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The s t rength and deformabi l i ty  of r e in fo rced  po lymer s  in tension a c r o s s  the f ibe r s  is in- 
ves t igated.  It is a s sumed  that the po lymer  de fo rms  as an ideal e las top las t ic  body. Rela-  
t ions a r e  obtained for  the nature  of the deformat ion  of the po lymer  between the f ibe r s  and 
the s t rength  and deformabi l i ty  of the compos i te  with al lowance for  the s t ruc tu ra l  d is t r ibu-  
t ion of the components .  Theore t ica l  s t r e s s - s t r a i n  d i a g r a m s  a re  p resen ted  for  compos i t e s  
with di f ferent  r e i n f o r c e m e n t  dens i t i es  and r e s i n  e l a s t i c i t i e s .  The theore t ica l  values  of the 
s t rength  and deformat ion  of r e in fo rced  p o l y m e r s  with the load applied a c r o s s  the f i b e r s  a re  
compa red  with the r e s u l t s  of expe r imen t s  on model  spec imens  of epoxy-Thiokol  p o l y m e r s .  

Although much attention has  been  given to the p r o p e r t i e s  of compos i t e s  in the d i rec t ion  of r e i n f o r c e -  
ment ,  it should not be forgot ten  that  in mos t  c a s e s  unidirect ional  r e in fo rced  po lymer s  a re  also s t r e s s e d  
a c r o s s  the f ibe r s  and in i n t e r l amina r  shear .  In these  c i r c u m s t a n c e s  it is the s t rength of the bond between 
f ibe r s  that  de t e rmines  the onset  of fa i lure .  

On the b a s i s  of an ana lys i s  of a s imple  model  of a r e in fo rced  m a t e r i a l  with a pa ra l l e l  a r r a n g e m e n t  
of the f ibe r s  we shall  a t tempt  to a s c e r t a i n  the effect  of the c h a r a c t e r i s t i c s  of the r e in fo r cemen t  and the 
p o l y m e r  and the s t ruc tu ra l  d is t r ibut ion of the components  on the s t rength  and deformat ion  of a compos i te  
in a d i rec t ion  pe rpend icu la r  to the axis  of the f ibe r s .  As dis t inct  f r o m  [1, 2], our  approach  will  be  an en-  
g ineer ing  one and, accordingly ,  we shall  introduce a number  of a s sumpt ions .  

The s t r u c t u r e s  of r e in fo rced  p o l y m e r s  in tens ion a c r o s s  the f ibe r s  can be reduced  to the model  shown 
in Fig.  t a .  F o r  th is  model  the following conditions a r e  a s sumed  to be  sa t is f ied:  

i) the r e in fo rced  po lymer  is f r ee  of initial fabr ica t ion  s t r e s s e s ;  

2) the f iber  and the po lymer  a re  i so t ropic  m a t e r i a l s ,  the f iber  obeying Hooke ' s  law and the po lymer  
pos se s s ing  e las top las t ic  p r o p e r t i e s ,  with a slight e r r o r  in the s t r e s s - s t r a i n  d i a g r a m s  of actual  r e s i n s  [3] 
can  be approximated  for  each specif ic  s t r a in  r a t e  by an ideal e las top las t ic  body; 

3) the s t rength  of the r e s i n  at  the f i b e r - p o l y m e r  in te r face  (adhesion strength) is g r e a t e r  than the 
strengLh of the r e s in .  

a b 

Fig. 1. Calculation model a); s t r e s s  
d i ag ram (b). 

We will  de t e rmine  the s t rength  of a spec imen  in tension along 
the y axis ,  i .e. ,  the s t r e s s  co r respond ing  to the momen t  at  which 
the po lymer  c r a c k s .  

The s t r a in  of the spec imen  along the y axis  is  g iven in t e r m s  
of the s t r a ins  of i ts  components  by [4] 

epyh + e~y2R spym + ~]y 
eY=-- A+2R = - - m + l  • 

(1) 
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Expres s ion  (1) can be t r a n s f o r m e d  as follows: for  a po lymer  with ideal e las toplas t ic  p rope r t i e s  

8 y = 8  l 

Ep l-m epy .... 
Ef ~,z ,,. 

l + m  
(2a) 

for  an e las t ic  po lymer  

8y ~ Epy 

Ep 
m 

l + m  
(2t)) 

In Eqs.  (1) and (2a, b) epy and ~fy a re  the s t r a ins  of the po lymer  and the f iber  along the y axis (z = 0); e l 
is the l inear  component  6f the dbformat ion  of the ideal e las toptas t ic  po lymer ;  Ep and Ef a re  the moduli of 
e las t ic i ty  of the po lymer  and the f iber ;  m = A/2R. 

E x p r e s s i o n s  (1) and (2a, t)) a r e  approx imate ,  s ince they do not take the Po i sson  effect  into account.  
However ,  the assumpt ion  that  the P o i s s o n ' s  r a t i o s  of the f ibe r  and the po lymer  a re  equal,  without introduc-  
ing a se r ious  e r r o r  in mos t  c a s e s  of p rac t i ca l  impor tance ,  s impl i f ies  the fu r the r  ana lys i s .  

With r e s p e c t  to the nature  of the deformat ion  of the r e s in ,  the spec imen  can be divided into th ree  
zones:  p las t ic  flow between the f ibe r s ,  and e las t ic  deformat ion  between and outside the f ibe r s  (see Fig. 1). 
Here ,  it is a s sumed  that  ay -< ei. For  the zonal loads we have 

P~ = 2aR~p ; (3) 

R R 

aR aft 

(4) 

/'3 = ( b - 2R) eyEp, (5) 

where  ~p is the s t rength  of the po lymer ;  Crpy z, epy z a re  the s t r e s s  and s t r a in  in the r e s i n  along the y axis  
at z ¢ 0; a is a coefficient  cha rac t e r i z ing  the d imensions  of the region of p las t ic  flow 

V I - (  l + m  f .  a-= (6) 

Here ,  m '  = A z =a/2RZ =a is  the p a r a m e t e r  of the sect ion in which, when the spec imen  is s t re tched  to ~¢ max,  
the r e l a t ive  elongation of the po lymer  between the f ibe r s  epy z = e l. Using Eq. (1), we obtain 

epy E p 

m ' = - -  8z E f (7) 
Ep ±( ,  l) m 

It follows f r o m  (6) and (7) that  the p o l y m e r  flow zone develops  at ~ = ep/e l > t ;  m >  0. i n t h i s c a s e  R--~a-->0. 

We will  de te rmine  P2. The s t r a in  epy z is  found f r o m  the equations 

~py vA~ + efy~2R~ Ep 

where  R z = ~ ;  A z = 2R + A-2~fR2-z2:  

~ y Z  ~ ~y 
1 

2]/R2-z2 ( 1 - E.~ 
1 2R+A Ef ) 

(9) 
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Fig. 2. ~} =2 (1), 3(2), 
4 (3), 5 (4). 

where 

After substituting (9) in (4), we have 

P2=2%Ep 1 2]/R2--z-~ 1 - E p  2]/R2----Z~ 1 - E p  
2 ~ + ~  - ~ )  ' ~+~ ~) " 

(} 
(lo) 

The integrals of expression (10) are determined by means of the substitu- 
tions z = R sint, tan1/2 = l: 

R 

1 2V~--~ I_E2  :QR, (11) 
o 2~+a  Ef 

Q = _ _  

/ t Ep ) 
2(l+m) 1 × 

and 

where 

aR 

2}tR2--z2 ( 1-- Ep 
o 1 2R+A --~f) 

=NR, (12) 

N= 2( l+m~)[ l / ,  1 
1-  1-  [ 1 Ep 2 

X arctg tg arcsin a 1 + ~ ( 1 - - ~ )  arcsin a 
, - ~ ) ] )  - 2 " 

Values of the functions Q (m), N (m, ~?) for Ep/Ef = 0.05 are presented in Fig. 2. Finally, for P2we canwrite 

Ep 

l+m 

The strength of the specimen in tension along the y axis 

PI+P2+P3 
ay b 

(14) 
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Fig. 3. ~? = I  (i), 2 (2), 3 (3), 4 (4), 5(5). 

Fig. 4. m = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5); ~? = 
i (a), 2 (b), 3 (c), 4 (d), 5 (e). 

After  substitution in (14) we obtain 

2R E T + m n  t b 
Ou=T a4 1 + m  + - ~ -  -- 1 ] C,p . (15a) 

Fig. 5 

For  an e las t ic  r e s i n  expres s ion  (15a) s impl ies  to 

EP+m 

2R E i  ( Q + 2 ~ - l ) o p .  
csu b 1 + m (15b) 

For  r e g u l a r  f iber  r e in fo rcemen t  the r a t io  2R/b takes  the following va lues :  for  a r ec t angu la r  dis t r ibut ion 
c losed up along the z axis  2R/b = 1; for  a square  dis t r ibut ion 2R/b = 1/(1 + m); for  a t r i angu la r  d i s t r ibu-  
t ion 2R/b = ( 2 / ~  [1/(1 + m)]. If the p o l y m e r  is local ly  r e in fo rced  with f ibe r s ,  then the r a t io  2R/b is g ivenby  

2R 1 D + 8  
; n = - -  (16) 

b B 2R+6 ' 
2Rn 

where  B is the width of the spec imen;  n is the number  of f i be r s  in a row along the z axis ;  D is  the width 
of the re in forced  zone; 8 = 2Rm for  a square  distr ibution;  6 = (0 .86m-0 .14)2R fo r  a t r i angu la r  d is t r ibu-  

The secant  modulus of e las t ic i ty  of the specimen,  defined as  Ey = ~y/~y, is equal to t ion. 

2. I ,+m E , =  T , - i  E;,  
"-~-f -I- mrl 

(i7) 

Values of the s t rength of s t r u c t u r e s  with a square  dis t r ibut ion of the f ibe r s ,  ca lcula ted for  va r ious  
e_ /~  l at E p ~ f  = 0.05, a re  p resen ted  in Fig.  3. The s t r e s s - s t r a i n  d i a g r a m s  and the secant  moduli ,  con- 
s~ructed f r o m  the data of Fig: 3, for  e I = 3%, a r e  p resen ted  in Fig. 4. 

The exper imen t s  were  p e r f o r m e d  on monoli thic model  spec imens  of cas t  r e s i n  re in fo rced  with alu- 
minum alloy rods  (Fig. 5). The a luminum rods  were  chosen as a m a t e r i a l  capable  of s imulat ing the modu- 
lus of e las t ic i ty  of g lass  f ibe r s .  The rods ,  9 m m  in d i ame te r  with a c lean degreased  sur face ,  were  fixed 
in the mold at a d is tance A = 1 m m  apar t  and covered  with a compound based  on ED-5 r e s i n  (100 pts by 
weight) with t r ie thanolamine  (10 pts  by  weight) as cur ing agent and grade  NV liquid Thiokol as p l a s t i c i ze r .  
Two modif icat ions  of the po lymer ,  containing 20 and 40 pts  by weight Thiokol,  w e r e  invest igated.  

At the same  t ime ,  we a lso  molded unre inforced  spec imens  of the po lymer .  The po lymer iza t ion  con- 
dit ions were  as  follows: 60°C for  4 h, 80°C for  4 h, 100°C for  4 h, 120°C for  4 h, slow cooling. T h e d e g r e e  
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TAB LE 

Thiokol P oly_mer specimens Reinforced specimens 

polymer, f/P ~/Pc r ' ' 8p, °/o 8 I '  °/o n ~ , Mode of 
pts by wt. kg cm 2kg m ~ kgf]cm z %' % failure 

20 780_+20 600_+30 3.1~1 6---I 2,6 2,3 110_+20 0,2+0,0~ Adhesion 

40 120_+10 -- 3. l0 s 30+5 4 7,5 100±15 3+1 Cohesion 

* ~pr  is the propor t iona l  l imi t  of the po lymer .  

of po lymer iza t ion  of the spec imens  thus obtained was  90-96%. Four  ba tches  of five spec imens  each were  
p r e p a r e d  by mechanica l  means .  The total  length of the spec imens  was  155 m m ,  the c r o s s  sect ion of the 
neck m e a s u r e d  25 × 8 m m  2. The spec imens  were  loaded in a UG 20/2 No. 158 tes t ing machine,  in which 
the g r ips  sepa ra ted  at a r a t e  of 50 ram/rain.  The s t r e s s -  s t ra in  d i ag ram was  cons t ruc ted  by record ing  the 
s t r a in  cor responding  to a ce r ta in  load without in ter rupt ing  the loading of the specimen.  The s t ra ins  we re  
m e a s u r e d  by r e s i s t a n c e  gages  with a ba se  of 10 m m  connected to ID-61M No. 363 s t ra in  m e t e r .  The gages  
were  bonded e i ther  d i rec t ly  to the spec imen  or to a s t r a i n - m e a s u r i n g  device in the f o r m  of a U-shaped 
piece of spr ing s tee l  at tached to the neck of the spec imen.  This  device was  employed for  invest igat ing the 
deformat ion  of spec imens  of the pure  po lymer .  

The r e su l t s  of the t e s t s  on the spec imens  and the approximat ion  of the i r  s t r e s s - s t r a i n  d i a g r a m s  by 
an ideal e las top las t i c  body a re  p resen ted  in Table 1. 

In accordance  with Eq. (2a) p las t ic  deformat ion  of the po lymer  in r e in fo rced  spec imens  should occur  
af ter  ey -> 0.36%; consequently,  the r e s i n  with 20 pts  by weight Thiokol deformed e las t ica l ly  up to a r e l a -  
t ive elongation equal,  according  to (2b), to epy ~ 1.47%.Then followed adhesion fa i lure  at aadh = 0.0147 "3" 104 
kgZ/cm 2 ~ 440 kgf /cm 2. 

Theore t ica l ly ,  the s t rength of a r e in fo rced  p o l y m e r  of the given composi t ion,  de te rmined  f r o m  Eq. 
(15b), where  Crp = aadh, is equal to Cry = 125 kgf /cm 2, i .e. ,  c lose  to the exper imenta l  value.  The calculated 
values  of the b reak ing  s t rength and s t r a in  of r e in fo rced  p o l y m e r s  of the second composi t ion,  calculated 
f r o m  Eqs.  (15a) and (2a), r e spec t ive ly ,  a r e  equal to ~y = 95 kgf /cm 2 and ey = 2.7%. In spec imens  of the 
given composi t ion  the adhesion s t rength exceeded the cohesion s t rength  ( ~ 120 kgf /cm 2) and fa i lure  oc- 
c u r r e d  as a r e su l t  of the total  de format ion  of the r e s in .  

S U M M A R Y  

The s t rength  of r e in fo rced  p o l y m e r s  in tension a c r o s s  the f ibe r s  depends important ly  on the densi ty 
of the r e in fo rcemen t .  The g r e a t e r  the densi ty of the r e in fo rcemen t ,  i .e. ,  the volume f iber  content,  the low- 
e r  the s t rength  of the compos i te .  In the l imi t  the s t rength  of the compos i te  r e aches  that of the unre inforced  
po lymer .  An inc rease  in the e las t ic i ty  of the p o l y m e r  without loss  of s t rength  is accompanied  by i n c r e a s e s  
in the s t rength  and deformabi l i ty  of the compos i te .  The re la t ions  obtained are  conf i rmed by expe r imen t s  
on model  spec imens  of an epoxy-Thiokol  po lymer .  

i. 

2. 

3. 

4. 

LITERATURE CITED 

G. A. Wang Fo Fy, Pr ik l .  Mekhan., _1, No. 5, 110 (1965). 
G. A. Wang Fo Fy, in: Phys ica l  Chemis t ry  and Mechanics of Oriented Glas s -Re in fo rced  P l a s t i c s  
[in Russian] ,  Moscow (1965), p. 110. 
A. D. Berna tsk i i ,  A. A. Nikishin, A. L. Rabinovich,  ]~. P. Dontsova,  E. E.  Zaborovskaya ,  and V. I. 
Nikolaichik, in: Phys ica l  Chemis t ry  and Mechanics  of Oriented Glas s -Re in fo rced  P la s t i c s  [in Rus-  
sian], Moscow (1965), p. 129. 
J .  C. Schulz, "Maximum s t r e s s e s  and s t r a ins  in the r e s i n  of a f i lament-wound s t ruc tu re , "  P roc .  SP, 
18th Ann. Conf., Sec. 7D (1963). 

599 


