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Abstract. This  work  shows an  a p p r o x i m a t e  ana ly t ica l  so lu t ion  for the heat  t ransfer  p rob lem of t rans ien t  

l a m i n a r  forced convec t ion  val id  for the the rma l  en t rance  region of a para l le l  p la te  duct,  wi th  walls  

in te rac t ing  wi th  an  amb ien t  m e d i u m  outs ide  the duct.  The  inlet  t empera tu re  var ies  per iodica l ly  wi th  t ime  
and  duc t  wal l  t he rma l  capac i ty  is cons idered  finite. Per iod ic  solut ions,  ob ta ined  by us ing  Lap lace  

t ransform,  are presented  for the duc t  wal l  t empera ture ,  f luid bu lk  t empera tu re  and  wall  hea t  flux as a 

funct ion  of the axia l  pos i t ion  and  of the involved  parameters .  

Nomenclature 

A = ampl i t ude  X = d imens ion less  no rma l  

a* = d imens ion less  p a r a m e t e r  coord ina te  
defined by  equa t ion  (3) x = no rma l  coord ina te  

b* = d imens ion less  p a r a m e t e r  Z = d imens ion less  axial  

defined by  equa t ion  (9b) coord ina te  
cp = fluid specific hea t  a t  z = axia l  coord ina te  

cons tan t  pressure  Greek symbols 
cw = wal l  specific hea t  ct = the rmal  diffusivity of 
c* = defined by equa t ion  (9a) fluid 

h = heat  t ransfer  coefficient 
i = x / ~  A T  o = amp l i t ude  of inlet  

osc i l la t ions  
Im  = i m a g i n a r y  par t  of O(X, Z, z) = d imens ion less  t empera tu re  

k = the rma l  conduc t iv i ty  of fluid p = fluid mass  dens i ty  

L = hal f -spacing be tween pla tes  Pw = wal l  dens i ty  

l = wal l  th ickness  z = d imens ion less  t ime 
N u  0 = outs ide  Nusse l t  n u m b e r  0(Z)  = d imens ion less  per iodic  

n = n u m b e r  of te rms in the series par t  of 

Re = real  pa r t  of f~ = d imens ion less  f requency of 
s = Laplace  t rans form pa rame te r  osc i l la t ions  

T(x, z, t) = fluid t empera tu re  co = frequency of osci l la t ions  
T o = cycle m e a n  t empera tu re  

T~ = reference t empera tu re  Subscript 
t = t ime b = b u l k  t empera tu re  

U = m e a n  veloci ty  h = heat  flux 
u = flow veloci ty  w = wal l  t empera tu re  

W(r) = funct ion re la ted to er ror  Superscript 
funct ion ~ = Lap lace  t ransform of 



626 W.F.N. Santos and J.S. Travelho 

Introduction 

Knowledge of the thermal interaction between the solid body and the fluid flow, the 
conjugated heat transfer problems, has received great attention recently, because of 
its importance in the design of engineering systems involving heat exchanging devices. 
Problems of this type, where the temperature fields of the fluid and of the solid must be 
found simultaneously, because they are coupled, lead to severe mathematical 
difficulties. As a consequence of such difficulties, approximate solution using quasi- 
steady approach is assumed. 

Sucec [-1] presented an improved quasi-steady approach for transient conjugated 
forced convection inside a parallel plate duct by assuming slug flow model. Walls and 
fluid were both at a constant temperature initially when a transient was initiated by 
either a step change in fluid inlet temperature with time, or a sinusoidal variation in 
time. 

Because of the relative analytical simplicity, the slug flow model has been employed 
in the solution of the transient conjugated problems. In [2], Sucec solved, by the 
method of complex temperature, the problem of the transient conjugated forced 
convection between a plate, with base isolated, and a fluid whose temperature varies 
periodically with time. Similar problem was again solved by Sucec [3], whose plate is 
convectively cooled from below. 

Sparrow and Farais [4] studied the transient conjugated problem inside a parallel 
plate duct, subject to periodic time variation of the inlet condition. Their solution was 
obtained in series form, assuming a slug flow velocity profile. Cotta et al. [5] advanced 
the analysis presented by [-4] extending it to circular duct, and adopted the Sign 
Count Method to obtain the complex eigenvalues which appear in the solution in 
series form. Travelho and Santos [6], further advanced the analysis of 1-4] and [-5] to 
the thermal entrance region in a parallel plate duct by eliminating the complex 
eigenvalues using Laplace transformation. 

Kaka~ and Yener [-7] obtained an exact solution for the transient energy equation 
for laminar slug flow of an incompressible fluid in a parallel plate channel with 
external convection and a sinusoidal variation of fluid inlet temperature, but the duct 
wall thermal capacity was neglected. In their analysis the finite integral transform 
technique was used. In [-8], Kaka~ et al. present a theoretical and experimental study 
of the latter problem taking into account the duct wall thermal capacitance effects and 
a parabolic velocity profile. The analytical solution was obtained through extending 
the generalized integral transform technique. Sueec [9] presented an analytical 
solution, valid in the first time domain and in the transient thermal entrance region in 
a parallel plate channel, with finite thermal capacity walls which interact with an 
ambient medium outside the channel. The same physical situation was again analysed 
by Sucec [10], using a finite difference method. 

In the present work, an analytical solution is found for the transient laminar forced 



Transient conjugated forced convection 627 

convection in the thermal entrance region, inside a parallel plate duct, with finite duct 
wall thermal capacity, external convection and inlet temperature varying periodically 
with time. The periodic solution of the problem is obtained in terms of elementary 
(tabulated) functions by using Laplace transform. 

Analysis 

Consider unsteady forced convection, hydrodynamically developed laminar flow 
inside parallel plate duct separated by a distance 2L and whose walls are each of 
thickness l. The fluid entering the duct has a temperature which varies periodically in 
time. Convective heat exchange with the environment and duct wall thermal 
capacitance effects are considered, while axial conduction and viscous dissipation 
effects are neglected. The wall and fluid transport properties are assumed to be 
constant. The parallel plate duct under consideration is shown in Fig. 1. 

Under these conditions, the energy equation has the form 

0T x @z T O2T ( , z, t) + u (x, z, t) = ~ - ( x ,  z, t) 

in O <<. x <<. L, z >~ O, t>~0; (la) 

the inlet and boundary conditions are given respectively by 

T ( x , O , t ) = T  o + A T  0e iot, 0 ~ < x ~ L , t ~ > 0 ,  (lb) 

OT (x, z, t)x=o ~- O, z >>. O, t >>. O. (lc) 
Ox 

• ] i  : : : ; : ; : ; ' ; : ; ' . . .  " : 5: ' . . ' . . t  

- .  i i l 
~ -  X z  2 L  

> IC HEAT 

. . . . . . .  .,,l.,. ..... ' -v . . .  ! T 
I 

h ,TO0 

Fig. 1. Geometry of parallel plate duct. 
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The energy balance on the duct wall yields, 

- k  OT (x, z, t)x=L o r  Ox = po~co, l~-~(L, z, t )+h[T(L ,  z, t)-To~], z >>. O, t >. O. (ld) 

Here the initial condition is not necessary, since this work's interest is the periodic 
solution to the problem (1). It is assumed the slug flow model (u = U = constant) and 
the following dimensionless groups are introduced into equation l(a-d) 

x ~z ctt coL 2 
X =  ~ ,  Z -  UL2, z = - ~ ,  f~ - ~ , 

hL T(x, z, t ) -  T O T~o -- To 
Nu o = ~ - ,  O(X, Z, z) - AT ° , O~ - a ~ '  

with these new variables the equations 1(a-d) become 

00 X 020 
000_~ (X, Z, z) + ~ (  , Z, z) = 0 ~ - ( X ,  Z, z), 0 ~< X ~< 1, z >10, (2a) 

O(X, O, z) = e ~ ,  O <~ X <~ l, z >~ O, (2b) 

00 X J x = o  ~ (  ,z ,  =o, z~>o,~>o,  (2c) 

00 X Z)x=l 1 ~z ( , Z, - a* (1, Z, z) + Nuo[0(1, Z, z)-- 00o]. (2d) 

The dimensionless parameter a*, equation (2d), characterizes the effects of wall 
capacitance to heat transfer, and is defined by 

a* - pcpL (3) 
p~ocJ" 

The problem (2) can be split into two parts as follows 

O(X, Z, z) = ¢(X, Z ) +  7(X, Z, z), (4) 

where ~(X, Z) is the solution of the following problem 

0~ (x, z) = 02¢ "s 
0Z ~ ~ ' Z), (5a) 
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¢(x,  0) = 0, 

0__~_~ (x,  z )  x = o = O, 
OX 

°~-¢ (x ,  z )  + NUo[~(1, z)-o~] = o, 
0X X = I  

and 7(X, Z, z) satisfies the problem 

629 

(5b) 

(5c) 

(5d) 

~ (x, z, ~) + ~z (x, z, ~) = f -~  (x, z, ~), 

T(X, O, "c) = e ia*, 

07 (X, Z, "c)x= o = O, ~X 

Z) X= 1 l 0 7 07 ( X , Z ,  + - - - - ( 1 ,  Z, z) + NuoT(1, Z, z) = 0. 
OX a* 0"c 

(6a) 

(6b) 

(6c) 

(6d) 

In order to obtain a periodic solution the temperature function 7(X, Z, z) is assumed 
to be of the following type 

7(X, Z, z) = O(X, Z)e/n(~-z). (7) 

By introducing this definition into problem (6), one has, 

~ '  (x ,  z )  = o'-~, "x z) ,  o ~  K B  ~ ' (8a) 

g,(x, o) = 1, (8b) 

~ - ( X ,  Z) x :  o = 0, (8c) 

0X0~ (X, Z) x= l  + c'O(1, Z) = 0, (8d) 

where the starred parameters are defined as follows 

f~ ~oLpwcwl 
c* = Nuo + ib*; b* - (9a, b) 

a* k 
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Method of solution 

The interest of this work is to obtain the periodic (time dependent) solution, that is, the 
solution of the problem described by equations 8(a-d). This is obtained through the 
use of the Laplace transform technique. By taking the Laplace transform with respect 
to the Z variable of the equations 5(a-d), one obtains 

d2t} - s~--  1, (lOa) 
d X  z 

d e  x=o = O, (lOb) 
dX 

d ~  x= 1 + c't}(1, s) = O, (lOc) 

where ~k(X, s) is defined as 

~(X,  s) = ~L~ , (X, Z) = (X, Z)e-SZ dZ, (11) 
Z--~ oo 

and s is the Laplace transform parameter. 
The solution of the problem (10) results in 

t}(X, s) - 1 c* [. _ _ e ' f i x  + e - . f i x  ] ,  (12) 

s s Lx/~ (e,fi_ e-.,/~-) + c,(e.fi  + e - . f i  ) 

rearranging the equation (12), one has 

Since the present interest is to obtain a solution to the problem (7) for small values 
of Z (thermal entrance region) the term in the brackets, equation (13), is expanded into 
a series for large s. This way the equation (13) can be written as 

c,_ £ N (14) 
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where the _+ sign means that c* multiplies two series, one with the + sign and the 

other with - sign. 
By using a table of transforms [11], one can find the inverse transformation of 

equation (14). By comparing with the results already known in the literature [7], one 
can see that a good agreement has already been reached with two terms, for the values 
of Z considered. More terms in the series would only slightly improve the present 
solution for larger Z, which is not the goal of this work. Thus, 

(1 +X~ +erfc (~_~_4c* ~e-(3+x)z/4Z 
O(X, Z) = 1 -- erfc \ 2 n / ~ j  \ 2 x / Z /  ~ n 

/ 1 + X c .x /~"  ~) + e O+-x)c*+c*~z e r f c / - ~  + 
\2,/-/ 

_[l_4c*2Z-2c*(3-l-X)]e(3+-x)c*+c*2Zerfc(~+c*x/Z). 
\ 2~/ z 

(15) 

The solution method adopted here, is more appropriate than the one obtained by 
direct eigenfunction solution of equation (8), because the present solution requires a 
smaller number of terms for an adequate convergence at small values of variable Z. 

The tabulated function W(r) [12], with r being complex number, is defined in terms 
of the error function of complex argument as, 

W(r) - e r2 erfc(-ir) (16) 

the introduction of this function in equation (15) yields 

/ l + X \  (3+x~_4c , /~e_(3+x)z/4 Z ~(X, Z) = 1 - e r f c / ~ / q -  erfc \2 ,0/  47 

-{'- e-(14-X)e/4ZwFi(1L ~2N~-}-X -~ c'~)] 

-[1-4c*2Z-2c*(3+__X)]e-(3+x)i/4Zw~i( 3+-X + c * ~ ) ] .  
[_ k 2 x / ~  

(17) 

Equation (7), combined with equation (17), constitute the solution for the periodic 
temperature field in the fluid. 

Once the periodic dimensionless temperature field 7(X, Z, z) is determined, the 
quantities of interest such as dimensionless wall temperature, wall heat flux and fluid 



~,w(z, ~) - ~(1, z ,  ~) = 0(1, Z)e  '""-z), 

by setting X = 1 in equation (17), results in 

Ow(Z)=- ~b(1, Z)=-4c* ~ (e-1/Z + e-4/Z) + erfc (-~Z ) 

[(1 + W(ic*x/-Z)+4c*(l+c*Z)e-1/Zw i ~ + c *  

-- 4/Z [ - ( ~  C,%//~)1. (19) +(4c '2Z  + 8c* 1)e- W t + 

The periodic dimensionless wall heat flux 7h(Z, ~) is expressed by 

7h(Z, ~)= - OX ~' (X, Z, z)x=l = - OXe~-O (X, Z)x=~ e'n~-z)' (20) 

with the aid of equation (8d), one has 

t?t/J (X, Z) x = = c%,(1, Z). (21) q,h(z) - - a--x 

The periodic dimensionless fluid bulk temperature ~b(Z, ~) is obtained from its 
definition, as being 

;o ;o' 7b(Z, ~) = y(X, Z, ~) dX = 0(X, Z) dX e ia(~- z) (22) 

by defining the periodic dimensionless fluid bulk temperature as being, 0b(Z) and after 
applying the Laplace transform with respect to Z, one gets 

;o ~b(s) = t}(X, s) dX. (23) 

By inserting ~(X, s) from equation (14) into equation (23), one obtains after a direct 
integration, the following equation 

S C* n t}b(s)_ 1 c* (1--e -2",/s) ~. Fe_2nxfs(x//s--__~ ~ (24) 
s s 3,2 ( , / ~ + c * )  . = o L  \ , ¢ 6 + c * / A  
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bulk temperature can be evaluated. Therefore, the periodic dimensionless temperature 
vw(Z, z) is given by 

(18) 
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The inverse transform of equation (24) is obtained by using a similar procedure used 
in equation (14). Therefore, 

1 /~f 2 ( ~ Z )  q/b(Z) = 1 + ~- - 2 ( 1 - 2 e - i / Z - 3 e  -4/z) - ~- erfc 

- 4 + ~ g  erfc - ~ g  

- ( 4 Z c * - - ~ + 4 ) e - ~ / z w [ i ( ~ z  +C*,~//Z)l 

4z 2 - - (4c*Z--3+8)e-  / W[ i (x~+c*w/Z) l .  (25) 

In order to visualize the periodic part of solution presented here, the wall and fluid 
bulk temperature and the wall heat flux are expressed in terms of amplitudes A(Z) and 
phase lags of oscillations 4~(Z). Thus, Aw(Z), Ah(Z), Ab(Z), ~bw(Z), ~bh(Z) and ~bb(Z ) 
correspond respectively to the amplitudes and phase lags of wall temperature, wall 
heat flux and fluid bulk temperature and are calculated by 

A(Z) - I q/(Z)l = { [Re(q/)] z + Jim(q/)] 2} 1/2, 

~Im[q/(Z)]~ _ f~Z, 
~b(Z) = tg -1 [Re[q/(Z)]J 

(26) 

(27) 

where Re(0 ) and Im(q/) are the real and imaginary parts of equations (19), (21) and (25). 

Results and discussion 

The preceding analytical solution indicates that the calculated dimensionless quant- 
ities such as wall temperature, fluid bulk temperature and wall heat flux depend on the 
dimensionless parameters b* and Nu o. The former represents the ratio between the 
thermal capacity of the wall and the heat transfer by conduction across the fluid, and 
the latter, represents the effectiveness heat transfer to the ambient. 

Amplitudes and phase lags of those quantities mentioned above, were evaluated as 
function of dimensionless axial coordinate Z, for representative values of both 
parameters b* and Nu o. Numerical values for the parameter b* followed those in the 
literature [4-6], while two values of Nuo were investigated, namely Nuo = 1 and 100. 

Two cases of the present solution are evaluated separately, Nuo=0  and b*=0  
(a*~ ~). If Nuo = 0, the effect of external convection is eliminated and, in this case, the 
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Fig. 2. Comparison between wall temperatures 
calculated by using the present method and by 
using series solution. 
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Fig. 3. Comparison between fluid bulk temper- 
atures by using the two methods. 

insulated walls problem [6] is recovered. For b* = 0 (a* ~ ~), the effect of the capacity 
at the wall can be neglected and therefore, one obtained the problem for time-varying 
inlet without participating walls. 

Comparison between the present solution and the series solution obtained by 
Kakaq and Yener [7] to the case of b* =0 and Nu o =0.1, 1, 10 and 100, are shown in 
Figs 2, 3 and 4 for the wall temperature, fluid bulk temperature and wall heat flux 
respectively. As shown in these figures, the agreement between the solutions is very 
good in the thermal entrance region, which depends on the parameter Nuo. For small 
values of Nu0, the thermal entrance region extends up to larger values of the variable 
Z. This is expected due to the external thermal resistance to be larger. Therefore, it is 
necessary a longer physical distance for the same amount of energy to be changed with 
the ambient, when compared with larger values of Nuo. The discrepancies between the 
solutions for small values of Z, Figs 2 and 4, related to wall temperature and wall heat 
flux respectively, are due to relative small number of eigenvalues used in the series 
solution, in the case, it was used 25 eigenvalues. On the other hand, the solution 
presented here yields better results for small values of Z (near Z = 0). This happens 
because the expansion of the term in the brackets, equation (13), in the transformed 
plane, was made in order to obtain good precision in the asymptotic region. From Fig. 
3, which represents the fluid bulk temperature, the agreement is seen to be excellent for 
the values of Nuo investigated, where the curves to both solutions are coincident. The 
comparison between the present solution and the series solution with small number of 
eigenvalues allows one to identify when the difference between the solutions appears 
and the magnitude of this difference. 
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- -  PRESENT METHOD 

40 . . . .  REF. [ 7 ]  

',i ,o \ 1 

iO -4 EO -3 iO -~ ~ 0  -I 

~ z  
Z =  Ul_2 

Fig. 4. Comparison between wall heat flux by using the two methods. 

Amplitudes and phase lags for dimensionless wall temperature are plotted in Figs 
5(a, b). As shown in these figures, the oscillations in the thermal entrance region are 
influenced by the parameters b* and Nu o. When Nu o is small, Nuo = 1, i.e. when the 
external thermal resistance is larger, the oscillations in the thermal entrance region 
depend strongly on the parameter b*. For  larger values of b*, the thermal wave has 
little penetration along the duct length, rapidly decaying with the dimensionless axial 
distance. Therefore, oscillations in fluid temperature are damped within a short 
nondimensional distance from the duct inlet. This is to be expected due to larger 
thermal capacitance of the walls. For  small values of b*, the thermal wave has a 
penetration more gradual along the duct because of smaller walls thermal 
capacitance, requiring a longer nondimensional length for the same energy to be 
stored in the walls. For  Nu o --100, i.e. when the external thermal resistance is very 
low, the influence of the parameter b* on the oscillations in the thermal entrance 
region is much smaller. It can be noticed from Fig. 5b, that up to the scale of the graph, 
the amplitude was not influenced by parameter b*, in the range considered, coinciding 
with the limit case of b* =0  (a*--* oo). The phase lag, on the other hand, was only 
slightly advanced for increasing b*. 

Figures 6(a, b) show the amplitudes and phase lags of the dimensionless fluid bulk 
temperature for the same numerical values of parameters b* and Nu o used in Figs 
5(a, b). As shown in these figures, the bulk and wall temperatures amplitudes and 
phase lags present similar behavior. However, for the bulk temperature, the effects of 
the both parameters b* and Nuo are less pronounced. The reader should notice that 
the fluid bulk temperature amplitudes are less attenuated than those for wall 
temperature. 

The influences of the parameters b* and Nuo on the dimensionless wall heat flux 
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amplitudes and phase lags are illustrated in Figs 7(a, b). For Nu o = 1, the amplitudes 
for wall heat flux are larger for larger values of b*. This is expected since due to a 
larger walls heat capacitance, more heat is transferred to the walls, what can be seen in 
Fig. 5(b) by noticing the large temperature gradient. As Nuo increases, i.e. when the 
external thermal resistance decreases, the amplitudes for wall heat flux increase 

O iii i C 0 9  0.9 

0.8 O.8 

o.?" ~ ~ ~ o.~ 

- -  A M P L I T U D E  A b ( Z }  N N 

0.6 . . . .  PHASE L A G - ( ~ b ( Z ) / T I  -0.35 ~ ~ o.e 

0 3  

O.4 

0.3 
10 .4 

= 2 0 7  I i : ~ "  b *  

lO -3 10 -z io -I 

Z =  a z  
UL  2 

Fig. 6(a). Axial distributions of amplitudes and 
phase lags for dimensionless f l u i d  b u l k  temper- 
ature for various values o f  b*  ( N u o  = I ) .  
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O.4 /-b* = 2 t 5 , 1 0 , 2 0  

10"4 10-3 io-= 
Otz  

Z = U L  2 

Fig. 6(b). S a m e  w i t h  N u  o = 1 0 0 .  
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-0.50 
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independently of the walls thermal capacity. Figure 7(b), shows amplitudes and phase 
lags practically coincident over the range of the parameter b* investigated. 

Finally, it should be noticed that the values of the amplitudes reached for 
Nu0= 100~ Figs 5(b), 6(b) and 7(b), are the values got by the particular case, b*=0, 
shown in Figs 2, 3 and 4, for wall temperature, fluid bulk temperature and wall heat 
flux. 

Conclusion 

An analytical solution, valid for the thermal entrance region, based on the Laplace 
transform technique, has been found for the heat transfer problem with inlet 
temperature varying periodically with time, external convection, finite walls thermal 
capacity and laminar flow inside a parallel plate duct. This solution was obtained 
through an infinite series truncation, which showed to be a very good approximation. 
Results for practical interesting quantities such as wall temperature, fluid bulk 
temperature and wall heat flux are presented in terms of the amplitudes and phase lags 
as function of dimensionless axial coordinate. The influences of the two governing 
parameters, i.e. the walls thermal capacity b* and the external thermal resistance Nuo, 
on the amplitudes and phase lags, are investigated in detail. It can be summarized here 
that the thermal capacity of the walls b* plays an important role in damping the 
amplitudes of studied quantities, in the thermal entrance region, when the external 
thermal resistance is high. When the external thermal resistance is low, that is, larger 
values of Nuo, the thermal capacity of the walls has no decisive influence in the speed 
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of p ropaga t ion  of the thermal  wave in the thermal  ent rance  region and, therefore, the 

external convect ion takes place as the control l ing factor in damping  the amplitudes.  

This work presents an analyt ical  solut ion with no  experimental  data  for its 

verification. However,  a compar i son  is made  with another  solut ion presented in the 

literature, whose ma in  ideas were checked experimental ly [7]. The compar i son  was 

made  only for the cases already studied in former works. It  is the authors  op in ion  that  

an experimental  verification of the present results would be a valuable contr ibut ion.  
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