DEFORMATION ENERGY FUNCTION OF LARGE
HUMAN BLOOD VESSELS
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A function of the specific energy of deformation, selected in the form of a number of expo-
nents, is proposed. It describes well the stress—strain state of anisotropic human blood ves-
sel at large deformations. The constants of the material included in the deformation energy
function are determined by experiments for a monoaxial tensioning, along the main anisot-
ropy axes. As an example, they were found for the human abdominal aorta, taken during an
autopsy (male, age 29 years), by approximation of the experimental data on a computer by
the method of least squares.

1. At present, an increasing number of investigations deal with a study of the mechanical properties
of walls of human blood vessels [1-8], which play an important role in blood circulation processes [9~12].
It was found that these properties change with age [5-8] and involve definite changes in the blood circula~
tion system, for example, change in the diffusion processes through the wall of the vessel, and decrease in
the blood supply to the wall itself [13]. A knowledge of the mechanical properties of the vessels and the
distribution of stresses and deformations in the vessel wall over a wide age group, will make it possible
to find the characteristic features of the changes taking place in the blood circulation process and to study
the reasons for the most prevalent disease of the blood circulation organs, atherosclerosis.

Various models have been proposed [13-17] and different theories used [18-27] to describe both the
static and the dynamic properties of arterial vessels. In {18, 19] the Laplace law was used to calculate
the vessels under a constant internal and external pressure. In [20] an attempt was made to apply the
small deformations theory to finite deformations of the blood vessel under an internal pressure. In [21-23]
the classic elasticity theory was used, and it was assumed that the vessel wall is isotropic. However, in
{21, 22] it was found that under pressure the arteries can change their radius by 200% with respect to their
initial value, and during each cardiac cycle this change has the value of 5-14% [28, 29]. Therefore, an ac-
curate description of the behavior of the blood vessel can only be made on the basis of the finite deforma-
tions theory [30]. In most studies using this theory, for the sake of simplicity, the vessel wall was as-
sumed to be isotropic [13, 24-27].

In [1] the arterial walls were considered to be anisotropic, and their properties were characterized
by six elastic constants. The deformation energy function was expanded into an exponential series in terms
of invariants, and the unknown coefficients were determined by means of a second order curve, plotted
from the experimental data. The deformation energy and the energy of the change in volume cannot be
derived from the proposed expression for the energy function. In [31] it was found that the blood vessels
of a dog are anisotropic in the undeformed state. Partial derivatives of the deformation energy have been
determined. But from these derivatives it is impossible to obtain a complete expression for the deforma-
tion energy function.

In the present work, a method is proposed for the calculation of an orthotropic blood vessel from a
selected deformation energy function. The unknown coefficients of the specific deformation energy func-
tion were determined on a computer by approximation of the experimental curves obtained when specimens
of a wall of an aorta were tensioned along the main axes (Fig. 1).
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2. The position of a certain point Py of a nonlinearly elastic orthotropic
material in an undeformed state in a fixed orthogonal coordinate system i=1,2,3
is determined by three coordinates xj. After the deformation, the point iz in a
new position P, with respect to this coordinate system, which is characterized hy
three other derivatives designated as yj = yj(x4, X5, X3, t).

We introduce a general curvilinear coordinates system 6; in such a way that
xj =x{(0;, 8,, 65), where x;(6;, 0, 63) is a single~valued function with continuous de~
rivatives of all orders. The deformed state is determined by the dependence yj =
¥i(03, 0y, 05, t), where y;i(0y, 65, 05, 1) is a single-valued function with continuous de-
rivatives of any order, with respect to both the coordinates 6; and the time t.

According to [30], the large strain tensor in the curvilinear system of co-
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sors of a deformed and original body, respectively; m=1, 2, 3. When the curvi~
linear coordinates are selected in such a way that they coincide with orthogonal coordinates which deter-~
mine the position of the point in the original body, the large strain tensor is designated by Green as eij
and is expressed in the following form:
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The strain tensor can also be determined by the displacement components with respect to the axes i, j=1,
2, 3 in an undeformed material (the Lagrange formula):
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The invariants of the strain tensor are expressed in metric tensors, components of deformations
tensor, or the degree of the main elongation Aj:
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where Gl =(agl/ay™) 86l /8y = DGIJ/det[GIJ], and gl = (39l /ox™) BOJ/Bx —Dgll/det[gl ] are contravariant
metric tensors of the deformed and original body, respectively; Dg 1j and D_1J are the algebraic supple~
ments of the elements GIJ and gij in the determinants det[Gjj] and det[gijl, respectively; 8ij is a unit tensor.

The stressed state at a certain point of the body, with the deformation energy function W, related to
unit volume of an undeformed material, is characterized in a curvilinear system of coordinates by a sym-~
metric contravariant stress tensor, determined per unit area of the deformed body:
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For a noncompressed material, where I;=1,
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where p is a scalar function of coordinates 4.

The "physical™ components of the stresses related to a fixed orthogonal system of coordinates in a
deformed body are determined by the interrelation o,.g = (3yT/36K) (3ys/36l) g ki, while the stress tensor,
measured per unit area of the undeformed material, is expressed in the form

oot =VIs ot (3
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Oyiy» keg/mm For a compressed orthotropic material, the deformation en~
ergy function is a function of seven values [30]: eyy, g, €33, €157,
ey37, e;?, and eqjeqeys. Since the last term can be represented by

means of I3, in general form we obtain:
W="W (e, ez, es3, 219% e’ eni? Ia). (4)
From (2), (3), and (4) the stress tensor becomes equal to
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3. To find the correlation between the stresses and the elon-
gation at a monoaxial tensioning of the wall of a sample of a human
blood vessel, we shall consider the problem of an orthotropic par~
allelepipedon, subjected to a uniform deformation {30]: y;= Cijxj:
while the coefficients Cjj are constant. From formula (1) it fol~
lows that ejj = 1/2 (Cmicmj—d ij)'

Fig. 2. Interrelations g{i)—Aj
and o(jj) = A; (i, j=1,2;i=j) for a
human abdominal aorta (male, 29
years): 1) 0y —Aq; 2) 0y —Ag; 3)
22T "A-z; 4) To9 ..A-lc

In the particular case when the uniform deformation consists in a regular tensioning, at which the
degrees of principal elongations in the direction of axes i are equal to A, we have:

Cii=h;; Cy=0 (i55]);
) (8)
eii““i(liz_l); e;;=0 (i==]).

The stress components are determined from (5), if we assume that the reference system 6; coincides
with a perpendicular Cartesian system of coordinates xj. Then, these stresses are physical components
of stress o 0 relative to the system under consideration. For compressible materials, if we take Gij=
GlJ=5ij, the stress is
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and the stress per unit volume of the deformed body
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For a noncompressed material, if we assume that I;=1, we obtain
1 (oW 7\
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From the Green strain tensor (6), we find the relationship between de(jjy and dA;: dejj =2;dAj, and hence
expressions (7) and (8) for a monoaxial tensioning can be written in the form:
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The indices included between the angular brackets are mononomials with fixed values.

If it is assumed that the wall of the vessel is incompressible, the stress arising in samples cut from
a blood vessel along the main axes can be determined at a monoaxial tensioning from formula (10). In this
case we shall determine the hydrostatic pressure p during tensioning along axis 1 from the condition g4,=
o33 =0. The solution of the last two equations (10) under conditions of a monoaxial tensioning gives an ex-
pression for the hydrostatic pressure:
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Thus, the hydrostatic pressure is found by tensioning the sample along axis 2.

4, We shall determine the constants of the material included in the deformation energy function of a
human blood vessel. The vessel is considered to be a thin~walled cylindrical tube made of an orthotropic
uncompressible uniform material. The assumption of a small thickness of the wall means that the stresses
033=0. In an axisymmetrical blood vessel, the axial tensioning and the internal pressure cannot lead to
shear deformations [1]. Hence, the deformation energy is a function of three degrees of principal elonga-
tions [31], and expression (4) can be written as

W=W (M, ko, A3). (12)
In general, W is a sum of the deformation energy and the energy of change in volume {32]. It was found

that the deformation energy function for blood vessels is exponential [33-35]. On this basis we select an
expression for W of the compressible material in the general form

W=A(e@—1)+E(eR—1) + G[(Is— 1) eHUs=0 — [+ G,
where Q = B(A; = X,)+ C(Ay = A3)* +D(Ag = A )5 R= F(A; — A,)2+K(A, — A3)2+L(A3 — A;)% A, B, C, D, E, F,
K, L, G, H are constants of the material, determined experimentally.

For compressible material, if we take I;=1 and A3 =1/AA,, we obtain the specific deformation en-
ergy function in the form:

W=A(eQ1)+E(er—1), (13)
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As an example, the constants A, B, C, D, E, F, K and L. were determined for a human abdominal
aorta of age group A (25-30 years) [8]. The samples were cut in the direction of the main axes 1 and 2.
From (10), (11),and (13), we obtained expressions for the stresses arising in a strip of an aorta wall. The
stress arising in elongated sample along axis 1 is determined from
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Here Ay, A, are the degrees of longitudinal and lateral elongations of the sample in the direction of axes 1
and 2, respectively: A =1/1,>1; Ay=b/by<1; I, by are the length and the width of the sample before load-
ing. The stress arising in a tensioned sample in the direction of axis 2 is determined from

1 1
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where Ay, A, are the degrees of lateral and longitudinal elongations in the direction of axes 1 and 2, re~
spectively.

The constants of the material included in the deformation energy function were determined from Eqgs.
(14) and (15) by a combined approximation of the experimental data by the method of least squares. Fig. 2
shows the experimental points obtained on samples of an abdominal aorta of a human male who died at the
age of 29 years, and the stress—elongation curves, calculated from Egs. (14) and (15) at the optimum val-
ues of the coefficients of the specific energy of deformation found: A=0.000123; B=0.160929; C=—0.5;
D=0.002183; E =0.001798; F=1.485844; K=-—0.651317; L.=0.328281. The determination of the constants of
the material from the experimental data on monoaxial elongation makes it possible to solve the problem
of the distribution of stresses and deformations in the wall of a blood vessel subjected to an internal pres-
sure and axial tensioning, taking into account the orthotropy of the material.
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The increment of stresses at any level of Cauchy deformation for nonlinearly elastic orthotropic
material in the direction of the main anisotropy axes is determined from the interrelation

doji=Aude; (i, j=1,2,3) (16)
However, the increment of stress i)y~ F Ay, Ag, Ag) can be expressed in the form;
0oy )\07\.5 ( 0o ) Oh; ( 00:; ) O
doii=); (_« =) i )Tk amn
¢ O\ A +h d?\.j Aj +ha oh? A
(i, k=1,2,3, is=j5k),

where dA4/A, represents an increment of Cauchy deformation de i) It follows from (16), (17) that the stiff-
ness components of the material are determined by the expression

doi;
Aiijf"\j”ﬁ'}f
G j=1,23).

Hence, the stiffness characteristics of the material are found by differentiating expressions for stresses
represented in terms of degrees of principal elongations Aj, and the constants of the material included in
the deformation energy function.
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