy Research Institute, the American As- 
sembly of Collegiate Schools of Business, Alpha Iota 
Delta, and the Miller Institute for Basic Research in Sci- 
ence. He serves on the advisory boards of several organi- 
zations and is co-founder of Optimization Technologies, 
Inc., Analysis and Research and Computation, Inc., and 
the nonprofit research organization Decision Analysis and 
Research Institute. 


