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POLARIZATION PROPERTIES OF BOSON RADIATION

V. G. Bagrov
Izvestiva VUZ. Fizika, No. 5, pp. 121-127, 1965

The polarization properties of boson radiation in a magnetic field
have been studied, and expressions obtained for the integral in-
tensity of boson and fermion radiation in a magneric field which are
suitable for random energies, The investigation of boson radiation in
an external field is of limited practical interest; however, from the
methodological point of view it is very instructive and has already
been investigated by several authors {1, 2, 4]. Also of undoubted
interest is the comparison of boson and fermion (electron) radiation
and hence the explanation of the "role of spin" in radiation,

§1. PARTICLE RADIATION INTENSITY IN AN EX-
TERNAL FIELD AND WAVE FUNCTIONS OF A BO-
SON IN A CONSTANT AND UNIFORM MAGNETIC
FIELD

The particle radiation intensity in an external
field has the form [3]

W= E j sin@de W(n,n', 8), (1)
n 0

where n, n' are quantum numbers characterizing
the initial and final states, while the quantity W(n,
n', ®)is given by the expressions

W (n,n',0) =-fe—o’%- -5, )
S
S = ([a %] [a+ %)) (N + 1), (3)

The matrix element @ has the form
%= S Gie T a g dlx. )

Formula (3) is identical with (28, 28) in [3] when
the vector identity ([ab] [ed]) = (ac) (bd) — (ad) (bc)
is allowed for and W’ = w/« is also considered, N
being the number of photons in the initial state.

As shown in [4], for bosons formula (3) takes
the form

S = r??l<7<‘ ([Pro+] [P0]) (N + 1), 5)

P=[yteirPpdis, P=—ity— 4. (6)

For a description of the radiation polarization, the
following orthogonal unit vectors are introduced [11]:

=] _ W
pZ Vr:—(m ) p3 Vr:r T)J)Z » (7)

B =fe (6=2,9), l]]=1,

describing the two components of linear polariza.tion;
we may also introduce the two vectors
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1 ,
= %(pz +ilgs), (I=+1), B =B, (8)
describing the two components of the circular polar-
ization of radiation.
Formula (3) now becomes

3
§=S+5 =Y (@) (a+po) =
K=2

!
=S+ 8§ = Y @) @*py. ©)

==

For computing the matrix elements of (4) or (6)
it is necessary to know the wave functions of particles
in a magnetic field. For bosons, the wave functions in
a constant and uniform magnetic field are to be found
in [5] and [6]. In the cylindrical coordinate system
T, ¢, z they take the form

1 _iekpt+i - /X 2
Yot x, = Vz; e~ lKnttingg ity l/ _’;1"’3(7/'—), (10)
where
_ ) 10a
7= ;i  E = K=V T T HE T
(511

The functions are normalized to unity:

(11)

oy 5. o s
j‘ br, v, x, U1k, APx =0, 008y, g s

The functions In g(x) required here are quite familiar
in the literature.

Using functions (10) it is easy to compute the
matrix elements in (6).

Simple computations lead to the following results
(it is assumed that K, = 0 in the initial state):

P.—=ih Voyert-1e g oo(x) %
X (e VA1 Lt u (1) — =5 VI Luoy, e (%)),
By=h) yet el 5(x)X

X VU 1 npt,n 1X)+ eV Ly, ne (%)),

. ; *25in2 O
P,=0,9=0——, x=221T7" (12)
‘ 2 47

Ky = — %cos ©. 13

Here the spherical coordinates
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% (vcosz sin®, xsin®sin¢’, »cosM)  (13a)
are introduced for the vector wu,

§ 2. SPECTRAL DISTRIBUTION OF BOSON RADIA-
TION INTENSITY

Substituting the expressions obtained into formula
(9) and allowing for (5), we obtain, after simple
manipulation,

S, =

1 ' x
KK’ Thss ()

X{Vm [n«H,n’ (X)—— V;llﬂ—lr"' (x)}2’ (14)

S‘d-?i(_'ylb 5’ ()C)COS 8x

X{lfﬂ -+ 1[n+l,n’ (x) + Vhlnﬁl.n’ (x)}z’ (15)

S = —;— (S, + Sy — iIN), (16)
_ 2
1\K'
x{(n+ I ‘1 nr (%) —/z],, La (X} (17)

From this we may conclude that for a boson there is
no circular polarization, since the correlation term
has the form

S‘sin 040 f(cos® ©)cos 8 = 0. (18)

i
This conclusion agrees with the general assumption
according to which photons with circular polarization
can radiate only particles with oriented spin. The
absence of circular polarization of boson radiation is

one characteristic difference from fermion radiation,

Subsequent operations involving formulas (14) and
(15) are not possible without certain approximations.
Notably the functions I, n(x) are approximated by
Macdonald functions as follows [7]:

/e 2
In, n’ (X) = 13]/62; K‘,’,, ('E‘ i/’ XI‘;””I 61“‘) s
X - YarnLy
=V A—VER (9)
X

We introduce the variable v/,

ve=1pn—n - v’(l-—-v—ﬁ'*’ sin39>, (20)
4n

and define y in terms of v

7 soa"‘-, Sp T 1—‘32; (21)

5:_1_“_< £ ) (22)

2 Rme \ wmic?
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where R = vii/y is the radius of a stable orbit, we
obtain the following expressions for the linear radi-
ation polarization components:

po_ 9
8-—2 lel
et Cdy Psin@d0 —YeK:(z), (23
o ja’,\.s sin @ d0 RN Ki,{z), {(23)
0 0 oey
wo L e
T'l R.‘
g dy 5 sin© 48— :cos? O K7, (2), (24)
(1+:zy)

0 0
where
1/ e\ Y
z:~—(-—~) y, e=1—§sin* 6.
2 \ g
Formulas (23) and (24) are summed over S' and the
summation over v is replaced by integration with
respect to y. Integration over the angles is done
using multiply evaluated integrals (see, for example,
3D.
Upon integrating we obtain the spectral distribution
of the boson radiation intensity

Vi a oyt (o) = [ K @} 29
“’/3 ——AUT (Tl%y—)’—_{ ',’; jo s (x) dx ’ (26)
where
3V3 ce
A= o 7 (262)

$3. INTEGRAL INTENSITY OF BOSON AND ELEC-
TRON RADIATION

Integration over the spectrum in (25) and (26) can
easily be realized for the two limit cases when §{ « 1
or E«< Ej/;and §{ > 1or E > E,/, where E,/, is
the characteristic energy

Ey, = mc* 2 meR (27)
3 h

a) ¢ « 1, Expanding the integrands in series in

powers of £ and taking into account the value of the

integral

% T—p AT
fyﬂ/\:L(y>dy=2ﬂ“‘1'<”+2 ")r(” 2+"),<28>

o
[

we obtain the asymptotic series

W, = ‘: Y‘O" 1) (304 T)X
Yo l)

38N,/ 30 5-4)
X1 1 Y]
() (P e

\

(29)
W, = —Ez"(n L1y X

Yoo

X T (“_'*”C;* 8 r ( 3”(; 4 ) (=3

'
/
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or, allowing for only two terms, we have

7 25173 162 + 6
W2=W(cl){_g; “51123 £ 9" Ez_*_.__}’
1 /3 '
W3=W'(Cl“){8 5‘35+3————ez+ }
- (30)
5513 60 + 4 }
_— 1 _— 2
W_W<c>{1 A el AN
W(cl)_..z_.cﬁ_( E )4'
3 R\ me )~

The plus sign in formulas (30) refers to the cor-
responding quantities for electrons {8] and the minus
sign refers to bosons. Thus, for small energies, the
radiation defference for bosons and electrons appears
only in terms ~#; and this term for the total inten~
sity has the form

6[ h (E)z]zb(o,lm, (31)
meR \mc?

where b = 7 for bosons and b/? = 8 for electrons
(see also [9}]).

A general exception is that at small energies, bosons
radiate somewhat less than electrons, both compon-~
ents of linear polarization decreasing by the same
value, 4/3 ¢2w(cl),

b) £ > 1. In this case the integrals are also easy
to obtain and we have

9= 34+7 W (glob |
3; 16+7 W(glob\),
0 (32)
8 rce? .
(glob) = 2. %S 9%
i A
W =227 ygon,
64

where the plus sign refers to electrons and the minus
sign to bosons. It is clear from this that at high en-
ergies both co Fonents also decrease by the same
quantity 7/32 W& but in contrast to the small-
energy case this reduction appears in the main term
and significantly changes the radiation picture. Boson
radiation is almost one-half that of electron radiation
and the "spin role" in radiation becomes extremely
important [4].

§4. EXACT EVALUATIONOF SPECTRUM INTEGRALS

Integrals (25) and (26) and others similar to them
can be evaluated using special functions associated
with the Bessel functions. In particular ([10] p. 128,
formula (5)),

® Koiyndy _ =
(.} x4y 2sin’pn{[1 (x)—l—! w1 =

™ (33)
—[e 2 J, (tx)+e E J—p.(Lx)]} lp| < 1.
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For the functions L, (x) the following relation exists:

' 3 1
Ly (x) = Lisyp () — = Ly () = —— =
: * 9sint- ¥
1 1 ©4)
' —_— ™
Liop (9) = Ly (9) = = Lo (%) =~ —.
x 9cos Y *

whence L( )(X) is expressed in terms of L (x), Ly
(x), and 1/x,
If we let x = 1/¢, then we easily obtain

Dy (x) = In(l +ty) Ky (y) dy =
]

x T (35)
- ‘S L, (x)dx— — Inx+¢,
b 2cos—
2
® K, (y)dy
OS TG~ xL, (x), (36)
® K.(v)dy '
R
] (37)
=L () — 2Ly (9 + ——x,
2sir1‘L
2
etc. Here
Cp = ‘S. In y'K‘L (y) d)’- (38)
i

In view of the fact that any integrals of the form

°.°. y"
_ e raren s ] d [
=) ey K0
0 y’"dy o
(x)dx
(5 Ty y\

are expressed by linear combinations of the integrals
in (35), (36), (37), etc., formulas for the integral
intensity of bosons and electrons may be expressed
in terms of the special functions L, /3(x) and L /3(x),
where. all the formulas hold for any values of the
parameter £. These expressions have the form

a) for bosons,

Wy = 207 (1 - 30) L, () — 242 (5) & B,

(39)
Wy = L0800 () + By () — =1 B
b) for electrons,
Va= _;L'{(_g_xi - %xz ) b (40)
Hhe s E) = e TRV
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A2 A6, 1191 .
“ S ____'.,>4’___'.g 1_1 IR T R N S or X
i 21(\5‘] \>‘J(X)}(:sx+27*>

=13, TI= 3571 3
X Ly, (x)— —}—Jx‘ el i 85x | gx?}. Cgf](zzd

It is obvious that formulas (32) are obtained from
these expressions when we allow for the fact that
for small x

Qg
L.{(x)= 12——————x"\*. (41)

Formulas (30) may also be obtained from (40)
using an asymptotic series for Ly (x) for large x
(small £):

.___S‘g" ‘1‘( ":1 L)x

n l)
41
ap (2T )pg;m (42)

However, itis simpler to proceed directly from ex-
pressions (25) and (26).

In conclusion the author expresses his deep ap-
preciation to Prof. I. M. Ternov for assistance with
the work and discussion of the results,
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