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Summary 

The importance of defining confidence intervals for sample 
statistics that are used to estimate characteristics of the parent 
population(s) is emphasised. Not all sample statistics are 
unbiased estimators or have normally distributed sampling 
distributions and so it is not always easy to reflect the reliability 
of the estimator. In such cases, Efron's "bias corrected percen- 
tile method", which uses bootstrap samples to estimate the 
bias and makes no assumptions about the distribution of the 
sample statistic can be used to define confidence limits for 
the population parameter. The method is explained and the 
procedure for calculating the confidence limits is outlined. 

As an example, bootstrap confidence limits calculated for 
the maximum correlation between the Southern Oscillation 
Index and rainfall at South African stations over the period 
1935-1983 suggest that the sample correlation is an unreliable 
measure of the true association. One possible reason for this 
is that the association is thought to have broken down during 
the 1940s. However, the reliability of the estimator does not 
seem to improve when confidence limits are calculated for 
the 30-year period 1954-1983. It is possible that the width of 
the confidence interval is an indication of more than one 
distinct statistical population. 

1. Introduction 

Despite the hazards  of using the correlat ion co- 
efficient as a statistical tool in climatology (Ramage, 
1983; Brown and Katz ,  1991), it is still widely used 
within the discipline since it provides a very useful 
and  simple procedure  for identifying associations 
between variables. The correlat ion coefficient can 

be used to quant i fy  the strength of the observed 
associat ion by means  o f t  2, the coefficient of deter- 
minat ion,  which is used to define the precentage 
of variance observed in the dependent  variable 
that  can be "explained" or modelled by a linear 
associat ion with the independent  variable. In cal- 
culating the correlation coeffÉcient we are implicitly 
fitting a linear regression line to the da ta  and  
quantifying the extent to which the total variability 
observed in the dependent  variable can be accoun- 
ted for by the variabili ty of the est imated values. 

Since it is possible to find an apparen t  associa- 
t ion between two sets of r andom numbers,  it is 
s tandard  practice to assess the significance of the 
correlat ion by calculating the probabi l i ty  of exce- 
eding the observed correlat ion by accident. The 
significance test of the correlat ion coefficient is an 
analysis of variance test to assess whether  the 
variance modelled by the linear regression is signif- 
icantly greater than  the variance not  modelled 
(the residual variance). The need for testing the 
collective significance of individual  significance 
tests when calculating a correlation field, for exam- 
ple, has been detailed (Livezey and Chen, 1983; 
Brown and Katz,  1991) and  so is not  considered 
further here. The present concern is to comment  
on the use of the correlat ion coefficient in a de- 
scriptive capacity,  in the form of r 2, for example, 
once it has "passed" a statistical test. Al though the 
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paper concentrates on the correlation coefficient, 
it should be emphasised that the principles can be 
applied to any statistic. 

2. Theory and Derivation 

If a statistic is found to be "significant" it may be 
of interest to obtain an estimate of the correspond- 
ing population parameter. For  example, the sample 
correlation coefficient is often used as an estimate 
of the population correlation in order to define 
the percentage of variance which can be modelled 
by a simple linear statistical relationship between 
two variables. Frequently, once a sample statistic 
is found to be significant, it is treated as an accurate 
estimate of the relevant population quantity. As 
the Neyman-Pearson method of hypothesis testing 
yields only the probability of achieving the obse- 
rved result purely by chance it does not give any 
indication of the reliability of the sample statis- 
tic as an estimator of the population parameter. 
Although r can be seen as an estimator of p, it is 
necessary to indicate its reliability in this role. 

One way to incorporate the reliability of an 
estimator is to give the estimate in the form of a 
confidence interval, thus defining a range of esti- 
mates for the population parameter. The reliability 
of any estimator is reflected in part by the estimated 
standard deviation, or standard error, of the esti- 
mator. The standard errors of some statistics can 
be obtained conveniently from other estimates. 
For  example, consider estimating the standard 
deviation of the sample mean, X. Since the standard 

deviation o f ) (  is a/x/-n and since s estimates a, the 

standard error ofY, SEy,, is given by s /x /n .  Another  
consideration in assessing the reliability of an esti- 
mator  is the form of its sampling distribution. In 
the case of J(, a large sample is sufficient to guaran- 
tee that )( has (at least approximately) a normal 
distribution. Since the distribution o f ) f  is centred 
at the population mean, #, 

x (1) 

Consequently, ) ( - / ~  has a normal distribution 
centred at zero. If the sample size is large, it is 
appropriate to estimate a by s and use percentage 
points of the standard normal distribution to define 
confidence intervals for #. For  example, (2 -- 2SEx, 
,2 + 2SEx) is a 95% confidence interval for # be- 
cause 

P(Jf - 2SER < t~ < X + 2SE~) ~- 0.95. (2) 

In the case of the correlation coefficient the problem 
is to identify the limits denoted rl and ru that will 
enclose p with probability 1 - 2~ 

P(r l < p < r,) = 1 - 2c~. (3) 

Since r is used to estimate p, the length and location 
of the interval (r~, r,) is determined by the standard 
error and the sampling distribution of r. Unfortu- 
nately, r does not have a normal distribution. 
Except in the case of p = 0 (and in the trivial case 
ofp  = _ 1), the sampling distribution of r is nega- 
tively skewed. Consequently, even if the sampling 
distribution of r can be established, it is inappro- 
priate to define confidence intervals for p using 
percentiles from a set of sample correlations ob- 
tained by repeated sampling. A solution to this 
problem is to transform r into a random variable 
that does have a normal distribution. A monotone  
increasing transformation function, g, can be de- 
fined whose values, g(r), have a normal distribu- 
tion with unit variance irrespective of the original 
sampling distribution of r. The confidence limits 
are g(r~) and g(r,) and Eq. 3 becomes 

P(g(rl) < g(p) < g(r,)) = 1 -- 2a. (4) 

A further complication is that r is not an unbiased 
estimator of p so the expected value of r should 
be expressed as p + a, say, where a is non-zero. 
Consequently, a confidence interval for p should 
not be centred at r. The bias can be carried over 
to the transformed variable so that the distribution 
ofg(r) is centred at g(p)+ b, say, where b is non- 
zero. Thus, 

g(r) .,~ N(g(p) + b, 1). (5) 

The confidence limits for g(p) can now be defined 
a s  

g(r~) = g(r) -- b - A (6) 

g(ru) = g(r) - b + A (7) 

and for p as 

r I = g -  l ( g ( r )  - -  b - A) (8) 

r. = g -  '(g(r) - b + A) (9) 

where b is a measure of the bias of g(r) and 2A is 
the length of the confidence interval. 

Ifp is known and if the sampling distribution of 
r can be established, it is possible to calculate the 
probability of r being less than p, using 

CDF(p) = P(r < p) (10) 
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where C D F ( p )  represents the p ropor t ion  of sample 
correlation coefficients that  are less than the popu- 
lation correlation coefficient. Since g, being a 
m o n o t o n e  increasing function, does not  affect the 
rank order of the values of r, it follows that  

C D F ( p )  = C D G ( g ( p ) )  = P(g(r)  < g(p) )  (11) 

where C D G ( g ( p ) )  represents the propor t ion  of the 
t ransformed sample correlation coefficients that  
are less than g(p).  F r o m  Eq. 11 it follows that  

c m r ( p )  = P(g(r)  - g(p)  - b < - b) (12) 

Equat ion  5 can be re-arranged to give 

g(r) - g(p)  - b ,-~ N(O, 1). (13) 

Therefore Eq. 12 becomes 

C D F ( p )  = P ( Z  < - b) (14) 

where Z ~ N(0, I). Hence 

b = - @ - I ( C D F ( p ) )  (15) 

where q~ is the cumulative s tandard normal  distri- 
but ion function. 

The length A can be calculated from the distribu- 
tion of g(r) as follows. The confidence limits for 
g(p),  which have been defined in Eqs. 6 and 7, yield 
the 100(1 - 2a)~ confidence interval as 

P(g(r)  - b - A < g(p)  < g(r) - b + A) = 1 - 2~ 

(16) 
which can be simplified to 

P ( - A < g ( r ) - g ( p ) - b < A ) =  1 -- 2c¢. (17) 

The middle part  of Eq. 17 has been identified 
already, in Eq. 13, as a s tandard normal  r andom 
variable and so Eq. 17 becomes 

P ( -  A < Z < A) = 1 - 2~. (18) 

Hence, 

A = @ - 1(1 - ~). (19) 

Al though the bias and confidence interval have 
now been defined, their calculation assumes that  
p and the sampling distribution of r are known. 
In climatology, such assumptions cannot  usually 
be met. However, the boots t rap resampling pro- 
cedure of Efron (1982) can be used to obtain infor- 
mat ion  about  the distribution of r. The procedure 
entails obtaining many  sub-samples, called boot- 
strap samples, from the sample that  is used to 
calculate r. Each of these boots t rap samples yields 
a boots t rap correlation coefficient, denoted f'. It is 

necessary to take a sufficient number  of boots t rap 
samples in order to produce a stable estimate of 
the sampling distribution of ?. Efron (1982) re- 
commends  400. The distribution of the boots t rap 
sample correlation coefficients is then used to pro- 
vide information about  the distribution of r. 

Just as r is a biased estimator of p, so also the 
distribution of the boots t rap estimates is not  cent- 
red at r. Since the sampling distribution of r is 
estimated by the empirical distribution of the boot- 
strap estimates, the bias can be re-defined from 
Eq. 15 as 

b --- - q) - I ( C D F ( r ) )  (20) 

where CD-~'~F(r) is the propor t ion  of bootstrap 
sample correlation coefficients that  are less than 
r. Also 

g(¢) - g(r) ~ N(b ,  1). (21) 

Thus the end-points of the interval defined in Eq. 
16 satisfy 

P(g(~) < g(r) - b -L-_ A) 

= P(g( f )  - g(r) - b < - 2b +_ A). (22) 

That  is 

P(g(~) < g ( r ) -  b + A) == q ~ -  2b _+ A). (23) 

If C D F ( k )  is the observed propor t ion  of boots t rap 
sample correlation coefficients that  are less than 

k and C D G ( k )  is the observed propor t ion  of trans- 
formed boots t rap estimates that  are less than k, 
the empirical counterpar t  of Eq. 23 is 

C~D"G(g(~) < g(r) - b ++_ A) = c ~ ( -  2b ++ A). (24) 

Equivalently, 

(g(f) < g(r) - b +_ A) = C D G  - l (q ) ( -_  2b + A)).  

(25) 

The left hand side of Eq. 25 defines the confidence 
limits for g(P) given in Eqs. 6 and 7, and so, from 
Eqs. 8 and 9, the confidence limits for p are defined 
from 

g -  l (g( f )  < g(r) - b + A) 

= g -  I ( C D G -  ~(q~(- 2b +__ 3))). (26) 

F r o m  Eq. 11 it is evident that C D G ( g ( k ) )  = C D F ( k )  

and so the 100(1 - 2~)%o bootstrap confidence limits 
for p are 

r~ = C D ~ -  ~(q)(-- 2b - A)) (27) 
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r .  = C D F - 1 ( @ ( - 2 b  + A)) (28) 

where b has been defined in Eq. 20 and A in Eq. 19. 

3. Operational Procedure 

The procedure for the numerical calculation of the 
100(1 - 2~)% confidence interval for p using Efron's 
bias corrected percentile method is as follows: 

1) calculate r from the sample of n data points; 
2) generate 400 bootstrap samples of size n*; 
3) calculate the bootstrap estimates, P; 
4) sort the bootstrap estimates into ascending order 

of magnitudde; 
5) obtain C D F ( r ) ,  the proportion of bootstrap 

estimates that are less than r; 
6) calculate b, the standard normal score that 

satisfies 

b = - ~5 - I ( C D F ( r ) ) ;  

7) obtain 

A = 4, - 1(1 - ~); 

8) calculate the proportions @ ( - 2 b - A )  and 
• ( - 2 b  + A); 

9) find, from the sorted list of bootstrap esti- 
mates, the two values of t ~ that have ranks 
4 0 0 ~ ( - 2 b  - A) and 4 0 0 0 ( -  2b + A). 

4. Example 

Rainfall over large parts of central South Africa 
is known to be modulated with the phase of the 
Southern Oscillation (Lindesay, 1988; van Heerden 
et al., 1988). The association is most apparent during 
January-March when above (below) normal rain- 
fall occurs concurrently with high (low) phases of 
the Southern Oscillation. It has been estimated 
that up to 25% of the rainfall variance observed 
during January-March over central South Africa 
can be "explained" by reference to the Southern 
Oscillation (Lindesay, 1988). However, here is a 
case of using the correlation coefficient in a de- 
scriptive manner after it has been declared to be 
significant (using ~ = 0.05). Since it has been sug- 
gested that the sample correlation coefficient is a 
biased estimator of the population coefficient, the 
quoted modelled variance is applicable only to the 
particular sample used and it is not immediately 
possible to give an estimate of the percentage of 
variance modelled in the population. The estimator 
is biased and because it is not possible to calculate 

the percentage exactly, it is preferable to calculate 
confidence limits. Bootstrap confidence limits for 
the correlation between the Southern Oscillation 
Index and rainfall at 59 stations in South Africa 
over the 49-year period 1935-1983 have been cal- 
culated at c~ = 0.05 using a sub-sample size of 30 
years. The 90% bootstrap confidence limits of the 
maximum modelled variance at any of the analysed 
rainfall stations in South Africa are 11% and 36%. 
Estimates near the lower end of the confidence 
interval indicate that the association between the 
Southern Oscillation and South African rainfall is 
negligible, while estimates near the upper end of 
the interval indicate that the association is strong 
over most of the country. It is evident that the 
confidence interval is very wide, suggesting that, 
in this case, the sample correlation coefficient is 
an unstable estimator of the population correla- 
tion. 

One of the possible reasons for the observed 
unreliability of the sample correlation is that over 
the period analysed the association between the 
Southern Oscillation and South African rainfall is 
known to have been unstable, virtually breaking 
down completely in the 1940s (Lindesay, 1989). 
The analysis was therefore repeated for the period 
1954-1983 taking bootstrap samples of 20 years. 
During this period the association is thought to 
have stabilised. If the maximum modelled variance 
is estimated from the sample correlation coefficient 
it increases to 44% over the shorter 30-year period 
and the 90% confidence limits are 16% and 54%. 
This represents a small improvement in the lower 
confidence limit and a large improvement in the 
upper confidence limit. Even though the associa- 
tion between the Southern Oscillation and South 
African rainfall is supposed to have stabilised during 
the shorter 30-year period, as is partly reflected in 
that the sample correlation and upper confidence 
limit are larger, the sample coefficient remains a 
very unreliable estimate. The confidence interval 
may be so wide because of the possibility that the 
association between the Southern Oscillation and 
South African rainfall during the January-March 
season is apparent only during years in which the 
Quasi-Biennial Oscillation is in its westerly phase 
(Mason and Lindesay, 1992). The poor lower confi- 
dence limit may therefore be the result of randomly 
selecting predominantly easterly years and the 
high upper limit predominantly westerly years. 
Whatever the case, a wide confidence interval 
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emphasises the unreliability of the sample cor- 
relation coefficient and highlights the need to in- 
corporate the stability of the sample statistic in 
estimation. In the case of the Southern Oscilla- 
tion-South African rainfall association, the lack of 
reliability suggests that there are more than one 
distinct statistical populations. 

5. Conclusions 

It is often statistically incorrect to use the values 
of a sample statistic as a direct estimate of the 
population parameter because the standard me- 
thod of testing an hypothesis tells us only whether 
the observed value is significantly different from 
some pre-defined score. An indication of the reli- 
ability of the sample statistic as an estimator is 
required. Just as it is standard practice to quote 
confidence limits when estimating the population 
mean, for example, so also it is advisable to quote 
confidence limits when trying to estimate any other 
population parameter. This is especially true when 
estimating the coefficient of determination since 
the sample correlation coefficient, from which it 
is derived, is usually a biased estimator of the 
population correlation. In such cases, Efron's "bias 
corrected percentile method", which uses bootstrap 
samples to estimate the bias and makes no as- 
sumptions about the distribution of the sample 
statistic, should be used to define confidence limits 
for the population parameter. 

Bootstrap confidence limits calculated for the 
maximum correlation between the Southern Oscil- 
lation Index and rainfall at South African stations 
over the period 1935-1983 suggest that the sample 
correlation is an unreliable estimator of the true 
association. One possible reason for this is that the 
association is thought to have broken down during 
the 1940s. However, the reliability of the estimator 
does not seem to improve when confidence limits 

are calculated for the 30-year period 1954-1983. 
It is possible that the wide confidence interval is 
an indication of more than one distinct statistical 
populations. 

This research forms part of a Special Programme 
on South African Climatic Change: Analysis, Inter- 
pretation and Modelling (SACCAIM) funded by 
the Foundation for Research Development. 
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