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Abstract. In the present work a technique is numerically investigated, which is aimed at reducing 
the friction drag in turbulent boundary layers and channel flows. A cyclic spanwise oscillation of the 
wall with a proper frequency and amplitude is imposed, allowing a reduction of the turbulent drag of 
up to 40%. The present work is based on the numerical simulation of the Navier-Stokes equations 
in the simple geometry of a plane channel flow. The frequency of the oscillations is kept fixed at 
the most efficient value determined in previous studies, while the choice of the best value for the 
amplitude of the oscillations is evaluated not only in terms of friction reduction, but also by taking 
into consideration the overall energy balance and the power spent for the motion of the wall. The 
analysis of turbulence statistics allows to shed some light on the way oscillations interact with wall 
turbulence, as illustrated by visual inspection of some instantaneous flow fields. Finally, a simple 
explanation is proposed for this interaction, which leads to a rough estimate of the most efficient 
value for the frequency of the oscillations. 
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1. Introduction 

To date both numerical  and experimental  evidence exist [1, 2] that a sudden span- 

wise pressure gradient applied to a fully developed,  two-dimensional  turbulent 
boundary layer or channel flow can temporarily alter the structure o f  turbulence, 

leading to a transient decrease of  turbulent quantities such as turbulence kinetic 
energy and turbulence production. I f  the spanwise pressure gradient is sustained in 
time, however,  after the transient stage the flow adjusts to the new two-dimensional  
state, becoming aligned with the resultant, higher velocity, and the turbulence quan- 
tities return to their natural behaviour, 

A spanwise cross-flow which oscillates in time has been shown by Jung et al. 
[3] and by Laadhari  et al. [4], to be an effective mean for achieving sustained 
modifications of  wall turbulence, ultimately leading to a significant turbulent drag 
reduction. When  the imposed cross-flow oscillates with a period T+c = 100 and a 
flow-rate per unit width o f 0 . 8 Q ~ / 2 h  sin(wt), Q~ being the streamwise flow rate for  
the unperturbed flow and h the channel half-height, Jung et al. have shown that up 
to 40% of  sustained reduction of  turbulent friction drag is possible. This constitutes 
an active drag reduction technique, since some auxiliary power  is required, but no 
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Figure 1. Schematic of wall oscillations. 

feedback law or control algorithms are needed, so that practical realization of such 
a device may not be exceedingly complex. 

The spanwise oscillatory motion of the walls (Figure 1) is perhaps more inter- 
esting from a practical point of view: although it works in a different way, this 
method has been shown by Jung to have an equivalent overall effect in terms of 
drag reduction and influence on the main turbulence statistics. 

The basic mechanism by which spanwise oscillations can alter the turbulence 
structure near the wall is explained by Laadhari as the modification of the interaction 
between the fluid-pumping longitudinal vortices and the streaky pattern of the flow 
near the wall, which results to be displaced by the spanwise flow relative to the 
vortices. The central role of longitudinal vortices and, in general, of near-wall flow 
structures in the overall process of turbulence production and regeneration has been 
clearly underlined, among others, by Robinson [5]. 

Frequency and amplitude of the oscillations obviously play a first-order role 
in determining the amount of turbulent drag reduction. The performances of the 
oscillating wall (and of the oscillatory cross-flow) have been established by Jung 
through a parametric study, performed by numerical simulations, in terms of per- 
centage of friction reduction. The choice of the optimum parameters, however, still 
has to be defined, by taking into account not only the savings in longitudinal fric- 
tion, but rather the global energetic balance, which must guarantee that the amount 
of saved friction power is larger than the power spent to sustain the oscillation of 
the wall. In addition, turbulence statistics have not been fully documented yet, and 
an accurate examination of instantaneous flow fields is still missing. 

In this paper, with the aid of numerical simulations of a plane turbulent channel 
flow, we consider the energetic aspect of this drag reduction technique, focusing 
our attention on the key parameter represented by the amplitude of the oscillations 



TURBULENT DRAG REDUCTION 313 

of the wall. Turbulence statistics are presented, with the aim of understanding the 
mechanism by which spanwise oscillations can reduce drag. 

2. The numerical  method 

The computer code developed and used for the simulations presented in the follow- 
ing is a standard solver for the Navier-Stokes equations, in the simple geometry 
of a plane channel flow. It is based on second order finite differences schemes, and 
takes advantage of a partially implicit algorithm (Crank-Nicholson for the viscous 
terms and third-order Runge-Kutta for the convective terms) for advancing in time 
the solution. The standard periodic boundary conditions in the streamwise (z) and 
spanwise (z) directions are used, and the no-slip condition is imposed at the channel 
walls. The movement of the walls is directly considered via the boundary condition 
for the spanwise component of the velocity. Spanwise cross-flow simulations are 
not considered in the present work. 

The computations are performed with a fixed longitudinal flow rate Qx, with 
a Reynolds number (based on the friction velocity u~- and on the half-height h of 
the channel) of Re~- = 200. A lower Rer could have several advantages, but we 
decided to use the value 200 both to enable a direct comparison with the results of 
Jung et al., and to allow a fully turbulent flow even in those simulations where the 
amount of drag reduction is significant. 

The grid used for the discretization of the computational domain is 54 x 120 x 60 
in the streamwise, normal to the wall and spanwise directions respectively, allowing 
a spatial resolution which is sufficient to resolve all the essential scales of the 
turbulent motion. The dimensions of the domain in the streamwise and spanwise 
directions are of 4.05h and 2.5h, respectively. These dimensions are certainly not 
sufficient to support the claim that we have performed a Full Channel simulation 
(as in [6]). In this case the dimensions have to be set a priori, following, for 
example, the suggestion of Kim and Moin [7], and then checked a posteriori. On 
the other hand, the present dimensions largely exceed those implied by the Narrow 
Channel assumption. According to this idea, presented first by Jim6nez and Moin 
[8], the computational domain has to be wide and long enough for the dynamically 
most important flow structures to accommodate. When scaled in wall units, these 
minimal dimensions are approximately independent of the Reynolds number, and 
are around 100 wall units in span and 250-350 wall units in stream. While much 
cheaper than its counterpart, a Narrow Channel simulation can provide a great 
amount of information, and Jimdnez has shown that the near-wall flow is well 
represented by such a simulation, while the outer flow is certainly affected by the 
limited size of the computational domain. 

All the computational cases are started from the same, unmanipulated flow 
field. They are advanced in time for 800 viscous time units, allowing the flow to 
stabilize, and then integrated further 800 viscous time units in order to compute the 
turbulence statistics. A HP Series 700 workstation is used, with a central memory 
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of 64MB. The size of the computational domain has been chosen in order to obtain 
an "in core" simulation. The single time step takes approximately 30 CPU seconds, 
for a total time of approximately 40 CPU hours for each of the cases illustrated in 
the following. Further details regarding the adopted algorithms and the numerical 
schemes can be found in Baron and Quadrio [9]. 

3. Energy Budget 

Severa ! computations have been performed, in order to assess the turbulent drag 
reduction properties of the oscillating wall for practical applications. For this 
purpose, we have considered not only the potential benefit in terms of longitudinal 
skin friction reduction, but we have also taken into account the penalty associated 
with the power spent to sustain the oscillation of the wall. The power saved is 
simply defined as (-dp/dzlu + dp/dz]o)Ubulk, where the suffices indicate the 
unmanipulated and the oscillating case, and Ubulk is the bulk mean velocity. The 
power spent is defined as f ~-~oz • WwaU dS: this surface integral has been hence 
computed and integrated in time. For this parametric study, the period of the 
oscillation has been set to the value of T+c = 100, which should allow the best 
performances in terms of drag reduction, according to the work of Jung et al. It is 
clear that a full study of this two-parameter problem, varying both the amplitude and 
the period of the oscillations, is needed in order to draw definitive conclusions on 
the quantitative performances of the oscillating wall. Nevertheless, this choice for 
the period allows meaningful estimations without the expense of a computationally 
intensive full parametric study. The amplitude of the velocity oscillations, which 
take place in a sinusoidal way, varies from zero (fixed wall) up to 1.OQx/2h 
with a step of 0.25. The imposed spanwise velocity assumes quite high values: 
1.OQx/2h corresponds to w + greater than 15. We keep in the present work the 
non-dimensionalization of the amplitude in terms of outer variables in order to 
compare with the results of Jung. 

The results are summarized in Figure 2, where they are normalized by the 
longitudinal friction power for the unmanipulated case. 

Considering first the performances of the oscillating wall in terms of friction drag 
reduction, the results of the present tests confirm the findings of Jung, indicating 
a maximum drag reduction of the order of 40% for values of the amplitude larger 
than 0.75Qx/2h. This amount of reduction is certainly appealing, compared with 
the best achievements of most passive drag reduction techniques (such as riblets) 
which can hardly reach 10%. A decrease in the amplitude leads to decreased 
benefits, which appear to diminish in a not exactly linear way. For an amplitude of 
0.25Q~/2h the overall balance appears to be positive, indicating a net benefit. 

In conclusion, results from Figure 2 seem to indicate that potential savings in 
longitudinal friction are significant, but that a careful optimization of the oscil- 
lations is necessary in order to achieve a net gain, even in the ideal situation 
considered above. 
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Figure 2. Powers as a function of the amplitude of the wall velocity oscillation Q=/2h, 
normalized with the friction power of the unperturbed case: friction power saved (white); 
power spent to the wall (grey); power budget (black). 

4. Turbulence Statistics 

Turbulence statistics have been computed for the case of the wall oscillating sinu- 
soidally with an amplitude of 0.75Qx/2h and with a period of T+c = 100. This 
case is very similar to the one documented by Jung (0.80Q=/2h), and allows the 
achievement of the maximum drag reduction. The selected amplitude corresponds 
to a value of the spanwise wall velocity of w + ~ 13 or w + ~ 16, according to 
the choice of the (unperturbed or reduced, respectively) friction velocity. After the 
initial, transient stage, the statistics are computed for 20 cycles of oscillation. 

The mean velocity profile has been reported both by Jung and by Laadhari. Both 
authors plot the profile using the friction velocity of the unmanipulated case. Jung 
does not find evidence of a law-of-the-wall behavior, and shows a profile which is 
less full near the wall when compared with the canonical one. Laadhari, on the other 
hand, reports a profile which resembles the standard shape but does not exactly 
coincide with the standard curve, which might be due to experimental differences 
in determining the friction velocity. In Figure 3 the mean velocity profile from the 
present computations is plotted, using both the friction velocities of the unperturbed 
case (dotted line) and of the manipulated case (dotted line with symbols). Jung's 
results are confirmed, and there is clear indication that, when the profile is plotted 
using its own friction velocity in the law-of-the-wall form, it does exhibit the usual 
upward shift in the logarithmic region, characteristic of other drag reducing flows 
[101. 

The distribution in the direction normal to the wall of the root mean squared 
values for the fluctuations of the three velocity components are reported both 
by Jnng and Laadhari. Both show significant reductions in the oscillating case. 
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Figure 3. Mean velocity profile in the law-of-the-wall form. 

Data from the present computation are shown in Figures 4a, b, c, for the three 
components of the velocity vector. 

Except for an outward shift in the position of the peak, the streamwise com- 
ponent appears to be substantially unchanged when plotted with the actual u~-, 
while its peak value is reduced when made non-dimensional with the u~- of the 
unperturbed simulation. The outward shift in the position of the peak is recogniz- 
able also when examining the other two components. The fluctuations of both the 
components of velocity, for fixed and oscillating spanwise and normal-to-the-wall 
components are reduced throughout the whole channel, regardless of the friction 
velocity being used. 

Root mean squared values for other turbulent quantities are computed. Reynolds 
shear stress (not reported here) have been found to fully confirm the findings of Jung 
et al., showing the expected reduction. It is interesting to observe the distribution, 
in the direction normal to the wall, of the RMS values of the fluctuations of 
vorticity (Figures 5a, b, c). The streamwise component (Figure 5a) shows a general 
behavior similar to the reference case with fixed wall, but the distribution assumes 
lower values in the oscillating case. In particular, the wall value of the streamwise 
vorticity RMS fluctuations is approximately halved. Even the normal component 
(Figure 5b) appears to be reduced throughout the whole channel, with the shape of 
its profile approximately unchanged. When the actual u-r is used, the outward shift 
in the position of its maximum is obviously reduced. The spanwise component 
(Figure 5c) appears to be significantly altered by the oscillations, showing a local 
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Figure 4. Profiles of rms values for the three components of velocity, for fixed and oscillating 
walls: (a) streamwise; (b) spanwise; (c) normal. 
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Figure 5. Profiles of rms values for the three components of vorticity and pressure fluctuations: 
(a) streamwise vorticity; (b) normal vorticity; (c) spanwise vorticity; (d) pressure. 

maximum around 15 wall units from the wall, a local minimum at y+ ----- 5 and a 
decreased wall value. 

Figure 5d shows the root mean squared values for the fluctuations of pressure. 
A significant modification induced by the oscillations of the wall can be observed. 
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Figure 5. (Continued) 

The amount of this change is, as usual, highly dependent on the choice of  the 
friction velocity used in plotting the data, but anyway a reduction of  the pressure 
fluctuations seems to be unquestionable, especially for the peak value near the wall. 
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Figure 6. Terms in the budget of the turbulence kinetic energy. Line with symbols: fixed wall. 
Symbols: oscillating wall. 

In Figure 6 are reported the distributions, in the direction normal to the wall, 
of the various terms which contribute to the budget of the trace of the Reynolds 
stress tensor, i.e. the turbulence kinetic energy K.  For an exact definition of all 
these terms, the reader is referred, for example, to the work by Mansour et al. [11]. 

The figure only shows the curves computed with the unmanipulated friction 
velocity. The continuous lines with symbols represent the canonical case, and the 
symbols stand for the oscillating wall. In some profiles (like production of K )  
a shift towards the interior of the channel can be observed. The more evident 
effect is however the reduction of all the terms in the near-wall region, particularly 
noticeable for those terms that assume high wall values in the reference case. The 
dissipation --eij = --21]OUi/OXkOUj/OXk, for example, shows a reduction of an 
order of magnitude in the value at the wall. Similar behavior can be noted for the 
profile of the viscous diffusion z~O2~/Oxk. Both the mentioned profiles also 
reveal a general shape which is quite different from the canonical case, loosing the 
characteristic of maximum at the wall. 

Some major changes are discemible in the near-wall region in the distributions 
of the skewness and flatness factors for the fluctuations of the three velocity compo- 
nents (Figure 7). The third moment (skewness) for the streamwise component, for 
example, exhibits higher values in the wall region, with a local maximum which is 
no more at the wall, but at approximately 5-10 wall units far. As in the unperturbed 
case, the skewness factor of the fluctuations for the spanwise component of the 
velocity approximately assumes the value of zero, due to the reflection properties 
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Figure 7. Skewness and flatness factors for the three velocity components. 

of the Navier-Stokes equations. The normal velocity component presents a region 
of negative skewness for 5 < y+ < 40, with a negative peak around fl+ ,.~ 15. 
Regarding the flatness factors, the streamwise component presents a local maxi- 
mum and a slightly higher wall value, and the spanwise component shows a similar 
behavior. The profile for the normal component assumes values at the wall, which 
are very high and superior to those of the fixed wall case. 
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Figure 8. Isosurfaces for fluctuations of streamwise velocity ~z + = - 3 . 0 ,  for the fixed (left) 
and the oscillating (right) cases. Perspective, top view of the lower half of  the channel, taken 
from the centerplane. Flow is from left to right, at Re~- ---- 140. Time is from top to bottom: 
t + ---- 0, 12.5, 25, 50, 75, 100. In each case the actual, instantaneous friction velocity is used. 
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5. Instantaneous Flow Fields 

The direct, visual inspection of turbulent flow fields can be a very useful tool for 
understanding the complex turbulence near-wall dynamics. In addition, the Narrow 
Channel technique [8] allows to isolate a small number of significant structures 
and to easily follow their evolution in time. Visualisation of data produced with the 
Narrow Channel technique is illustrated on Figures 8 and 9. The computations have 
been performed on a 32 x 90 x 32 grid, covering a computational domain which 
is 3.0h long and 1.0h wide. The Reynolds number has been set to the relatively 
low value of Re~ = 140, in order to obtain larger and more detailed views. The 
evolution of the flow is followed for a time interval which corresponds to the 
entire first period of the oscillation, which takes place with the usual values of 
To+c = 100 and amplitude 0.75Qx/2h. In both figures the left column refers to the 
unmanipulated flow, and the right one to the corresponding flow in the oscillating 
case. The figures show a perspective top view of the lower half of the channel, 
taken from the centerplane; flow is from left to right; time is from top to bottom. 
The frames are for values of t+ of 0, 12.5, 25, 50, 75 and 100. 

An important point which is worth mentioning is the choice of the friction 
velocity for the setting of the threshold values. The structures are visualized by 
choosing a threshold value for the scalar quantity to be traced in time. This value is 
kept fixed when expressed in wall units, and since the friction velocity experiences a 
significant reduction in time during the examined time interval, the use of the value 
of ur  from the canonical computations would have led to an obvious successive 
weakening of the structures as t + increases. By referring to the instantaneous 
(space-averaged) friction velocity, indeed, it is possible to have a better idea of the 
evolution in time of the structure itself. 

Examining first the isosurfaces of the streamwise velocity component for the 
value u + = - 3 ,  in the unmanipulated case (Figure 8, left) a single low-speed 
streak is evident, which presents the typical meandering, and a subsequent loss of 
coherence followed by a regeneration process. In the oscillating case (Figure 8, 
right), the effect of the movement of the wall becomes apparent after one quarter 
of a period, as a drastical weakening of the streaky structure. At the end of the first 
cycle of oscillation, any trace of the original pattern is lost. 

Figure 9 focuses on the isosurfaces of the product uv at the value (uv) + = 
-3 .  The spotty behavior, described among others by Jim6nez and Moin [8], is 
discernible in the canonical case, while in the manipulated case a gradual weakening 
of the structures can be noticed. 

It is clear that further, careful visual analysis of the data is needed, in order 
to gain definitive conclusions on the way the oscillating wall interacts with the 
near-wall turbulence structures. The analysis of some elementary pictures, as those 
reported in Figures 8 and 9, allows nevertheless to get an immediate idea of the 
globality of the modifications induced on the near-wall turbulence by the spanwise 
oscillations of the channel wall. 
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Figure 9. Isosurfaces for Reynolds stress (uv) + = -3 .0 ,  for the fixed (left) and the oscillating 
(right) cases. Perspective, top view of the lower half of the channel, taken from the centerplane. 
Flow is from left to right, at Re~- = 140. Time is from top to bottom: t + = 0, 12.5, 25, 50, 75, 
100. In each case the actual, instantaneous friction velocity is used. 
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6. A Simple Model 

As it can be noted from the analysis of the turbulence statistics presented in the 
previous sections, the alteration of the structure of turbulence near the wall due to 
the oscillating motion of the wall is significant. A simple scheme for understanding 
the effect of such oscillations is to consider that spanwise motion of the wall 
(or, equivalently, spanwise alternate cross-flow) disrupts the spatial coherence 
between streamwise vortices and low velocity streaks. This very simple model 
allows a rough estimate of the optimum oscillation period, which turns out to be 
approximately lOOu/u 2 from the numerical, parametric, study by Jung et al. [3]. 

A high-frequency laminar oscillatory flow with frequency f~ above a flat plate 
(the so-called "Stokes second problem" in [12]) creates a boundary layer of thick- 
ness ~ = yv/-~-/2u -- 3. In wall units, this amounts to 5 + = 4~x/-4~ -~. The effect of 
the oscillations is felt up to the edge of this boundary layer. If the effectiveness of 
the oscillations in reducing turbulent drag is due to a relative displacement of low 
speed streaks and the above longitudinal vortices, the transverse boundary layer 
must embed as much of the streaks as possible without influencing the vortices, 
allowing the maximum relative displacement. Given that the streaks take place 
in the region y+ < 10 and the streamwise vortices live on average in the region 
10 < y+ < 50 (see Robinson, 1991), a value for the period of oscillation follows, 
which is approximately T + ~ 100. 

7. Conclusions 

Spanwise oscillation of the wall has been shown to be an effective method for 
achieving a sustained friction drag reduction for low Reynolds, wall bounded 
turbulent flows. The remarkable savings in friction are indeed counterbalanced by 
the power necessary to sustain the oscillation of the wall. 

It has been shown that, in the case of the wall moving with a spanwise velocity 
which varies sinusoidally in time, a positive overall balance may be possible, if 
the amplitude of the velocity oscillation is kept low. This energetic balance is 
evaluated in an ideal situation, without accounting for losses due to mechanical 
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systems. Anyway, it is these authors' opinion that the technique can be further 
optimized, in order to reduce the energetic cost of its application. 

Turbulence statistics have been reported, with the aim of highlighting the main 
modifications induced by the movement of the wall on the behavior of the wall 
turbulence. The major effect seems to be a reduction of the velocity fluctuations, 
mainly concerning the normal component. In addition, an outward shift of most 
profiles is apparent, with an amount approximately of the order of the thickness 
of the transverse boundary layer induced by the moving wall. Higher statistical 
moments of the velocity fluctuations show substantial variations in the shape of 
the profiles, and the examination of the terms contributing to the budget of the 
turbulent kinetic energy seems to support the idea that the transversal boundary 
layer produced by the oscillations is characterized by reduced turbulent activity. 

Even if the use of spanwise oscillation of the wall as a technique for reducing 
turbulent drag will prove not to be feasible, its accurate comprehension will consti- 
tute a further tool for understanding and exploiting the relevance of local spanwise 
motions in the overall cycle of production and regeneration of turbulence. 
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