
Further development of testing computerization should focus on the creation of new types 
of computer-aided technical facilities that will reduce the range of testing hardware required 
and extend the range of testable measuring instruments. Given the wide range of measuring 
instruments in use, we should stress the significance of computer-aided testing algorithms. 
The production of such software-hardware instrument testing systems should be organized 
in order to expedite their distribution to enterprises and metrological services. It is also 
necessary to review the corresponding standards and technical documentation and to refine 
the required metrological tolerances allowing for the self-testing capabilities of the work- 
stations. 

Finally, the organization of the national metrological service should be reviewed, allow- 
ing for the new possibilities provided by computer-aided instrument testing. 

LITERATURE CITED 

i. G. D. Kolmogorov, Izmer. Tekh., No. ii, 3 (1987). 
2. N. V. Gelashvili et al., Izmer. Tekh., No. 6, 3 (1987). 
3o A. I. Mekhannikov, Izmer. Tekh., No. ii, 5 (1987). 
4. N. N. Vostroknutov et al., Izmer. Tekh., No. ii, 16 (1987)o 
5. V. A. Nosenko and O. F. Chuevskii, Tekh. Sredstv Svyazi, Ser. RIT, No. 5, 15 (1988). 
6. V. A. Nosenko et al., Sredstva,Svyazi, No. 4, 71 (1983). 
7. V. A. Nosenko, Sredstva Svyazi, No. i, 8 (1984). 
8. V. M. Zaprudskii and V. M. Malyshev, Izmer. Tekh., No. ii, 18 (1987). 
9. MI-187, MI-188, -Eg. Admissible Errors in Testing of Measuring Instruments [in Rus- 

sian], Izv. Standartov, Moscow (1980). 
i0. GOST 8.009-84. USSR State Standard. Normalized Metrological Characteristics of Measur- 

ing Instruments [in Russian]. 

THEORETICAL FOUNDATIONS OF GUARANTEED ERROR BOUNDS FOR THE SOLUTION OF 

METROLOGICAL PROBLEMS BY STATISTICAL METHODS 

S. F. Levin and A. P. Blinov UDC 389.14:519.241.2 

A number of metrological functions(primary certification of high-precision measuring 
instruments, construction and prediction of long~term deviations of metrological character- 
istics given a small number of reference points, separation between systematic and random 
components of measurement error) involve certain experiments and tests, the processing of 
which relies on the solution of the so-called initial problems of mathematical statistics 
- the problems of structural, parametric, and composite identification. The specific fea- 
ture of these identification problems is that we have no prior information about the char- 
acteristics of the random factors and it is fundamentally necessary to check the validity 
of the assumptions underlying the statistical methods proper. Correct solution of the 
initial problems of mathematical statistics is the source of that prior information which 
plays an exceptional role in metrology. 

It is well known that probability theory is limited to the description of statistically 
stable random phenomena [i]. However, so far we do not know the quantitative boundaries that 
separate completely reproducible phenomena from statistically unstable phenomena [2, 3]~ 

Analysis [4-7] shows that the prevailing situation in mathematical statistics may be 
termed paradoxical without exaggeration. 

On the one hand, the axiomatic and frequency conceptions of probability provide a de- 
tailed probability-theoretical apparatus, for which the assumptions of applicability were 
formulated fairly definitely and were not questioned for a long time. Moreover, it seemed 
plausible to identify theoretical studies of various types of convergence with extension, 
by passage to the limit, of the properties of posterior statics of statistical data to their 
prior dynamics, and the differences between theory and experiment were regarded as anatural 
manifestation of randomness. 
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On the other hand, large-scale computerization of statistical methods has established, 
not so much that many problems of mathematical statistics are incorrectly specified [8], 
but that the principles of their solution are largely heuristic [9]. These "20th century 
myths" [i0] include the preference for quadratic criteria of estimation accuracy [ii], the 
universal belief in the increase of estimation accuracy with the increase of sample size 
[i], the validity of statistical inference using a single sample [12], the acceptance of the assign- 
ment of the significance level in hypothesis testing from practical considerations, etc. 
A special place on this list is occupied by the confidence probability of interval esti- 
mates [7]. Similarly to the phenomenon of actual inhomogeneity of data [13], actual guar- 
anteed error bounds may deviate from the declared (e.g., Clopper-Pearson) confidence proba- 
bilities by as much as 25%, with maximum error attained for 0.80-0.95 confidence levels. 

The essence of the paradox is that interpolation methods of data analysis have proved 
particularly efficient in this setting, and yet these methods are without complete theoretical 
foundations [14, 15]. 

The possible violation of the assumptions of applicability of statistical methods was 
recognized only in the early 1980s [16] in connection with the marked increase in measure- 
ment accuracy requirements with the development of modern technologies and in basic research. 
Definite progress has been achieved by this time in the development of the theoretical founda- 
tions of the solution of the initial problems of mathematical statistics [7, 12, 17-19]. 

We should specifically mention the cross-validation scheme, considered in different 
forms, e.g.; in [13, 20-24]. This scheme is apassive variant of the empirical logic of statis- 
tical inference and after 1982 [25] it has been regarded as a promising direction for the 
development of statistical methods and, in most cases, solely as a tool for error bias reduc- 
tion. 

However, the available methods of dealing with statistical imhomogeneity of data do not resolve 
the more fundamental issues of the axiomatic and frequency conceptions of probability: the 
physical meaning of probability, a quantitative measure of statistical instability, and, 
on the applied level, the theoretical foundations of guaranteed error bounds in the solution 
of applied problems by statistical methods. More consistent and at the same time more radical 
in this respect is the interpolative conception of probability [26], whose basic assump- 
tions can be summarized as follows. 

First, the interpolative conception of probability presumes a strictly deterministic 
solution of the philosoophical problem of the relationship between dynamic and statistical 
regularities [3, 27], i.e., randomness is interpreted as unpredictability of deviations of 
the observed or measured characteristics of some processes from the corresponding models. 
In other words, there is no physical assumption of the existence of quantitative boundaries 
between completely reproducible, statistically stable, and statistically unstable phenomena. 
This and, apparently, the method of semantic differential, have stimulated the development 
of fuzziness theory [28]. 

Second, a fairly universal description of randomness [7] was obtained by resolving the 
sophism of controllability of experimental conditions [i] with the aid of the model of "ex- 
ponential decay of ranked effects" [29]. The postulated interrelationship between controll- 
ability of processes and statistical stability of the corresponding factor models has become 
known as the controllability (observability) principle [26, 7]. 

Third, statistical stability is a property of the model, and not of the modeled data. 
A quantitative measure of statistical stability of a model is provided by the compactness 
of the distribution of the data around the model on prediction intervals (the compactness 
principle), as expressed by the compactness function [7]. The sample moments of this distri- 
bution have been used since the late 1960s [23], and in the 1980s so-called analysis of re- 
siduals has become particularly popular with the development of interactive computer systems 
[16]. 

Fourth, probability in the interpolative framework is defined as a calculated character- 
istic of the compactness function of the model: it is not introduced axiomatically, but rather 
derived from observations and satisfies the reproducibility condition. 

Thus, in the interpolative framework, all mathematical models are regarded as approxi- 
mate, and their accuracy depends not only on the degree of fit between the structure of the 
model and the process, but primarily on the attained accuracy level of the measurements during 
identification. Therefore, relatively large measurement errors encourage simplification 
of fairly complex models, even though they may be correct. This relationship between simplic- 
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ityand stability of models, making it possible to describe the joint effect of a multitude 
of factors by a limited number of parameters, is one of the motivations for the use of proba .... 
bility theory [30]. 

The interpolative conception of probability~can be approximated [31] by Kolmogorov~s 
axiomatic system [32]. To this end, the probability in the second axiom of [32] should be 
defined not as a nonnegative real number, but as a nonnegative real random variable with 
a corresponding probability distribution function in the ordinary sense or as a nonnegative 
real stochastic process. The theory of stochastic compactness developed on this base relies 
on the two-leveli!representation [31] of the distribution density f(x) = f(x) + El(x), where f(x) .... 
is the ordinary distribution density of the random variable X and El(x) is the realization 
of some random function such that 

+~ 
S xmEI (x)dxl~=o=O" 

Sample analysis of these two relationships suggest a concrete form of allowing for the 
effect of the statistical stability of the model on the accuracy characteristics of the moment 
estimates for m ~ i. Thus, for the quasiuniform probability distribution 

f" " [ l](x~--xt) '  x~[x l ' x e ] '  E / (x )=s inmx ,  m~var t~,={0, ~ I f , , ~ l '  

the possible deviations of the estimated mean MX and variance DX may exceed respectively 
30% of the halfwidth of the distribution support and 60% of the variance for Ef(x) = 0. Such 
prior information, of course, is unavailable. Therefore, the initial problems of mathematical 
statistics, in addition to ordinary forms of estimation (point and interval), must employ 
a specific form of estimation - so-called compact estimation. Compact estimation may be 
interpreted as a modification of interval estimation, which allows for the effect of the 
degree of statistical stability of the models on the accuracy of the estimates. 

Stochastic compactness theory in the interpolative framework plays the same role as 
Fisher estimation theory does in the axiomatic framework. There are differences, however. 

The first difference is the consistent use of model cross selection, which constitutes 
the decision making procedure that relies on the compactness function of the competing 
models. 

The second difference - preservation of lienar criteria - is traceable to the convections 
that persisted for more than half a century regarding the analytical properties of the abso- 
lute error [17] and were finally established by a theorem proved in 1983: if the probability 
distribution~function Fx(x) of a random variable X is such that 
arbitrary finite estimtor 8 we have 

l imxFxix)=O, t h e n  f o r  an 
x ~ o o  

0 

MIX--OI-M(X-- o)+2 j" Fx(x)dx. (1) 

An important corollary of the identity (i) is a minimal definition of the remarkable 
properties of the median, which is obtained by differentiation with respect to the parameter 
%. 

The third difference is based on the refinement of Kolmogorov type criteria in the problem 
of establishing equivalence of the random variables X I and X 2 by examining the extrema of 
the difference D(x) = Fl(x) - F2(x) of the corresponding distribution functions, as stated 
by the following theorem: if the distribution densities of two ran____dom variables satisfy 
the equality f1(x) = f2(x) ~ 0 on a sequence of points xi, i = l,n then for infX I < infX 2 the 
equivalence measure is 

A +~ n 

~s~ = [m~n lh (~ ) ,  h ( ~ ) } ~ -  ~ ~-  ~. ( - ~ / - ~ ( ~ ) .  (2 )  
i = l  

For n = !, this notion of kappa-equivalence for sample distribution is expressible in 
terms of the Smirnov distribution parameter [33], • .... 

These differences make it possible to increase the noise-tolerance of statistical esti- 
mation ,with inhomogeneous data and to eliminate the need for artificial introduction of the 
significance level in testing of hypotheses. 
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The approximation by the axiomatic system of [32] was necessary in order to stress the 
main distinctive feature of stochastic compactness theory in application of metrological 
problems. The point is that, in general, the measurement result ~0 is an unknown function 
\~, 8~ of the set X of factors describing measurement conditions and the true value of the 
directly measured variable 8. In fact, instead of ~(X, 8) we only know an approximate 
model ~ (Xm, 8), which allows only forApar ~ of the factors Xm, and instead of the true values 
of Xm, 8 we only have the estimators Xm, 8. Therefore the measurement error 

Oo-~=~(x,o)-+(x~+z,~, 0+ ~d) 
contains three components: Ed (the direct measurement error), Xm (the error in the control of 
measurement conditions), and EM (the error of the model ~ for Ed = Xm = 0). The nature of 
the errors E~ essentially depends on the structure of the model ~ and the properties of the esti- 

4 _  

mators of Xm, i.e., in the interpolative framework under conditions of prior uncertainty the 
above relationship suggests the following identification problem: it is required to find 
an analytical structure and parameter values for the model ~, which maximizethe reproducibil- 
ity of the distribution fEM(~) by the empirical kappa-test (2). 

In stochastic compactness theory, this is the standard formulation of the problem in 
the maximum compactness (MC) method [7], which in this case assumes consistent application 
of the stuctural and parametric identification procedures in one of the classes of interpo- 
ration polynomials defined by the maximum complexity model. The properties of the resulting 
solution depend on the properties of the MC-estimators used [7]. 

It is easy to note that the above problem aims at experimental determination of both the 
instrumental and the method components of the measurement error, as well as the random and 
systematic (including "ignored") components. Thus, for instance, the calibration characteris- 
tics of quartz temperature sensors were constructed [34] in the class of power series using 
median algorithms of MC identification. The average absolute error of the resulting MCMED- 
estimators by (i) was 1.18"10-3~ compared with 0.68"10-S~ for the ordinary least squares 
(OLS) estimators, i.e,, roughly twice as high. However, control measurements show that the 
reproduction errors were 1.2.10-S~ for MCMED-estimators against!31.10 -3 ~ for 0LS-estimators. 

The efficiency of the algorithms of composite Me-identification was demonstrated for 
the case of analysis of statistically inhomogeneous data (see Fig. i) represented by the 
deviation of a metrological characteristic (in relative units)of high-precision measuring instru- 
ments obtained, as observed in the context of determining the next certification time. The 
problem is characterized by a conflict between metrological guarantees and the high cost of 
individual assignment of the certification times in the framework of "operation by state." 
No compromise solution of this problem can be obtained with small samples using ordinary 
homogeneity testing procedures. 

The algorithmPUMAusing MCMED-models to fit a trend to the metrological characteristics 
was applied to classify 12 measuring instruments into five groups minimizing the overall 
reproduction error by the absolute compactness criterion [7]. The first group includes Nos. 
i, 4, 6, the second No. 8, the third Nos. 7, ii, the fourth No. 3, iand the fifthNos. 2, 5, 9. 
10. Figure 2 shows a realization of the first and the third (broken lines) groups. 

High reproducibility or statistical stability of the solutions of standard problems 
of stochastic compactness theory is thus achieved at the cost of additional processing of 
data describing the real properties of partially controlled factors. This is a fundamental 
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point, because "probability theory is often viewed as a kind of a magic wand that produces 
information from total ignorance" [35]. At the same time, the frequency approach, based 
on the notion of limiting frequency as the number of trials goes to infinity, cannot be used 
to justify the application of probability theory in real life, where we invariably deal with 
a finite number of trials [6]. 

On the other hand, the interrelationship between dynamic and statistical regularities 
remains one of the most topical problems in the philosophy of natural sciences, focusing 
in the most acute form the fundamental conflicts between determinism and indeterminism on 
the gnoseological base. Nevertheless, past experience shows that real progress in measure- 
ment accuracy over the last few centuries has been achieved entirely through concrete consid- 
eration of progresively less significant factors. 
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METHOD OF CORRECTING ERRORS IN MEANS OF MEASUREMENT 

V. S. Popov and E. V. Shumarov UDC 681.2.088.6 

There are various ways of correcting the systematic errors in means of measurement. 
If the instrument characteristics are nonlinear, one needs a multivalued standard-signal 
measure to implement any of them, for which purpose one usually employs a standard digital- 
analog converter (DAC). We consider correcting systematic errors by means of DAC in the 
feedback [i] and a new algorithm for calculating the corrected result, which provides ele- 
vated noise immunity and thus resolution. The highest noise suppression is obtained in an 
instrument employing digital processing with the instantaneous signal values. 

Figure 1 shows the structural diagram for an instrument with automatic systematic-error 
correction. It contains the switch S, scale amplifier A, analog-digital converter ADC, com- 
puting unit CU, DAC, and voltage divider D. The working principle is that there is an addi- 
tional correction cycle for each signal reading. 

In the first cycle, the switch is in position 1 and the signal passes through the am- 
plifier to the ADC. The control device (not shown in Fig. i) causes the ADC to read the 
instantaneous value for the input signal ui. TheADC output code Ni goes to the computer. 
In the correction cycle, the switch is in position 2, and Ni passes from the computer to the 
DAC. The transfer coefficient C 2 in the feedback circuit is taken as the reciprocal to the 
nominal , value for C1 in the forward circuit, i.e., C 2 = I/Cz, so the forward circuit receives 
the feedback signal Ufb i close to u i in the correction cycle. The difference Au i = u i - Ufb i de- 
fines the error in the forward circuit (it is assumed that the error in the feedback circuit 
is negligible). In the correction cycle, the ADC measures the amplified voltage ufbi, and 
the corresponding code Nfb i also passes to the computer, where the corrected code Nic is de- 
rived from 

Nie=2N~Nfbl " " (I) 

The performance is dependent on the nonlinearity in the forward circuit and has been 
examined in detail in [i]. A disadvantage is the relatively low suppression factor for 
noise referred to the amplifier input (large additive error), which restricts the resolv- 
ing power. 

We estimate the noise immunity provided by (i), where we express Ni and Nfbi in terms 
of their components: 

(2) 

in which ai and A i' are the absolute errors referred to the amplifier input in the forward 
circuit due to the multiplicative error in the transfer coefficient correspondingly in the 
readings on the input signal and the feedback one, while uni and u~i are the noise values 
(additive errors) referred to the amplifier input and corresponding to the times when the 
readings are taken on the input signal and the feedback. 

Noise induced in the external signals leads (communication lines) is here not elimi- 
nated, but this is not a source of additional error in measurement in alternating-current 
circuits because such instruments should measure the entire input, i.e., the sum of the 

Translated from Izmeritel'naya Tekhnika, No. 12, pp. 8-10, December, 1988. 

1150 0543-1972/88/311211150512.50 �9 1989 Plenum Publishing Corporation 


