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A function of the specif ic  ene rgy  of defolanation, se lec ted  in the fo rm of a number  of expo-  
nents ,  is  proposed.  I t  desc r ibes  well  the s t r e s s - s t r a i n  s tate  of anisot ropic  human blood v e s -  
sel a t  l a rge  deformat ions .  The constants  of the m a t e r i a l  included in the deformat ion  energy  
function a r e  de te rmined  by exper iments  for a monoaxial  tensioning, along the main an iso t -  
ropy  axes .  As an example ,  they were  found for the human abdominal  aor ta ,  taken during an 
autopsy (male,  age 29 years ) ,  by approximat ion  of the exper imenta l  data on a compute r  by 
the method of l ea s t  squares .  

1. At p resen t ,  an inc reas ing  number  of invest igat ions deal  with a study of the mechanica l  p r o p e r t i e s  
of wails  of  human blood v e s s e l s  [1-8], which play an impor t an t  ro le  in blood c i rcula t ion p r o c e s s e s  [9-12]. 
It  was found that  these  p rope r t i e s  change with ag.e [5-8] and involve definite changes in the blood c i r cu l a -  
tion sys tem,  for example ,  change in the diffusion p r o c e s s e s  through the wall  of the vesse l ,  and dec r ea se  in 
the blood supply to the wall i t se l f  [13]. A knowledge of the mechanica l  p rope r t i e s  of the v e s s e l s  and the 
dis tr ibut ion of s t r e s s e s  and deformat ions  in the ve s se l  wall  over  a wide age group~ will  make  i t  poss ib le  
to find the cha rac t e r i s t i c  f ea tu res  of the changes taking place in the blood c i rcula t ion p r o c e s s  and to study 
the r easons  for the m o s t  p reva len t  d i sease  of the blood circulat ion organs ,  a t h e r o s c l e r o s i s .  

Var ious  models  have been proposed  [13-17] and different  theor ies  used [18-27] to desc r ibe  both the 
s ta t ic  mad the dynamic p rope r t i e s  of a r t e r i a l  v e s s e l s .  In [18, 19] ¢he Laplace  law was used  to calculate  
the v e s s e l s  under a constant  in terna l  and ex te rna l  p r e s s u r e .  In [20] an a t tempt  was made  to apply the 
smal l  deformat ions  theory  to finite deformat ions  of the blood vesse l  under an internal  p r e s s u r e .  In [21-23] 
the c lass ic  e las t ic i ty  theory  was used, and i t  was a s sumed  that  the ves se l  wall  is  i so t ropic .  However ,  in 
[21, 22] i t  was found that  under  p r e s s u r e  the a r t e r i e s  can change their  radius  by 200% with r e s p e c t  to their  
ini t ial  value, and during each card iac  cycle  this change has  the value of 5-14% [28, 29]. The re fo re ,  an ac -  
cura te  descr ip t ion  of the behavior  of the blood vesse l  can only be made  on the bas i s  of  the finite d e f o r m a -  
tions theory  [30]. In m o s t  studies using this theory,  for  the sake of s impl ic i ty ,  hhe vesse l  wall  was a s -  
sumed to be i so t ropic  [13, 24-27]. 

In [1] the a r t e r i a l  walls  were  cons idered  to be anisotropic ,  and the i r  p rope r t i e s  were  cha r ac t e r i z ed  
by six e las t ic  constants .  The deformat ion  energy  function was expanded into an exponential  s e r i e s  in t e r m s  
of invar iants ,  and the unknown coefficients  were  de te rmined  by means  of a second o rde r  curve ,  plotted 
f rom the exper imenta l  data. The deformat ion energy  and the energy  of the change in volume cannot be 
der ived f rom the p roposed  express ion  for  the energy  function. In [31] it was found that  the blood ve s se l s  
of a dog a r e  anisot ropic  in the undeformed s tate .  Pa r t i a l  de r iva t ives  of the deformat ion  energy  have been 
de termined.  But f r o m  these de r iva t ives  i t  is  imposs ib le  to obtain a comple te  express ion  for the d e f o r m a -  
tion ene rgy  function. 

In the p re sen t  work, a method is p roposed  for  the calculation of an or thotropic  blood ves se l  f rom a 
se lec ted  deformat ion energy  function. The unknown coeff icients  of the specif ic  deformat ion  energy  func- 
tion were  de te rmined  on a computer  by approximat ion of the exper imen ta l  cu rves  obtained when spec imens  
of a wall  of an ao r t a  were  tensioned along the main  axes  (Fig. 1). 
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Fig.  1. Direc t ion  
of the main  an-  
i so t ropy  axes  in a 
human blood v e s -  
sel.  

2. The posit ion of a ce r ta in  point Px of a nonl inear ly  e las t ic  or thot ropic  
m a t e r i a l  in an undeformed state  in a fixed orthogonal  coordinate  s y s t e m  i = 1, 2, 3 
is de te rmined  by th ree  coordinates  xi. After  the deformat ion,  the point i~ in a 
new posit ion Py  with r e s p e c t  to this coordinate  sys tem,  which is c h a r a c t e r i z e d  by 
three  other  de r iva t ives  designated as Yi = yi(xl, x~, x 3, t). 

We introduce a genera l  cu rv i l inea r  coordinates  s y s t e m  0 i in such a way that  
x i =xi(01, 02, 03), where  xi(01, 02, 03) is a s ing le -va lued  function with continuous de-  
r iva t ives  of all  o rd e r s .  The deformed s ta te  is de te rmined  by the dependence Yi = 
yi(01, 0~, 0~, t), where  Yi(01, 0~, 0~, t) is  a s ing le-va lued  function with continuous de -  
r i va t ives  of any o rde r ,  with r e s p e c t  to both the coordinates  0 i and the t ime  t. 

According  to [30], the l a rge  s t ra in  t ensor  in the cu rv i l inea r  s y s t e m  of co -  
ord ina tes  is  de t e rmined  by the dependence 

1 
~/;~-=-~ (O~j-- g~). 

where  Gij = (0ym/90 i) Oym/00J and gij = (0xm/90i) 9xm/90j a r e  eovar i an t  m e t r i c  t en-  
s o r s  of a de fo rmed  and original  body, r espec t ive ly ;  m = 1, 2, 3. When the c u r v i -  

l inear  coordina tes  a r e  se lec ted  in such a way that  they coincide with or thogonal  coordinates  which d e t e r -  
mine  the posi t ion of the point in the or ig inal  body, the l a rge  s t ra in  t enso r  is  des ignated by Green  as  eij  
and is  e x p r e s s e d  in the following form:  

6'0 ~ O0~ = l  ( Oy" Og TM ) 
eci ax i OxJ '~ a~x -7 axJ oi.i • (1) 

The s t r a in  t ensor  can a lso  be de te rmined  by the d i sp lacemen t  components  with r e s p e c t  to the axes  i, j = 1, 
2, 3 in an undeformed m a t e r i a l  (the Lagrange  formula) :  

( Ou~ O u , , O u , , )  1 O u i  + . . ,-} 

~i= Y O'--xT oxi axi axj 

The invar ian t s  of the s t r a in  t enso r  a r e  e x p r e s s e d  in m e t r i c  t en so r s ,  components  of deformat ions  
tensor ,  or  the degree  of the main  elongation ?,i: 

Ia = gij G ij = 3 + 2eli = ~,12 -1- ~22-~ ~32; 

12.  -~  g i . $ O  i~la = 3 + 4eil = 2 (eiiejj - -  eijelj) = ~,zM2 + ~22~32 ~_ N32k.12; 

det [ais] 
I~ = det [gi.i] = det [6ij + 2el j] = X,2Xe?~32;: 

where  G ij = ( 90i /9T m) O0J/ay m ~ i, and g~J = (80i/~x m) 90J/ax m = DgiJ/det[gij] a r e  con t r ava r i an t  
me t r i c  t enso r s  of the de fo rmed  body, respec t ive ly ;  DGiJ and Dgij a re  the a lgebra ic  supple-  
men t s  of the e l emen t s  Gij and gij in the de t e rminan t s  det[Gij] and det[gij], r e spec t ive ly ;  6ij is  a unit t ensor .  

The s t r e s s e d  s ta te  a t  a ce r ta in  point of the body, with the deformat ion  ene rgy  function W, r e l a t ed  to 
unit volume of an undeformed m a t e r i a l ,  is c h a r a c t e r i z e d  in a cu rv i l inea r  s y s t e m  of coordina tes  by a s y m -  
m e t r i c  con t r ava r i an t  s t r e s s  t enso r ,  de te rmined  per  unit a r e a  of the de fo rmed  body: 

, ( ) oo, <2> 
~ =  2~t-~ ' Oe~j ' Oej+ Ox+ Ox~ 

F o r  a n o n c o m p r e s s e d  m a t e r i a l ,  where  I3= 1, 

"~= I # W  OW ~, O0~ O0 l 
ox, +pO , 

where  p is  a s c a l a r  function of coordina tes  0. 

The "phys ica l  ~ components  of the s t r e s s e s  r e l a t ed  to a fixed orthogonal  s y s t e m  of coordina tes  in a 
de fo rmed  body a r e  de te rmined  by the in te r re l a t ion  ~ r s  = (Syr/00k) (ayS/OOl) ~ k l ,  while the s t r e s s  t ensor ,  
m e a s u r e d  per  unit  a r e a  of the undeformed m a t e r i a l ,  is e x p r e s s e d  in the fo rm 

,~o ~' =VI~ ~% ~. (3) 
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Fig. 2. In te r re l a t ions  e<ii) -- k i 
and a(ii)  - Xj (i, j = 1, 2; i ~ j) for  a 
human abdominal  ao r t a  (male,  29 
years ) :  1) ~ 1 -  hi; 2) ~ -  X~; 3) 

F o r  a c o m p r e s s e d  or thotropic  m a t e r i a l ,  the deformat ion en-  
e r g y  function is  a function of seven values [30]: ell  , e22 , e33 , el22, 
e232, e32, and elle22e33. Since the l a s t  t e r m  can be r e p r e s e n t e d  by 
means  of I3, in genera l  f o rm we obtain: 

IV= W ( eH, e~, ezz, e,~ ~, e2n '~, ez~ ~, I~). (4) 

F r o m  (2), (3), and (4} the s t r e s s  t e n s o r  becomes  equal  to 

OW ao ~ ao~ a w  a,o~ oo ~ o w  oo ~ oo ~ 
Oo ~ l =  - -  - -  ~- + - -  - -  -1- 

OeH Ox ~ Ox ~ Oem Ox ~ Ox ~ Oez~ Ox* Ox~ 

OW I O0 ~ 0,0~ O0 ~ 

O(el~ 2) Ox I Ox 2 ~ OX2 

OW O0 ~ 6'0~ + e 2 ~ - - (  00~ 
6x' O(euz~) ~ Ox 2 0 x  3 k 

aek ao ~ ) aw ( ao~ ao~ aoh ao ~ ) awoke. 
"t Ox ~ Ox 2 + e a , ~  Ox ~ Ox I ~ OX ~ OX 3 +21~'--~-- (5) 

3. To find the co r re la t ion  between the s t r e s s e s  and the e lon-  
gation at  a monoaxial  tensioning of the wall  of a sample  of a human 
blood vesse l ,  we shall  consider  the p rob lem of an or thot ropic  p a r -  
al telepipedon,  subjected to a un i form deformat ion  [30]: Yii=Ci~xi'tfdlZ 
while the coeff icients  Cij a r e  constant .  F r o m  fo rmula  (1) 
lows that  eij = ~/2 ( C m i C m j - 6 i j ) "  

In the pa r t i cu la r  case  when the uni form deformat ion  cons is t s  in a r egu la r  tensioning,  at  which the 
deg rees  of  pr incipal  elongations in the direct ion of axes  i a r e  equal to k i, we have: 

Cti=ki; Co=0 (/if=j) ; 
(O 

e u = l ( z i 2 - 1 ) ;  eij=O (i:¢=j). 

The s t r e s s  components  a r e  de te rmined  f rom (5), i f  we a s s u m e  that  the r e f e r e n c e  s y s t e m  0 i coincides 
with a perpendicu la r  Car tes ian  s y s t e m  of coordina tes  x i. Then, these  s t r e s s e s  a r e  physical  components  
of s t r e s s  ~ij ° r e l a t ive  to the s y s t e m  under  considerat ion.  F o r  c o m p r e s s i b l e  m a t e r i a l s ,  i f  we take Gij = 
GiJ=~ij  , the s t r e s s  is  

o 1 ( c)W OW 
oij =k~Z, j y  Oe~j + ~ej~ ) OW + 213 T 3  & j '  

and the s t r e s s  per  unit volume of the de fo rmed  body 

1 1 ~ a w  o w  ) - -  OW (7) 

F o r  a noncompressed  ma te r i a l ,  i f  we a s s u m e  that  13 = 1, we obtain 

1 t OW OW 
! +p&~. (8) 

F r o m  the Green  s t r a in  t ensor  (6), we find the re la t ionship  between de(ii) and clXi: deii =XidXi, and hence 
expres s ions  (7) and (8) for  a monoaxial  tensioning can be wri t ten in the form:  

l 0 ~ 2 V ~ 0 w .  (9) 
k~ku Oki 018 ' 

0w (i, i, k =  I, 2, 3; iv~j:~k) (10) 
a~=k~ o + p  

The indices included between the angular  b racke t s  a re  mononomials  with fixed values .  

If i t  is  a s sumed  that  the wall  of  the v e s s e l  is  i ncompress ib l e ,  the s t r e s s  a r i s ing  in s amp le s  cut f rom 
a blood ve s se l  along the ma in  axes  can be de te rmined  a t  a monoaxial  tensioning f r o m  fo rmula  (10). In this 
case  we shall  de te rmine  the hydros ta t i c  p r e s s u r e  p dur ing tensioning along axis  1 f r o m  the condition ~22 = 
~33 = 0. The solution of the l a s t  two equations (10) under  conditions of a monoaxia l  tensioning gives an ex -  
p ress ion  for the hydros ta t i c  p r e s s u r e :  
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Thus, the hydros ta t ic  p r e s s u r e  is found by tensioning the s a m p l e  along axis 2. 

4. We shall  de te rmine  the constants  of the m a t e r i a l  included in the deformat ion  ene rgy  function of a 
human blood vesse l .  The v e s s e l  is  cons idered  to be a thin-walled cyl indr ical  tube made of an ort t iotropic 
uncompress ib l e  un i form m a t e r i a l .  The assumpt ion  of a smal l  th ickness  of the wall  means  that  the s t r e s s e s  
%3 = 0. In an a x i s y m m e t r i c a l  blood ves se l ,  the axial  tensioning and the in ternal  p r e s s u r e  cannot lead to 
shear  de format ions  [1]. Hence,  the deformat ion  ene rgy  is a function of th ree  degrees  of pr incipal  e longa-  
tions [31], and expres s ion  (45 can be wri t ten as 

W =  W (~,t, ~-2, ~-a). (125 

In genera l ,  W is  a sum of the deformat ion  energy  and the energy  of change in volume [32]. It  was found 
that  the deformat ion  ene rgy  function for  blood v e s s e l s  is exponential  [33-35]. On this bas i s  we se lec t  an 
express ion  for  W of the c o m p r e s s i b l e  m a t e r i a l  in the genera l  f o rm 

W=A ( eq -  I) +E(e a -  1) + G[( la-  1)eU(~-u-13]+G, 

where  Q = B(X 1 - )k252 + C ( X  2 - -  X3) 2 +D(X 3 - X1)2; R=  F(Xt - X2) 2 + K ( X  2 - ~k3) 2 + L ( X  3 - ~1)2; A, B, C, D, E, F, 
K, L, G, H a re  constants  of the ma te r i a l ,  de te rmined  exper imental ly°  

F o r  c o m p r e s s i b l e  m a t e r i a l ,  i f  we take 13 = 1 and X~ = 1/X1~, we obtain the specif ic  deformat ion  en-  
e rgy  function in the fo rm:  

W=A (eQ- 1) +E(e ~ -  1), (135 

°; L 1 )2 

As an example ,  the constants  A, 13, C, D, E, F,  K and L were  de te rmined  for  a human abdominal  
aor ta  of age group A (25-30 yea r s )  [8]. The samples  were  cut in the di rect ion of the main  axes  1 and 2. 
F r o m  (105, ( l l ) , a n d  (135, we obtained expres s ions  for  the s t r e s s e s  a r i s ing  in a s t r ip  of an ao r t a  wall.  The 
s t r e s s  a r i s ing  in elongated sample  along axis 1 is  de te rmined  f rom 

1 
o11=3A [ B(~L2--£1~.)+C( ~1 

1 
+3El  F(~12-~I~2)+K( LI 

l )  ( l)] 
1- 2- ~t2~22 

~,12~,2 2 ~12~2 2 (145 

Here  X1, ks a r e  the degrees  of longitudinal and l a te ra l  elongations of the sample  in the d i rec t ion of axes  1 
and 2, r e spec t ive ly :  Xl=l / lo  > 1; k2=b /b0<  1; lo, b 0 a r e  the length and the width of the sample  before load-  
ing. The s t r e s s  a r i s ing  in a tensioned sample  in the direct ion of axis  2 is de te rmined  f r o m  

' )1 o==3A[B(~.e2_~.~q)+C(~fl 1 ) + D (  1 
~22~ 2 ~2 

~22~,i 2 M ~-22~i ~ (15) 

where  X1, Xz a re  the deg rees  of  l a t e ra l  and longitudinal elongations in the di rect ion of axes  1 and 2, r e -  
spect ively .  

The constants  of the m a t e r i a l  included in the deformat ion  ene rgy  function were  de te rmined  f rom Eqs.  
(14) and (155 by a combined approximat ion  of the exper imenta l  data  by the method of l e a s t  squares .  Fig.  2 
shows the exper imen ta l  points obtained on samples  of an abdominal  ao r t a  of a human ma le  who died at  the 
age of 29 y e a r s ,  and the s t r e s s - e l o n g a t i o n  cu rves ,  ca lcula ted  f rom Eqs.  (145 and (15) a t  the opt imum va l -  
ues  of the coefficJ[ents of the specif ic  ene rgy  of deformat ion  found: A=0.000123; B= 0:160929; C = --0.5; 
D=0.002183; E =0.001798; F =  1.485844; K=--0 .651317;  L=0.328281.  The de terminat ion  of the constants  of 
the m a t e r i a l  f r o m  the exper imenta l  data on monoaxia l  elongation makes  it  poss ib le  to solve the p rob lem 
of the dis tr ibut ion of s t r e s s e s  and deformat ions  in the wall  of a blood ves se l  subjected to an internal  p r e s -  
sure  and axial  tensioning,  taking into account  the or tho t ropy  of the m a t e r i a l .  
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The increment of s t resses  at any level of Cauchy deformation for nonlinearly elastic orthotropic 
material  in the direction of the main anisotropy axes is determined from the interrelation 

d~ii =A~i.iidejj (i, ]= 1, 2, 3) (16) 

However, the increment of s t ress  e(ii>=f (Xl, ks, X 3) can be expressed in the form: 

(41, k = 1, 2, 3, i4=j--/=k), 

where ctXl/~ 2 represents  an increment of Cauchy deformation dc(ii). It follows from (16), (17) that the stiff- 
ness components of the material  are determined by the expression 

0Oii 

(i,]=1,2,3). 

Hence, the stiffness character is t ics  of the material  are  found by differentiating expressions for s t resses  
represented in terms of degrees of principal elongations Xi, and the constants of the material  included in 
the deformation energy flmction. 
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