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ABSTRACT 

Techniques are described in this paper for improving the 
Ambiguity Function Method (AFM) for differential GPS 
positioning using phase observations, (a) that take 
advantage of optimal dual-frequency observable 
combinations to improve the reliability of the AFM, and 
(b) that significantly shorten the computation time 
necessary for the AFM. The procedure can be used for 
kinematic positioning applications if a Kalman filter 
predicted position is accurate enough as an initial position 
for the suggested AFM searching procedure, or pseudo- 
kinematic mode using say a triple-difference solution as 
an initial position for static positioning if the baseline 
length is short (typically <5kin). 

INTRODUCTION 

The Ambiguity Function Method (AFM) as a technique 
for the rapid determination of a GPS baseline using 
carrier phase data has both advantages and disadvantages. 
Because the AFM is insensitive to the presence of cycle 
slips in the carrier phase observations it has attracted 
much interest for its possible applications in GPS 
positioning. Counselman & Gourevitch (1981) first 
proposed the AFM technique, Remondi (1984) described 
the procedure appropriate for static GPS positioning, and 
subsequently pseudo-kinematic positioning (Remondi 
1989; Remondi & Hilla 1993). Mader (1990; 1992) 
applied the AFM technique for GPS initialization, rapid 
static and kinematic positioning. Han (1994a; 1994b) 
extended the AFM in several respects: derived an 
expression for accuracy estimation, proved the 
equivalence of the AFM and the Least Squares ambiguity 
searching method, and described a strategy for kinematic 
positioning based on a combination of the AFM and a 
Kalman filter. 
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There are two significant problems with using the AFM to 
determine GPS baselines. The first problem is the long 
computation time required to determine the optimal 
position because of the need for the searching step to be 
much less than the carrier phase wavelength (for example, 
19cm for the L 1 observation, and 24cm for the L 2 
observation). The second problem is that there may be 
several maxima points that the AFM algorithm must 
discriminate between within the search volume in order to 
identify the optimal position. If a high accuracy initial 
position can be obtained, the size of the search volume 
could be reduced, hence decreasing the number of possible 
positions to be tested (if the same step size is used). In 
this paper, the authors seek to determine what level of 
accuracy of the initial position is sufficient to obtain the 
sole maximum point for AFM. However the assumption 
is that this initial position is available from some other 
techniques, eg. Kalman filter predicted position for 
kinematic positioning applications, triple-difference 
solution in pseudo-kinematic mode for static positioning 
applications. On the other hand, if a phase observable 
with a longer wavelength is used, the step size can be 
increased, the number of possible positions to be tested 
decreases, and hence the search time can be shortened. 
Use of the wide-lane observable has been suggested by 
many investigators (Hofmann-Wellenhof et al. 1992; 
Cocard & Geiger 1992; Abidin 1993; Seeber 1993). In 
this paper, the authors seek to determine the maximum 
searching step size which will ensure the smallest number 
of grid points to be tested. In order to answer these two 
questions, the AFM algorithm is introduced and the 
accuracy estimate formulae are first presented. The 
characteristics of several dual-frequency carrier phase 
combinations are investigated and the optimal phase 
observables are then identified. The relationship between 
the searching step size and the distance between AF 
maxima is investigated. Finally, a rapid AF computation 
procedure is proposed. 
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THE BASIS OF THE AMBIGUITY FUNCTION 
METHOD 

Mathematical details of the Ambiguity Function Method 
are found in, for example, Counselman & Gourevitch 
(1981) and Remondi (1984). The procedure may be 
described in terms of the following mathematical 
formulae: 

AV(X) AV , (X) 
k=I l=l 

(1) 

where 

mkl -- " ( X )  
AFkl(X) = Eexp(iL  

j=l 
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and m is the number of epochs; n is the number of carrier 
frequencies; c is the velocity of microwaves; ink1 is the 
number of 'T' frequency carrier phase observations at 
epoch k; X are the trial coordinates of station 2; 

] ' = ~ ] - ;  Ag~ls(k)  is the 'T' frequency single- 

differenced observable for satellite j at epoch k between 
jl 

two stations; Aq) talc (k, X) is the computed value of the 

"1" frequency single-differenced observable using the 
known coordinates of station 1, the trial coordinates of 
station 2 (the second term is not computed because it is a 
constant for all observations at epoch k and frequency 'T', 

and does not effect the AF value); p~ (k) and p~ ( k , X )  

are the distances from station 1 and station 2 to satellite j 

respectively; ~ k and 8 k are the common and the relative 

time-tag errors (of the two receiver clock biases) at epoch 
k; fRl and fR: are the frequencies of two receivers; fl is 

the carrier frequency for 'T' signal; and N jl is the single- 
differenced ambiguity for satellite j and frequency 'T'. 
Eqn (4) is the carrier phase observation model proposed 
by Remondi (1984). 

The function defined by eqn (1) is the Ambiguity Function 
(AF). If there are no errors in the observations, the 

i n  n 

expectation of the AF should be the value ~ ~ m ~ .  
k=l 1=1 

The AFM for determining the optimal solution 5(requires 
that a search be made to find the location within a search 
volume where the value of the function A F ( X )  is a 
maximum. The standard deviation of unit weight is 
defined below, and details of the derivation are given in 
Han (1994a): 

m 0 = 2 ink1 -- AF(X))  / mka - 1 ) -  3) 
k=l 1=1 

(5) 

The co-factor of J( has the following expression: 

i21 n 
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Pkl = (DklDk~)< (9) 

and B~I is the difference between the unit vectors from 
station I and station 2 to satellite j. The single-differenced 
phase observations are assumed to be independent. The 
variance-covariance of the baseline is: 

2 
Dx = mo" Qx (10) 

DUAL-FREQUENCY CARRIER PHASE 
OBSERVABLES 

There are many linear combinations of the L 1 and L 2 
carrier phase observations % and (P2 that can, in principle, 
be used. The so-called "ionosphere-free" observable and 
the "wide-lane" %-% observable, are used widely for 
special applications such as kinematic positioning and 
ultra-precise long baseline solutions. This section 
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identifies those characteristics that can be used to 
systematically investigate possible dual-frequency 
combinations. Ultimately, the purpose of this study is to 
find the best dual-frequency combination (or 
combinations) that can be used in conjunction with the 
AFM procedure. 

The basic observation equation for the L 1 and L 2 phase 
measurements can be written as: 

1. Ionospheric Delay 

The ionospheric delay on % and % can be approximated 
by: 

11 [m] = - E  / f2 (20) 

12 [m] = - E  / f~ (21) 

L~:%[oyl=13/El -N~ 

L2:q)2[ey]  = p/;V 2 - N  2 

(11) 

(12) 

where E is a function of the Total Electron Content 
(expressed as the number of free electrons per square 
metre). Using eqn (13), the following equations can be 
derived: 

where 9 is the distance from station to satellite; N 1 and N 2 
are the integer ambiguities for % and % respectively. L 1 
(=c/f1) and L2 (=c/f2) are the wavelengths of the L 1 and L 2 

carrier waves (fl=1575.42MHz, f2=1227.60 MHz). The 

equation for a linear combination of two phase 
observations can be expressed as (Hofmann-Wellenhof et 
al. 1992; Seeber 1993): 

(p[cy] ~- i. % [cyl + j. % [cyl 

where 

Ilm] / ~ = i" 11 [m] / ~1 -b j- 12 [ml / %2 

I[ml = K-  11 [m] 

(22) 

(23) 

4620. i + 5929- j 
K = (24) 

4620-i  + 3600. j 

= ( i / k ,  + j/)~2)- 13- (i-N1 + j .N2)  
(13) 

where i and j are arbitrary integer values. The effective 
wavelength, frequency and integer ambiguity of the linear 
combination can be written as: 

1 c 

) v = ( i / £ 1  +J /%2)  ( i ' l l  + J ' f 2 )  (14) 

f = i - f l + j - f  2 (15) 

N = i - N  I + j . N  2 (16) 

K the wavelength of L 2 carrier phase observation is half 
that of L 2 , denoted by L2o, the following relation holds: 

2. Random Errors 

ff we assume that the standard deviations of the random 
errors on both frequencies are equal to Mo(oy), expressed in 
units of cycles of the corresponding wavelength, the 
standard deviation M(oy) of the linear combination is (eqn 
(13)): 

M[oy] = ~/(i 2 + j2) -Mo[oy] (25) 

M[m] = M[oyl. % (26) 

These formulae clearly show that the random error, 
expressed in cycles of the effective wavelength, is always 
greater than the noise on either L~ or L 2. 

L2: qla~ [cy] = 13 / ~2o -- N2~ (17) 3. Characterisation of Dual-Frequency Observables 

and 

1 1 N 
q~2[°Y] = 2q~2c[°Yl = P/)v2 - 2 2c (18) 

J N = i . N  1 + 7 . N 2 o  (19) 
z 

We introduce the following parameters for characterising 
dual-frequency observables (Abidin 1993; Seeber 1993): 

(a) Wavelength Parameter: 

77 
WL = 9~ / kl - (27) 

7 7 . i + 6 0 - j  

therefore j must be an even integer. This will be a 
criterium to be applied to judge which dual-frequency 
combinations are better. 

(b) Ionospheric Parameter (refer to eqn(23)): 

IS = I[m] / 11 [m] = K (28) 



If we choose IS = 0, the values of i  = 77 andj  = -60 from 
eqn (24) will produce an ionosphere-free observable: 

q~3 = 7 7 . %  - 60- q): (29) 

For half wavelength carrier phase observations, the same 
q~ will be obtained as the value ofj (= -60) is even (see eqn 
(19)). 

(c) Random Error Parameters: 

R E  1 = M[cyl / M 1 [cy]= ~ + j2 (30) 

and 

R E  2 = M[m]/Ml [m] = ~ -  
77 

77 . i+60. j  

indicating random error in relation to the L 1 
measurements (RE  1 = 1). 

(31) 

o r  L 2 

IMPROVING THE C O M P U T A T I O N A L  
EFFICIENCY OF THE A F M  

There are several strategies that can be adopted for 
increasing the computational speed of the AFM. One of 
the most effective strategies is to simply reduce the 
number of mathematical operations that are necessary to 
find the position that maximises the value of the AF. 
There are basically two components: (a) the size of the 
searching volume, and (b) the step size of the grid of 
candidate positions that must be tested. 

In order to make the searching step size longer and the 
distance between the AF maxima points greater (see 
comments with regard to Figures 1 to 4), we can use long 
wavelength dual-frequency combinations. However, the 
longer the wavelength, the higher the noise. Let us 
choose the following specifications for the dual-frequency 
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combinations we wish to consider further (eqns (27, 28 
and 30)): 

W L  > 1.284 or )v > 9~2 

IS < 20 

R E  1 < 5  

The linear combinations that satisfy the above criteria are 
those with values of i and j of (-3,4), (-2,3), (-1,2), (1,-1), 
(2,-2), (-3,3). The combination of (-2,3) and (-3,3) are no 
better than the others and have not been selected. 
Furthermore, as j is odd it cannot be used for half 
wavelength L 2 phase observations. The following are 
therefore the dual-frequency combinations of interest for 
AFM studies: 

(Pl,-1 = q)l - q~2 (32) 

q)-3 ,4  7--- - 3 . %  + 4. % (33) 

(4)_1,2 = --(4)1 -]- 2" q~2 (34) 

(P2,-2 -'~ 2. % - 2.  ~2 (35) 

If  we were not concerned with the parameters IS and 
RE~, the longest wavelength combination (14.6526m) 

can be obtained for i = -7 and j = 9, which make 

77 . i  + 6 0 . j  = 1 in eqn (27): 

q~-7,9 = - 7 . %  + 9.q02 (36) 

Each of these combinations has different characteristics 
(wavelength factor, noise, or suitable for half wavelength 
L 2 phase observations, etc.) that may make them suitable 
for different applications. Pertinent details of these linear 
combinations (including the ionosphere-free combination) 
are given in Table I. 

Table 1. Characteristics of Certain Dual-Frequency Combinations (full wavelength L2) 

i j 
! 0 
0 1 

77 -60 
' 1' -1 
-1 2 
2 -2 

-3 4 
-7 9 

f(M~z) 
1575.42 
1227.60 

)v (m) 
0,1903 
0,2442 

47651.34 0.0063 
347.82 0.8619 
879.78 0.3408 
695.64 0.4310 

WL 
1.0000 

IS 
1.0000 

RE 1 
1.0000 

RE 2 
1.0000 

1.2833 1.6469 1.0000 1.2833 
0.0331 0.0000 97.6166 3.2273 
4.5294 -1.2833 1.4142 6.4056 
1.7907 2.8054 2.2361 4.0041 
2.2647 2.8284 -1.2833 

184.14 1.6281 8.5556 18.2518 5.0000 
20.46 14.6526 77.0000 350.3500 11.4018 

6.4056 
42.7778 

877.9350 
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1. Comments on the Dual-Frequency Observables 

Let us successively fix two components of the known 
baseline vector X, and change the third component in the 
region of +3L, and compute the values of the AF (eqn (1)) 
for step sizes of 0:1Z. First we consider the x-component, 
holding the y- and z-components fixed, then repeat by 
considering the y-component holding the x- and z- 
components fixed, etc. The results are shown in Figures 1 
to 4. Note the different horizontal scale used based on 
units of )~, not metres. We can draw the following 
conclusions: 

O) These combinations produce AF values that have 
well defined maxima. The maximum value is 
related to the accuracy of the combined phase 
observations. The more accurate the combination 
(the lower R E  x value in Table 1), the larger the 
maximum. The ionosphere-free combination 
cannot be used for AFM. 

(2) The maxima are similar to each other for all these 
combinations. The form of the AF curve is related 
to the satellites' and stations' geometry, and 
appears not to be strongly dependent on the dual- 
frequency phase combination considered. 

(3) ff  we use the dual-frequency observations as 
independent observations (eqn (1) where n=2 and 
Figure 2), the maximum is 12 and the other local 
maxima are almost less than 50% of the 
expectation. Obviously, the AF pattern is not the 
same as for the other dual-frequency combinations 
(where i and j are both non-zero). 
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2. Determination of the Maximum Searching Step Size 

If the searching step size is too large it is possible to miss 
the AF's maximum, and hence the search procedure fails. 
On the other hand, if the searching step size is too small, 
the computation time will be long (perhaps unacceptably 
so). Figure 5 shows the one-dimensional case of the 
searching procedure. If we select 95% of the expectation 
as a criterium, the distance d in Figure 5 should be the 
longest searching step size. If  the searching step size is 
longer than d, it is possible to miss the maximum point. 
If the searching step size is shorter than d, more 
computations will be needed. 

......................................... } i ................. 

// , i olTe;iihsei! ~'em :xe'mcu~- 

f f / \ 

\ \ ,  ,,f 
0-I -0.~ 0.fi 

X in Wavelength 

Fig. 5. One-dimensional Case in the Search for 
the Maximum Point 

The task in this section is to determine the appropriate 
searching step size for each dual-frequency combination. 
The suggested procedure is as follows. The first step is to 
use the particular dual-frequency observable to search for 
the AF maximum within a volume centred at an 
approximate position and estimate the optimal position. 
The second step is to define several testing regions around 
the AF maximum (column 1 in Table 2) considering this 
position as the initial value. These testing regions are in 
fact possible step sizes for AF searching. A much finer 
testing step (0.1 of the testing region and having 
113=1331 testing points) is used to evaluate the AF. If the 
AF is less than 95% of the AF expectation, then the point 
is rejected. If the AF is equal to or more than 95% of the 
AF expectation, it is accepted. If  the testing region (or 
search step size) is too large, then there will be an 
unacceptably large number of rejected points. The step 
size for which less than 2% of the total tested points are 
rejected is considered the reasonable one to use with this 
phase combination. It must be emphasised that we are 
looking for the maximum step size appropriate for the 
phase combination. Hence choosing a step size where 
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there are no rejected points will imply too small a step size 
and hence too long a computation procedure for the AFM. 
As shown in Table 2, the testing region of ±1.0 cm can be 
considered the optimal one. Therefore, the best searching 
step size should be 2cm for the % observation. Suggested 
searching step sizes for the other combinations are given 
in Table 3. This result has been verified for different sets 
of data (different number of satellites, different baseline 
length, etc.), hence the present results are indicative of the 
procedure and conclusions that can be drawn. 

Table 2. Determination of the Searching Step Size for % 

Testing 
Region 
(cm) 

_+1.2 

Testing 
Step 
(mm) 

2.4 

No. of 
Testing 
Points 

1331 

No. of 
Accepted 
points 

1204 

No. of  
Rejected 
Points 

127 
±1.1 2.2 1331 1274 57 
±1.0 2.0 1331 1313 18 
_+0.9 1.8 1331 1330 1 
_+0.8 1331 1.6 1331 

Table 3. Searching Step Size for Various 
Dual-Frequency Combinations 

i j Region 
(~) 

1 0 +1.00 

0 1 _+1.25 
1 -1 +4.30 

-3 4 +8.00 
-7 9 +36.00 

%/qo2 +1.00 

Testing No. of 
Step(ram) Accepted 

2.00 1313 
2.50 1322 
8.60 1329 

16.00 1319 
72.00 1329 

2.00 1330 

No. of Suggested 
Rejected Step (cm) 

18 2.00 
9 2.50 
2 8.60 

12 16.00 

2 72.00 

1 2.00 

We can draw the following conclusions: 

(1) The longest searching step size of a combination is 
of the order of 0.1L. Hence, the longer the effective 
wavelength, the greater the searching step size. 
However, in the case of the observable q)-7,9' the 
searching step size according to Table 3 should be 
about 0.05L. 

(2) When the L~ and L 2 observations are processed 
separately (eqn(1), n=2), the fpl/(P2 case, the 
searching step size is the same as for the L 1 
observation alone. 

(3) The searching step size of (P-3,4 is eight times that 
of the %/q~2 observations, f fwe use (P-3,4 in place of 
the %/qo 2 observations, the searching time will be 
reduced to 1/83 for the same region. 
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3. Determination of the Maximum Search Region 

If the ambiguity function value is more than the 95% of its 
expectation, the point can be considered to be a candidate 
for the optimal position. If there are more than one 
candidates (or AF maxima) in the search region, we 
cannot identify unambiguously the optimal position and 
the search procedure cannot be terminated successfully. 
In this case, we should use more observations (to evaluate 
eqn (1)) or define a smaller search region (though this 
may not be always possible). 

The task in this section is to determine how large the 
search region should be to contain the sole maximum 
point. From this maximum region, we hence know what 
level of accuracy of the initial position is sufficient to 
contain the sole maximum point for the AFM. The 
method to determine the maximum search region is to 
determine the minimum distance among the local maxima 
whose AF values are larger than 95% of the expectation. 
ff the search region in each coordinate component is less 

than this minimum distance and the optimal position is 
located in this region, the sole maximum point will be 
located in this region. 

As an example, let us to determine the appropriate search 
region for one-epoch six-satellite observations (for a 
1.5km baseline). We choose a large searching region 
(+__22) and using the suggested searching step size, identify 
all candidates for the optimal position (those that have 
local maximum AF values). The positions and the 
distances between all candidates are listed in Tables 4 to 7 
for %, %,.p (P-3,4' qgl/f02' In these tables, the first column is 
the candidate point number; X, Y, Z columns indicate the 
coordinate corrections from the initial position; the AF 
column gives the ambiguity function values; Distances 
columns give the distances between any two candidate 
points. Table 8 gives the results for another set of data that 
was investigated (one-epoch, five-satellites, 4.1kin 
baseline) for tO_3,4, and Table 9 gives the results for the % 
/% combination. 

1 

2 
3 
4 
5 

Table 4. % (_+0.40 m, step=2cm, 2=0.1903 metre, 1.5km baseline) 

X 
(cycle) 
-1.366 

Y 
(cycle) 

0.946 
0.946 

Z 
(cycle) 

-1.051 

AF Distances (cycle) 
1 2 3 4 

5.939 
-1.156 1.261 5.835 
0.000 0,000 0.000 5.976 
0.946 1,682 1.787 5.792 
1.366 -0.946 1.051 5.808 

2.322 
1.966 1.955 
3.734 2.288 2.630 
3.933 3.160 1.966 2.761 

1 

2 
3 
4 
5 
6 
7 

Table 5. % - %  (_+1.75m, step=8cm, 2=0.8619 metre, 1.5krn baseline) 

X Y 
(cycle) (cycle) 
-1.381 1.033 
-1.195 0.940 
-1.009 -1.566 
0.012 0.012 
0.940 1.682 
1.125 -0.917 
1.404 -1.009 

Z AF 
(cycle) 1 2 
-1.009 5.871 
1.311 5.828 2.330 

-1.752 5,741 2.728 3.962 
0.012 5,991 2.006 2.001 
1.775 5.704 3.682 2.307 

-1.288 5.726 3.187 3.948 
1.033 5.879 4.012 3.260 

Distances (cycle) 
3 4 5 

2.577 
5.176 2.601 
2.279 1.947 4.021 
3.727 2.006 2.831 2.339 

Table 6. -3%+4% (+3.25m, step=16cm, k=l.6281metre, 1.5kin baseline) 

X Y Z 
(cycle) (cycle) (cycle) 

-1.407 0.952 -1.013 
-0.031 -0.031 -0.031 
0.952 1.640 1.738 
1.149 -0.915 -1.308 
1.443 -1.112 0.952 

AF Distances (cycle) 
1 2 3 

5.897 
5.930 1.956 
5.843 3.689 2.624 
5.888 3.178 1.951 3.981 
5.775 4.031 2.075 2.904 2.288 



Table 7. %/qh (+3.25 m, step=2cm, 1.5kin baseline) 

X 
(metre) 

Y 
(metre) 

Z 
(metre) 

AF 

-3.190 1.510 2.750 11.421 
0.010 -0.010 -0.010 11.904 
0.270 2.390 -3.210 11.558 
1.110 -0.710 1.070 11.437 
2.150 0.410 2,370 11.438 

Distances (metre) 
1 2 3 

4.491 
6.947 4.008 
5.123 1.693 5.351 
5.465 3.228 6.212 2.006 
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Table 8. -3%+4q% (+_2.00m, step=16cm, L=l.6281metre, 4.1km baseline) 

X 
(cycle) 
-0.246 

Y 
(cycle) 
-0.541 

Z 
(cycle) 

-0,934 

AF Distances (cycle) 
1 2 3 

4.949 
-0.049 0.246 0,147 4.976 
0.049 1.032 1.228 4.964 
0.737 -1.228 -1.228 4.799 

1.351 
2.690 1.340 
1.235 2.164 3.409 

Table 9. %/% (+l.50m, step=2cm, 4. lkm baseline) 

X Y Z 
(metre) (metre) (metre) 

-0.600 1.460 -0.580 
0.000 0.000 0.000 
0.100 0.600 0.840 
0.740 -1.280 -1.500 

AF Distances (metre) 
1 2 3 

9.611 
9.808 1.682 
9.834 1.802 1.037 
9.578 3.186 2.106 3.063 

We can draw the following conclusions: 

(1) 

(2) 

(3) 

For %, % and their combined observations, the 
minimum distance between the candidates is 
almost twice their wavelength for one-epoch, six- 
satellite observations (Tables 4, 5 and 6) and is 
almost 1.2 times their wavelength for the one- 
epoch, five-satellite observations (Table 8), 
Therefore the search region should be of the order 
of _+L for six satellites and of the order of _+0.6L for 
five satellites. 

Using %/% observations separately, the minimum 
distance between the candidates is about 1.7 metres 
for one-epoch, six-satellite observations (Table 7) 
and is about 1.0 metres for the one-epoch, fiver 
satellite observations (Table 9). Therefore, the 
search region should be of the order of _+0.85 
metres for six satellites and _+0.50 metres for five 
satellites. 

ff we use the combination (P-3,4' the search region ( 
_+1.6 metres for six satellites, _+1,0 metres for five 
satellites) is about twice that for the %/q~2 (0.85 
metres for six satellites and 0.5 for five satellites). 

(4) 

(5) 

The combination q<7,9 has much more noise than 
q)-3,4" It is therefore difficult to use in AFM 

procedures unless an efficient technique is found to 
account for the ionospheric delay and other biases. 

Even when a session of several minutes static data 
are used, the maximum search region is almost the 
same as in the case of one-epoch data. 

4. A Fast Computational Procedure for the AFM 

Based on the above analysis, the search region can be _+1.6 
metres for six satellites or +1.0 metres for five satellites if 
the combined observable qt3,4 is used, and the 
corresponding searching step size is 16 cm. However, due 
to the comparatively low accuracy of ~P-~,4, only a low 
accuracy baseline solution can be obtained. The searching 
results using the q~-3,4 combination are given in Row 3 of 
Table 10 using the initial position given by Row 2 and the 
suggested step size. Using these results as the new initial 
position, and setting the search region as three times the 
standard deviation of the position components, the results 
of using the q)l-q)2 combination are given in Row 4. 
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Table 10. Results of a Fast Computational Procedure for AFM (1.5 km baseline) 

Obs. 
Type 
Initial 

-3%+4% 
% -% 

Region 

+1.6 metres 
~(m x ,my ,m z ) 

-3,4 -314 -3,4 

%/% _+3(m x .... ,my,,_~ ,mz,_ ,) 

q~l/q)2 _+3(mx ,my,,2,mz/~) 

Step Baseline(m)and StandardDeviafion (cm) 
(cm) X m x Y my Z 

-712.006 431.502 -883.648 
16.0 -712.806 11.10 431.822 16.03 -884.768 
4.0 -712.899 2.27 431.982 3.27 -884.655 

1.0 -712.907 0.43 432.004 0.63 -884.652 

0.2 -712.906 0.35 432.001 0.50 -884.647 

m Z 

10.89 
2.22 

0.42 

0.34 

Time 
(see) 

3.90 
3.02 

2.63 

2.14 

Region Step 
(cm) (cm) 

_+160.0 2.0 

Table 11. Results of the Standard AFM Procedure 

Baseline(m) At r 
X Y Z 

-712.006 431.502 -883.648 

Time 
(sec.) 

-712.906 432.001 -884.648 11.964 2814.22 
-711.786 431.262 -883.588 11.415 
-710.766 432.422 -882.268 11.408 

Table 12. Results of a Fast Computational Procedure for AFM (4. lkm baseline) 

Obs. 
Type 
Initial 

-3%+4% 
% -% 

Region 

+1.0 metres 
+-3(m x ~,~ ,m ,m ) 

Y-3,4 z-3.4 

(Pl/~2 + 3 ( m x  m ,mz._ ' ) 
Yl,-1 

(Pl /% ,m ,m ) +3(mx,, 2 y,,~ z~,2 

Step Baseline (m) and Standard Deviation (cm) 
(cm) X m x Y my Z 

-421.000 -2371.000 3369.000 
16.0 -421.840 8.57 -2371.600 14.17 3369.920 
8.0 -421.620 2.35 -2372.020 3.89 3369.580 

1.5 -421.631 0.62 -2371.942 1.02 3369.616 

0.4 -421.626 0.59 -2371.953 0.97 3369.606 

Time 
roT, (see) 

21.16 0.77 
5.80 0.44 

1.53 2.20 

1.45 2.14 

Finally, using the results of the combination of %-% to 
define the search region, the results of using qh/q~2 are 
given in Row 5, using 1.0 cm as the step size, and in Row 
6, using 0.2 cm as the step size. The computing times 
using an IBM compatible 486 Personal Computer (33MHz 
clock rate) are given in the final column. The total 
computation time is 11.69 seconds, ff we use the 
ellipsoidal search region defined by 

2 
( X -  Xo)TDxlo ( X -  Xo) -< X3,1_a (37) 

the searching points can be decreased further, but it 
requires more computational effort. In eqn (37), X o is the 
previous estimated position with variance-covariance 
matrix D x0 

Another test was carried out to compare this 
computational procedure with the standard AFM 
procedure. Using the same initial position as given in 

Row 2 of Table 11, the same search region (+1.6 metres) 
and the maximum suggested step size (2.0cm), the results 
of using the dual-frequency observations % / %  are given 
in Row 3. Three candidates are identified and shown in 
Row 3, however the correct one cannot be found. 
Furthermore, such a procedure requires a much longer 
computation time to perform the search (2814.22 seconds) 
due to the need to evaluate and test the AF at 4173281 
points. The software computing speed is almost the same 
as given by Lachapelle et al (1992), where a test of 
125000 points required several minutes of computation 
time. 

Based on the above analysis, a significantly faster 
computational procedure has been obtained. The 
procedure is, in summary: 

Step 1: The initial position is obtained and within a 
volume of +1.6 metres (for six satellites) or +1.0 
metres (for five satellites) it is assumed that the 



true position is located. Using q)-3,4, carry out a 
search of the position that maximises the AF. In 
practice, accurate initial position is available 
from some other techniques, eg. Kalman filter 
predicted position for kinematic positioning 
applications (Han 1994b), triple-difference 
solution in pseudo-kinematic mode for rapid 
static positioning applications (Remondi 1989; 
Remondi & Hilla 1993). 

Step 2: Based on the results of Step 1, the search region 
for %-% can be defined and a more precise 
position, typically with a standard deviation of 2- 
8 centimetres, can be determined. 

Step3: Based on the results of Step 2, use %/qo 2 
observations for precise searching. 

In order to get the correct position for Step 2, the position 
determined by q%,4 should be located +L (0.86 metre) of 
the true position, for six satellites, or _+0.6X (0.52 metre), 
for five satellites. Because the longer the baseline, the 
larger the effect of the noise and ionospheric bias in ¢P-3.4, 
the length of a baseline should be restricted. Figures 6 and 
7 illustrate the coordinate differences between the 
coordinates determined using (P-3,4 and precise coordinates 
at epoch 1, 5, 15 . . . . .  50 for the 1.5 km baseline dataset 
and the 4.1 km baseline dataset respectively. The biases 
for the 4.1 km baseline are much larger than that for the 
1.5 km baseline and are almost 0.5 metre. Therefore, the 
length of a baseline should be restricted to 4 - 5 kilometres 
if five satellites are tracked. 

Using this procedure, the results for the 4.1 km baseline 
test at epoch 1 are given in Table 12. If we use the 
standard AFM approach with % /(P2 in the same search 
region, there are two candidates which have almost the 
same AF values and the correct one cannot be identified. 
Furthermore, the computation time is 61&37 seconds. 

Using this procedure, different epoch data of 1.5 km 
baseline, at epoch 1, 5, 10, 15 ..... 50 with the same initial 
position given by Row 1 in Table 10 or 11 have been 
processed. The optimal positions can be obtained and the 
results of the differences between the coordinates at 
different epochs and their mean values are illustrated in 
Figure 8. We can see that the differences are less than 
5mm and the computation time for each epoch is almost 
12 seconds. For the other 4.1 km baseline dataset, the 
results are given in Figure 9. The differences are less than 
10mm and the computation time at each epoch is also less 
than 10 seconds. 

With only 10 seconds computation time, the Ambiguity 
Function Method is very attractive for applications in GPS 
rapid static positioning and kinematic positioning. 
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Fig. 6. Vectors of phase combination (-3,4) for different 
epochs (1.5km baseline test) 
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Fig. 7. Vectors of phase combination (-3,4) for different 
epochs (4. lkm baseline test) 
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Fig. 8. Results of suggested AF procedure for different 
epochs (1.5km baseline test) 
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Fig. 9. Results of suggested AF procedure for different 
epochs (4. lkm baseline test) 

CONCLUSIONS 

Based on the investigations carried out so far, the 
following conclusions are drawn: 

Several dual-frequency phase observables can be 
used in the AFM, in addition to % and qo 2. 
Although they (especially %,-a and qo 3,4) may have 
more noise, they can be used to reduce the size of 
the search region. 

. All observables have the same geometric 
configuration. This means that they have the same 
distribution of maxima and the distances between 
these maxima are proportional to their wavelength. 

. The searching step sizes should be less than one 
tenth of the observable's wavelength and the search 
region should be within +~L for six satellites or 
_+0.62 for five satellites. %/% can be given a larger 
search region, but the searching step size should be 
less than 2 cm, for a rejection level of 95% of 
expectation. 

4. The suggested searching procedure based on the 
q) 3,4 observable permits the search region to be 

twice that of the %/% and the searching step size 
to be eight times that of %/(P2. Therefore, it 
improves the reliability of the AFM and 
significantly reduces the computation time 
necessary for AFM. 

5. Based on the tests carried out using one-epoch 
observations, the suggested searching procedure is 
suitable for GPS kinematic positioning. In 
practice, accurate initial position is available from 
some other techniques, eg. Kalman filter predicted 

. 

position for kinematic positioning applications 
(Han 1994b). Of course, the suggested procedure is 
also suitable for pseudo-kinematic positioning 
where the initial position can be obtained from the 
triple-difference solution (good to about a metre 
(Remondi & Hilla 1993)). 

The challenge in the further use of this procedure is 
to somehow reduce the level of biases and errors in 
the dual-frequency combinations. This limitation 
however merely restricts the applicability of this 
method, for the time being, to the determination of 
relatively short baselines (<5kin). Intensive 
research is needed to overcome this restriction. 
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