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The processes of deuteron photodisintegration by a gamma-quantum
and the radiative capture of a neutron by a proton with the emission
of a gamma-quantum are considered, Interaction between nucleons
is described by a nonlocal potential of the Yamaguchi type but
allowing for repulsion due to the nucleon cores. In contrast to other
potentials, the Schroedinger equation is solved exactly for the
proposed potential, The potential is more exactly defined in com-
parison with the previously obtained values for the parameters;
information on this potential is important in solving certain fun-
damental problems in nuclear theéory, The effective cross sections
for photodisintegration of a deuteron and for radiative capture are
computed, Calculations show that the proposed potential makes it
possible to describe the photodisintegration processes quite accurately
for intermediate (up to 20 MeV) energies. The cross section com-
puted for radiative capture is in somewhat better agreement with
experiment than is the same cross section determined for other
potentials,

To determine the total deuteron photodisintegration
cross section it is necessary to compute the matrix
elements of the transition of two nucleons from the
bound state (deuteron) to the free state., To calculate
the radiative capture of a neutron by a proton it is
necessary to know the matrix elements of the reverse
trangition from the free to the bound state. For this
purpose we must know the deuteron and nucleon wave
functions in the scattering case. These functions are
obtained by solving the Schroedinger equation with a
nucleon-nucleon potential interaction whose exact
form is unknown. Many of the forms proposed for
the approximate description of this potential quali-
tatively allow for the fact that it consists of a com~
paratively short~range interacting part, corres-
ponding to the meson cloud of the nucleon, and an
even more short-range repulsive part, corresponding
to the nucleon core, which possesses high rigidity
with respect to high-energy nucleon-nucleon collisions.
However, in addition to its clear participating in
high-energy processes, the nucleon core plays an
important role (although not as clear) in low-energy

processes and in problems of the nucleon bound states.

Thus, Weisskopf and his colleagues [1] showed that
for justification of the cloud model it is necessary to
take into account the presence of the repulsive nucleon
core, while in the opposite case the nucleus must
undergo "collapse”. It proves to be essential to allow
for the core when considering the problem of three
and four nucleons [2]. In analyzing experimental data
on the polarization of scattered nucleons, we should
also consider the repulsion between nucleon cores,
where the allowance for repulsion in accordance with
the simple model of solid spheres surrounded by
strong forces of attraction does not yield a satis-
factory result; better agreement is obtained if there

is a horizontal "area" connecting the two parts of
the potential, between the attractive and repulsive
parts of the empirical potential [2], This forces us to
assume that in the transition from the repulsive to
the attractive part of the potential there is no sharp
break such as is obtained upon introducing the core
model in the case of a solid sphere, and that it is
more accurate to consider repulsion as a very rapid
but smoothly decreasing distance function. For the
majority of potentials allowing for the qualitative
features of nucleon interaction, the Schroedinger
equation is solved only approximately. Yamaguchi [3]
has proposed a specific form of nonlocal potential for
which the Schroedinger equation is solved exactly.
However, the repulsive core is not taken into account
in this potential, In [4] the present authors consider
the Yamaguchi type of potential but with an additional
repulsive part to allow for the core; the corresponding
Schroedinger equation is solved, and the parameters
of the potential in gquestion are determined, Here, we
ghall give the completed and adjusted * basic data of
[4] and then use them to determine the photo-disinte-
gration and radiative capture cross sections.
Consider a potential of the form
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in the momentum representation. This is a nonlocal
potential with separable variables, where

gipy =1+, v(p)=1/(F*+). 2)

The Schroedinger equation with such a potential
has the form
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in the momentum representation (k is the initial
momentum, p and k are vectors). Taking k= —a?,

#n [4], formulas for nucleon-nucleon scattering,
through an oversight, were not copied exactly as they
appeared in the calculations. The numerical values
of the potential parameters computed according to the
true formulas which were given earlier in {4} are
correct, In place of the formulas for a and r( in [4],
Eqs (15)~(18) of the present paper should be used.
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where o?/M is the deuteron binding energy, we im-~
mediately obtain an expression for the deuteron wave
function (allowing only for the s-state, consisting of
96% of the total state):
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Allowing for (2) and changing to a coordinate represen-
tation, we obtain the deuteron wave function as a func-

tion of the relative distance between nucleons:
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This function resembles the Hulthen wave function
but with a small addition introduced by the repulsive
part of the potential in (1). In accordance with the
sense of the introduced repulsive part of the potential,
we have

¥ (0) = 0. (6)

¥(r) may be rewritten in the form

V(r)= Ny (e — 1, e7¥ 1,67},
r
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Turning to the scattering case, we seek a wave
function with initial momentum k in the form
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In the scattering case ¥y (p) satisfies the following

integral equation obtained from the Schroedinger
equation [5]:
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We take [5] as the scattering operator determined
as follows:

CPITIP ) =[5 (q) <qIVIg') b (q))dgdq’, (12)

which, in accordance with (9), clearly satisfies the
equation

(pITiEY = (pIVik)> + (13)
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Allowing for (1) we give <p|T|k> in the form [5]
M plIT|k) = Ag(p) g(k) -+ Bg (p)v(k)+
+ B’g (k)v (p) -- Cv (p) v (k)- (14)

Substituting (14) into (13) and allowing for (1), (9),
and (8), we obtain after certain manipulations
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Hence we obtain the parameters of the effective
radius theory a and ry,
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Then the quantities p, v, Ay, A, are completely
determined, since o a. ry and condition ¥(r)|r=y =
= 0 due to the core are known; it follows that
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Using the experimental values of o? a;, and ry [2]

(t is a triplet, s a singlet), we obtain

1.45-10%(cm) ™ T pp << 1.48-10" (em) Y,

3-104 (em) ~1<Cv, oo,

It is clear that the values of the parameters u and v
previously determined [4] lie within the assigned
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Here hv is the photon energy, €= wz/M is the deuteron
binding energy, Fp and t,, are the magnetic moments
of the proton p and neutron n, Igp and Kgg are inte- -
grals of the wave functions

lop = T ri Py g (F)dr, K = Trug (ryv, (rydr, (21) .

U y

ug(r) = (r/Ng)¥d(r), ¥q is the deuteron wave function
Ng a normalization constant, ug(r) is the wave function
of the triplet s-state and is asymptotic as sin(kr +
+7/2 +84), vo(r) is the singlet wave function of the
s-state. Determining uy(r) from (6), Ng from (7)

and ug(r) from [2] (Eq. (39.8)) with§, = 0, since we
only allow for interaction in the s-state, and taking
vo(r) in accordance with [2] but allowing for repulsion,

we have
Ug(r) = e~ — 1,7V +- 1,77, (22)
us (1 Sinkr cos kr, (23)
U, (¥) = sin kr cos bos +
+ cos krsindos (1-~Y1s €78 + 7o5€77),
a ——
T[_s:-‘-—vj——s———]—, vos =115 — | (24)
s (s — vs)

limits. It turns out that if values for y and v are
chosen within the limits indicated, the values of
various quantities computed from y and v agree with
experiment within the limits of experimental error.
For more accurate values of 1 and v, we should
turn either to higher energies or to more refined
tests. In accordance with [4), we take

1y == 1.453-10% (em) ~7, v; = 87.3- 10" (cm) !,

The singlet value'of vg is v¢ and that of pg is uy;

we also let ug = 1.56 - 10'% em™. Knowing the param-
s

eters indicated, we can write the wave functions ex-
plicitly both for the bound state and for scattering
and, consequently, we can determine the photodis-
integration and radiative capture cross sections.
Let us turn to calculating the deuteron photodis-
integration process when a moving photon (gamma-
quanftum), by transmitting its energy to a deuteron,
causes the latter to split into a proton and a neutron.

The total cross section for this process has the form
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Substituting these quantities into (21), we have
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k ctg 6, is given by (16).

Substituting all the quantities into (21) and perform-

ing the necessary computations, we obtain the fol-
lowing values for the total photodisintegration cross
section Ofheop for various values of the photon en~
ergy (see the table, where for comparison experi~
mental values for similar photon energies are also

£y (MeV) 10f¥sle<ocrm Pliocsimp | EMeV) | diene 10200 ?
2.504 10.08 10.6+1.1 | 7.3940.15 18.441.5
2.504 10.08 11.940.8 7.4 18.3
4.46 24.34 12.540.21 10.441
4.4510.04 24.341.7 | 12.5 10.39
17.8 6.497 20 5.51 5.140.4
17.6 TALLS |
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given [2]). For intermediate values of photon energy,
the agreement of the theoretical values for the cross
section with the experimental ones is no worse than
that given above.

Thus, we may assume that the proposed potential
(1) makes it possible to describe the photodisinte-
gration process quite accurately at intermediate
energies. This case is now being studied for higher
energies.

To determine the cross section of radiative capture
of a neutron by a proton as a result of which a deu-
teron is formed and a photon carrying the excess
energy is emitted, we use the formula [2] (ignoring
the very small contribution of the tensor forces)

e -

.
8 == —— ] € e
" he ( Mcz) 5E %
— p N al [T 2 (r) g (r) dr ]2 . (26)
0

Here & = o?/M is the deuteron binding energy, M

the nucleon mass, Bp and 4, the magnetic moments
of the proton and neutron, respectively, ag the single
scattering length, and N, a normalized constant of
the deuteron wave function, ug(r) is given by

¥ Bt -
uS(r)=1“;l""'Tlse + €T
$ N

Substituting all these for p and v into (26) and
performing the necessary calculations, we obtain for
pt=1.453 * 108%cm-!

ps = 1.56- 10%(cm)~!, vg = v; = 87,3-10% em™!,

Otheor = 0.326-10-2¢ Cm‘z,
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while for
#s = p; = 1.453-10"3cm~! ahheor = 0.3222-10* cm®.

At the same time, the experimental value of the

_capture cross section is

gexp = (0.329 + 0.006)- 10-% cm?,
while the theoretical value given in [2] is

theor = (0.3137 £0.010) - 10~ 'cm?,

The best value for o computed by Yamaguchi is
0.321 + 10~* cm?®. Comparing the above radiative
capture cross sections, we may conclude that the
cross section computed in this paper is in somewhat
better agreement with experiment than are the others.
This evidently means that the proposed potential has
certain advantages over other forms of the pheno-
menological potential of nucleon interaction,
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