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C O N S T I T U T I V E  E Q U A T I O N S  IN N O N L I N E A R  D A M A G E  

M E C H A N I C S  

V. P. Golub UDC 539.376 

The classical method of solving problems concerning the delayed fracture of structural materials and elements is based 

on analysis of their stabilized stress-strain state and the use of parametric relations which include the time or number of cycles 
to failure. Over the last twenty years, researchers have developed another approach employing the concept of internal variables 
[1, 2, 22] along with a system of evolutionary equations and failure criteria. Entropy, internal energy, empirical temperature, 
internal time, strain-hardening, and damage are the quantities most often chosen as the internal variables. In the present study, 

we examine methods of constructing adequate evolutionary equations for a damage parameter that cannot be measured directly. 

1. Introduction. From a phenomenological standpoint, the delayed fracture of structural materials and elements is regarded 
as a process involving the nucleation and growth of various types of discontinuities. "Crack mechanics" (" fracture mechanics") 
and "continuous damage mechanics" are used to quantitatively evaluate such processes. 

Fracture mechanics was formulated on the basis of the works of A. A. Griffith [30] and J. R. Irwin [32] and is based 
on analysis of the conditions of growth of one or several sharp cracks in a loaded body. Fracture mechanics has since been 
theoretically validated and is widely used in engineering practice. 

Continuous damage mechanics was constructed on the basis of the work of L. M. Kachanov [18] and is based on analysis 
of the conditions of evolution of a set of microscopic defects that are continuously distributed over the entire volume of a loaded 
body. Continuous damage mechanics offers at least as much promise as fracture mechanics, and perhaps more. For example, 
only the former can be used to analytically evaluate the moment of nucleation of a macrocrack (crack) [2, 18]. In many published 
studies -- especially abroad -- damage mechanics has been referred to as "continuum fracture mechanics." 

in constructing the initial relations of damage mechanics, Kachanov [ 18] essentially took the concept of "effective stress" 
proposed by Hoff [31] to model viscous fracture trader creep conditions and applied it to the region of brittle fracture. He hypothesized 
that cavities develop over time within a certain macroscopic volume of a material. The growth of these cavities decreases the 
effective cross section of the material while its geometry remains unchanged. To describe this phenomenon, Kachanov introduced 
the damage parameter co. Thus, in the general case of a complex stress state, we can write 

( a s , ) , ,  = ( ~,, - ,% ) as~,  (1.1) 

where ASj is an initial oriented elementary area; (ASj)ef is the true oriented area; 6ij is the Kronecker symbol. 
The second-rank tensor coij determined by Eq. (1,1) is referred to as the damage tensor. In the given case, the components 

of the tensor of the effective stresses (aij) are specified by means of the relation 

( a~j) ,I - a~l - o~ kl '  (1.2) 

where aik is the tensor of the initial stresses. 
Within the framework of the damage mechanics approach, the solution of the problem of the delayed fracture of a body 

under a load reduces to establishing the relationship between the components of the stress tensor oij, strain tensor eij (or strain-rate 
tensor tij), and damage tensor coij- This basically amounts to closing the classical system of resolvent mechanics equations with 

the appropriate evolutionary damage equation so that 
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O---Ta~/+Xi=O; a.jyj = Pi~ ( i j  = 1,2,3);  (1.3) 

/ 

(e,k,j, + %.,k - ( % , .  + %,jk)) =0;  

P(~j ,e j ,~ i i ,q~)  =0; 

d % j = O (  ~ / , t , t ° i i )d t .  

Here, Pi is the vector of force density on the surface of the body; Xj are the body forces; vj is a unit normal; qc is the set of 
material constants (c = 1, 2 ..... n). 

Two basic problems generally arise in the course of solving system (1.3). The first pertains to the relationship between 

the initial resolvent equations and the damage parameter. One way of resolving this issue is to use physical equations F(-) -- 

0 for effective stress values (cqj)ef in accordance with (1.2). In this case in particular, the damage to the material might have 

an effect on the material constants and we might have (for example) the following for the running values of the elastic constants 

(Cij) 

( C i j ) e f =  (dbij - to j )C  O, (1.4) 

where Cij are values of the elastic constants for the undamaged material. 

The other problem is related to identification of the damage parameter itself and construction of the evolutionary equation 
in (1.3) on this basis. The difficulties encountered in this case [2, 7, 23, 24, 33] suggest that damage is best interpreted as an 

"internal variable" of the process. Neither direct nor indirect measurements are very useful here. The main problem is the lack 

of clarity as to the macroscopic significance of the damage parameter and, thus, the correlation between measurements made 

by different methods. The damage parameter is an integral characteristic and thus cannot be expected to contain all of the necessary 

information on damage even if precisely measured. 
A more promising approach is to construct the evolutionary equations for the damage function on the basis of empirically 

substantiated hypotheses and specify a system of control experiments to check the adequacy of the relations that are obtained. 

However, nearly all of the evolutionary equations constructed to date and the problems solved with them [2-7, 10, 11, 15-25, 

33] are based on the hypothesis of linear damage summation --  which is valid only in certain cases. The goal of the present 

study is to discuss the principles behind the construction of nonlinear damage mechanics and the main regions of its application. 

2. Linearity and Nonlinearity in Damage Mechanics. Two definitions of damage have been formulated thus far in 
fracture mechanics [7, 26]. One approach introduces the notion of "partial times," while in the other approach (already discussed 

above) damage is regarded as an internal -variable. Several differences in the treatment of linearity and nonlinearity in the damage 

process follow from the existence of the two definitions. 

2.1. Identification of Damage. Proceeding on the basis of the identification of damage with "partial time," we cart 

write the following for the increment of the surface 

Ati dt 
Aoa - " dw - 

tR(%) t , ( ~ ) '  (2.!) 

where At i is the time of action of the i-th load; tR(ai) is the time to failure under the i-th load. 

Assigning "damage as an internal variable involves the formulation of suitable evolutionary equations for this quantity. 
These equations can be generalized by means of a differential equation of the form 

dco = / , ( a ( t )  co ( t ) , q ) d t  (2.2) 

with the initial condition and fracture condition in the form 

~o(t)~.o=0 and w ( t ) ~ . , = l ,  (2.3) 

where C i is a set of coefficients which can be determined empirically; t R is the time to rupture. All of the solutions obtained 
henceforth are for the unidimensional case, since they are also the initial equations in the construction of the constitutive relations 
for complex stress states. 

The function ft in (2.2) is usually specified using a power stress function 
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do9 (2.4) 
dt - D a k '  

the Kachanov equation [18] 

d o )  t7 
(i-zz ) k, 

(2.5) 

the Rabotnov equation [22] 

do9 ( l _ ~ ) k  1 
d'-7 -- D to - p' (2.6/ 

the Shesterikov equation [13] 

do9 (7 

d, - - 1 ' '  " ' (2.7) 

and the Lemaitre equation [33] 

do9 cr 1 
(1 - w) q" (2.8) 

Here, k, r, ~, q, and D are empirical coefficients. A graphical interpretation of the damage kinetics as given by Eqs. (2.4-2.8) 
is shown in Fig. 1 in the scales of physical (a) and corrected (b) time (a3 > °2 > al). 

2.2. Determination of Linearity. Linearity as it pertains to damage accumulation traditionally signifies conditions 
whereby equal amounts of damage are accumulated during equal time intervals and the total time to rupture under variable 
loading is equal to 1. The condition of linearity is given analytically by Eq. (2.1) and the relation 

,~ Atj tR dt 
, ~  tR(tr )=l-*fo #~=l ' tR(°  ) 

(2.9) 

which is proper and is known as the hypothesis of linear damage summation. 
Linearity conditions (2.1) and (2.9) agree fully with evolutionary equation (2.4), which gives the damage kinetics as 

depicted by the solid lines in Fig. 1. However, it has been established experimentally that the linear hypothesis is invalid for 
the overwhelming majority of materials and loading regimes [24-27]. The error obtained here may reach two orders or more. 

According to evolutionary equations (2.5-2.8), the damage kinetics are nonlinear (dashed lines in Fig. 1) and different 
amounts of damage are accumulated during equal time intervals. There are no differences between Eqs. (2.5-2.8) and (2.4) 
from the viewpoint of satisfying condition (2.9), since they lead to a similar result in regard to evaluating endurance for variable 
loading regimes. In particular, we obtain the following for the damage parameter from (2.5) 

° - - , - <  '-- u l+k~ 

By analogy with (2.1) and (2.9), we can obtain the following from (2.10) 

(2.10) 

796 



1 ( 1 -  t _ ~..L_ d t  t~ 

i,(,,)) '""t, io.)" :0 d,,,=l. 
(2.11) 

The kinetic damage diagrams given by Eqs. (2.6-2.8) will differ from that given by Eq. (2,5) only in the curvature° 
These diagrams will also conform to linearity condition (2,9). 

2.3. Concept of Nonlinearity. We can conclude from the above analysis that nonlinearity as it pertains to damage 
summation should be taken to mean conditions under which different amounts of damage are accumulated during equal time 
intervals, with the total damage for nonsteady loading differing from unity. The nonlinearity condition is written analytically 

in the form 1 dt  o, -- v,, 12)  

t 5 
,0~.,,= E I o.,(t)at., 1, 

where ~t and ~T are nonlinear functions. 
3. Principal Methods of Assigning Nonlinear Damage Accumnhfion. All of the known methods of constructing evolutionary 

equations satisfying nonlinearity condition (2.12) can be placed in one of three main groups: equations with inseparable variables; 
equations obeying the principle of "separability"; equations conforming to the "similarity" hypothesis, 

3.1. Equations with Inseparable Variables. In this approach, Eq. (2.2) is written in such a way that its right side 

cannot be represented as a product of two functions when one function depends only on stress and the other depends only on 

damage [as was the case, for example, in (2.5-2.8)]. In this case, initial equation (2.2) can be represented in the form 

dto = L  ( a (  t ) , t o ( a , t )  ) d t ,  (3.1) 

where the damage function will be independent of the entire loading history. 
One example of the use of this approach is the evolutionary damage equation derived by Novozhilov [21] 

do~ =/~(a,O),a.(a)... )a,t, (3.2) 

where X is a parameter characterizing the path of the failure process; ql() ,  q2(') are quantities which depend on X and affect 
the failure process. Equation (3.2) can be integrated only when the loading history is given. 

Serious methodological problems must be overcome to make practical use of the approach based on equations with inseparable 
variables. 

3.2. Principle of Separability. An analysis of certain experimental results [23, 33] and some well-known hypotheses 
[19] shows that the only requirement [9, 14] for satisfaction of nonlinearity condition (2.12) is 

dco = / r  (or ( t ) ,w ( r ) ) d t ,  (3.3) 

where T = fftR(a ) is the corrected (normalized) time. 
Proceeding on the basis of (3.3), we can represent nonlinearity condition (2.12) in the form 

do) . dw 
d r  '~---1 = o,,~t = var and aa,-'z--L . . . . .  = var. (3.4) 

In accordance with (3.3) and (3.4), we find that the only those evolutionary equations which give stress-dependent kinetic diagrams 
in the corrected time scale lead to nonlinear damage-accumulation models. In other words, the corresponding kinetic diagrams 
should be stratified with respect to the stress parameter, i.e., be separable. 

It is not hard to show that that evolutionary equations (2.4)-(2.8), satisfying the hypothesis of linear damage summation, 
do not satisfy condition (3.3) because 

doJ 
d-~ = l, (3.5) 

dw 1 1 
dT  - (1 + k) (1 - co) k' (3.6) 
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d o  w ~ ' ( 1 - w ) k d o  , 
d--'T "~ (1 -~o) ~f  to p ao~, (3.7) 

do> ....... 1 
d r  - (1  - o~')k~o (1  - , o ' ) ~ , t c o ,  (3.8) 

d o  1 1 
d T -  (1 + k + q) (1 - oJ) k+q" (3.9) 

In addition, it can be seen that all of them are invariant to the stress level. 
3.3. Similarity Hypothesis. Compared to the linear formulation in [2], the initial relations of this hypothesis are 

obtained with the use of broader asstmaptions regarding the law which governs the change in the damage measure over time. 
We have the following for the damage measure in this case 

dto =fr(T,C~,Cz,. .  )d t ,  (3, lO) 

where nonlinearity in the sense of (2.12) is assigned by varying the coefficients C i in the structure of function fT- 
Practical use of the similarity hypothesis in the form (3.10) involves calculating residual time to rupture with single 

and multiple alternations of dissimilar damaging processes [5-7, 23, 25]. 
In another interpretation of the similarity hypothesis, loading history might be accounted for with the use of integral 

operators of the difference type. The evolutionary equation for the damage function in this case can be represented in the form 

[20] 
1 

d,o=L(,o ) f F(t-r)~(a)d~dt, (3.11) 
0 

where F(') and ~(.) are unknown functions. Practical realization of the determining equations in the form (3.11) is also limited 
by the possibilities for specifying the unknown functions. 

4. Nonlinear Damage Model Based on the Separability Principle. Of all of the methods examined above for constructing 
damage equations satisfying nonlinear conditions, only the method based on the separability principle has been used in practice 
[9, 12, 14, 26-29]. Such use entails selection and substantiation of the structure of the initial evolutionary equation, identification 
of the damage function, and formulation of the failure criterion. 

4.1. Initial Evolutionary Equations. A detailed anatysis was made in [13, t4] of the structures of the unknowns of 
different evolutionary damage equations and the conditions for using them to construct nonlinear models. In particular, it was 

shown that the initial equation should contain an additional nonlinear damage function with a nonlinearity index dependent on 
stress. In this case, differential equation (2.2) is written in the form 

d o  = / i  ( a ( t ) , ~  (t),C, ,C, ) l  I' (w ( t ) ,C  3 ( a ) ) a t ,  (4.1) 

where C3(a ) is a coefficient which depends on the stresses. 
The structure of evolutionary equations (2.6-2.8) conforms to initial equation (4.1). 
4.2. Criterion of Delayed Fracture. tn the general case of delayed static and cyclic loading, nonlinearity condition 

(3.3) can be represented by the relation 

dn . 
do  = / r  (a(t),¢o (T),- 'dT,a .... ) a T ,  (4.2) 

which also accounts for the loading frequency dn/dt and the rate of change in the stresses # (n = ft). 
To construct constitutive damage equations satisfying nonlinearity condition (4.2), we introduce two damage parameters 

and assign corresponding integral measures [12, 13, 24-27]. One of them characterizes the instantaneous (independent of time) 
component of damage ~ ,  while the other characterizes the temporal (time-dependent) component f~T- Each component is identified 
with a quantity corresponding to specific energy. 

We further assume that the energy expended on failure is a constant equal to the energy corresponding to one-time static 
failure W R. Thus, 

tl.  f~r 1, (4.3) 
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Here, ~0(') is the equation which gives the instantaneous strain diagram in the coordinates a--e; e R is the strain corresponding 

to the moment of failure according to this diagram. 

The quantity fl~ is also determined from the a--e diagram (the hatched region in Fig. 2a), and in the case of static loading 

we have [9] 
e o 

f~d=f  ~%(r)a~ + (r~ - %)or, (4.5) 
0 

In the case of cyclic loading, with allowance for the loading rate [27] 

Qo=aeb- ~f Ofo(Ct) da ' 
o d o  

(4.6) 

where a is the applied stress; e~ is the strain corresponding to this stress; e b is the strain corresponding to the ultimate strength 

%; fo is the inverse of the function ~o. 

The quantity f~T is determined from the normalized damage diagram (the hatched region in Fig. 2b) and is given by 

the mean value o~ m of the function ~ on the interval 0 <_ T _< 1. Thus, 

t R 

f~r ,~ f w ( t ) d t  , 
~=w !__o - f o~ (T )dT ,  (4.7) 
WR m tR o 

Here, for cyclic loading it is best to replace the corrected time T by the corrected number of cycles N. 

Allowing for Eqs. (4.4)-(4.7) for static loads and performing some simple transformations, we can obtain the condition 

expressing the balance between the instantaneous and time-dependent components of damage (4.3) in the form 

l ~b rb 

(4.8) 

For cyclic loads, the analogous condition has the form 

f ca d + e b (4.9) 
0 

Equations (4.8) and (4.9) can be interpreted as energy criteria of delayed fracture. 

4.3. Constitutive Equations of the Model. The construction of constitutive equations on the basis of the criteria 

formulated above reduces to selection and concretization of functions co(-) such that conditions (4.8) or (4.9) are satisfied. 
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Let us examine a specific variant of a nonlinear damage-accumulation model which employs either evolutionary equation 

(2.8) or, in the corrected time scale, the equation 

do~ 1 1 
dT-(l+k+q(a)) (1 - ~o)k*q(~)" (4.10) 

Here, in contrast to (3.9), we assume that the index q depends on the stresses - -  in accordance with (4.1). 
Inserting (4.10) into (4.8) or (4.9) and varying a, we concretize the dependence of q on a. As a result, the nonlinear 

damage model is given by a system of two equations including the initial evolutionary equation and the function q(a). Then 

for static loading we obtain [9, 14, 26] 

da~=D a 1 
, ,  

~b 

f,,oo (e) de 
o q (a)  - ,~ 

~ (~o (~) - a)d~ 

- ( 2  + k ) ,  

(4.11) 

while for cyclic loading [27] 

da~ a k 1 eb 
dn-D(~_~) ( l  _ w)¢(o), q (or) = fo(o. ) (2 + k ) ,  

(4.12) 

which, as can be seen, satisfies nonlinearity conditions (3.3) and (3.4). 

A graphical interpretation of solutions obtained on the basis of models (4.11) and (4.12) is shown in Fig. 3, a and b, 

respectively. As can be seen, the kinetic damage diagrams are stratified with respect to the stress parameter (a 5 > a 4 > o 3 

> a 2 > al). The time-dependent component of damag e typically decreases with an increase in stress in the case of static 
loading, while the opposite is seen for cyclic loading. 
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4.4. Base Experiment. To solve problems based on nonlinear models (4.11) and (4.12), it is necessary to have two 

groups of characteristics. The first group includes the coefficients k, q(a), and D and characterizes the resistance of a material 
to damage accumulation. The coefficients k and D are determined from standard stress-rupture or fatigue tests [9, 14, 27]. 

The second group includes the characteristics of short-term strength ~o0(a ), %, and E b. These characteristics are determined 

from standard tensile 0---e curves. 
The nonlinearity index q(a) is determined from known values of k and D and the characteristics ~po(Cr), o-b, and ebo 
4.5. Principal Mechanical Effects. The stress dependence of damage kinetics given by nonlinear models (4.11) and 

(4.12) makes it possible to account for the loading history in problems involving calculation of residual life under nonsteady 
loading. As an example, let us examine the classical problem of the additional loading (02 > Ol) and partial unloading (a 2 < 
~rl) of a material. The subscripts denote the sequences of stress application. Solutions can be obtained by using the simplest 
possible geometric constructions (Fig. 4). The regime involving additional loading is shown in Fig. 4a, while the regime involving 

partial unloading is shown in Fig. 4b. 
It can be seen that with the transition from a lower stress to a higher stress (Fig. 4a), the total time to failure will be 

less than unity in static loading (solid lines) but more than unity in cyclic loading (dashed lines). The opposite reaction is seen 
with the transition from a higher stress to a lower stress (Fig. 4b). Qualitatively speaking, the estimates obtained here are in 
complete accord with the well-known empirical data in [19]. 

5. Application to Creep and Fatigue Problems. As has already been noted, damage mechanics is used to solve many 
problems of practical importance. The most promising applications are for problems involving calculation of residual lifetime 
under nonsteady loading [2, 7, 9, 14, 19, 26, 27] when there is an interaction between two dissimilardamaging processes [3-7, 
10, 23, 25, 28, 29, 33]. Other areas in which damage mechanics is very useful include dynamic fracture-mechanics problems 
[18, 33, 34], particularly with respect to the mechanics of fatigue failure [2, 5, 8, 11, 12, 15, 16]. We will examine several 
examples from our previous studies. 

5.1. Lifetime under Stepped Loading. In a two-step static loading regime, we obtain the following if we assume that 

w(0-1) ---- 60(0"2) and perform some simple transformations [9, 26] 

t, t 2 
+ ( t - -~2) )  " " '  --- 1, (5.1) t~ ( al-""-- ~ 

where we have the following, respectively, for the additional-loading and unloading conditions 

1 + k  + q ( a , )  1 + k + q ( a , )  
~ , ( t r ) -  1 + k + q ( ~ )  < 1; ~(a)-l+k+q(tr2)z,1, (5.2) 

since q(0"z) > q(0"1)at 0"2 > 0"1 and q(o2) < q(ol)at 0"2 < 0"i. 
The results of calculations (dashed lines) performedwith Eq. (5.1) are compared in Fig. 5a with experimental data (points) 

for alloy t~I437B at 0 = 750°C, 0"1 = 300 MPa, and o 2 = 400 MPa. 
To evaluate lifetime for two-step cyclic loading, we used Eq. (4.12) to obtain a relation [27] similar to (5.1) in structure 

but corresponding to additional-loading conditions 3'(0-) > 1 and unloading conditions 3"(0-) < 1. The results of the calculations 
are shown in Fig. 5b for alloy t~I437B at 0 = 800°C, cr 1 --- 200 MPa, and 0-2 = 300 MPa. 

5.2. Interaction of Creep and Fatigue. Such interaction normally includes processes oCcurring when creep and fatigue 
take place at the same time or alternately [5-7, 10, 25, 28, 29]. The initial evolutionary equation for total damage ~ in this 

case is written in the form [7, 28, 29] 

dtox 
d ,  = ~t  (tr't°z) + ~n  (tr't°~)' (5.3) 

where it is assumed that the quantity ws is determined by summing the creep damage o~ c and fatigue damage wf. 
When a material first undergoes creep for the time t c, after we perform some simple transformations we obtain the following 

[28, 29] for the time to failure tRS from (5.3) with allowance for (4.11) and (4.12) 

t .~=t  + %(~,) (1 t ,÷5+,tc*~ 
t . ,  ( -o ' ) ) '  * ~ * q'( ' ) '  (5.4) 

while when the material is first loaded in fatigue for the time tf 
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Here, tRf(a) and tRc(a) are the times to failure from fatigue alone and from creep alone; k c, qc and kf, qf are coefficients 

determined on the basis of the rupture-strength curve and fatigue curve, respectively. 
The problem of calculating lifetimes in the case of the simultaneous action of creep and fatigue is solved numerically, 

by stepwise integration of Eq. (5.3) [7, 25, 28, 29]. 
The results of calculations (dashed lines) performed with Eqs. (5;4) and (5.5) are shown in Fig. 5c with experimental 

data (points) for alloy t~I867 at 0 = 900°C in the regime creep (a = 300 MPa) ~ fatigue (a = 200 MPa) and the regime 
fatigue (o = 200 MPa) ~ creep (or = 300 MPa). Similar results are presented in Fig. 5d f or alloy I~I867 at 0 = 900°C when 

creep and fatigue act simultaneously and different stresses are applied. 
On the whole, comparison of the theoretical and experimental data shows that the nonlinear models of damage 

accumulation constructed here adequately describe the actual processes that take place. This is illustrated first of all by the fact 

that the loading history can be accounted for on the basis of the models. 
5.3. Growth of Fatigue Cracks. Damage mechanics can be used most naturally as the "driving force" in crack-growth 

problems not connected with an increase in the load. The explanation for this is fairly simple, in that the damage itself takes 

the form of microcracks which, upon merging, form a macrocrack. The feasibility of using damage mechanics to solve crack 
mechanics problems was demonstrated by Kachanov [18]. This idea has been further developed in many subsequent studies 

-- particularly as it pertains to creep problems. 
Less progress has been made in regard to the problem of fatigue failure. One possible approach was examined in [5, 

8, 12]. In particular, the authors of [12] obtained the following for the rate of fatigue crack growth If at different points of 

isotropic plates subjected to axial loading [12] 

_1 (AK)  kt (5.6) (1 + c, , - ,  

a,, (2 ~) , / [2a  (t:)l~t_, 

where AK is the amplitude of the stress-intensity factor; h(lf) is the size of the plastic zone, dependent on the running length 
of the crack; kf and Cf are coefficients determined from standard fatigue curves. 
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To a certain extent, model (5.6) makes it possible to generalize existing empirical relations, since the index kf can take 
values from 2 (for ductile materials) to 10-12 (for brittle materials), depending on the law governing the change in )x(.)o 

Conclusion. In recent decades, damage mechanics has become an independent field of study within the mechanics of 
deformable solids. Many phenomena which previously had no explanation can now be regarded as consequences of damage 
initiation and development, and many unresolved problems have been reduced to qualitative and quantitative evaluations making 
use of damage functions. This applies in particular to embrittlement processes occurring during creep, the growth of microcracks 
and the formation of macrocracks, the effect of the medium, friction and wear processes, and fatigue phenomena. Damage functions 
have been used in creep theory to construct constitutive equations which allow description of all of the characteristic stages 
of the process and calculation of the time to failure for structural elements. Exploration of the relationship between damage 
mechanics and crack mechanics has proven very fruitful. 

The use of damage mechanics shows the most promise in regard to calculation of the total and residual life of materials 
under nonsteady loading conditions, evaluation of the interaction of qualitatively different processes, and the solution of dynamic 
fracture mechanics problems. 

REFERENCES 

I .  

2. 
3. 
4. 
5. 

6. 
7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 
18. 
19. 

20. 
21. 

E. Becker, "Continuum thermomechanics," in: Mechanics of Deformable Solids: Trends in Research (collection of 
articles edited by G. S. Shapiro) [Russian translation], Mir, Moscow (1983), pp. 257-273. 
V. V. Bolotin, Predicting the Safe Life of Machines and Structures [in Russian], Mashinostroenie, Moscow (1984). 
V. P. Golub, "One approach to determining cyclic creep strains," Probl. Proehn., No. 11, 27-30 (1979). 
V. P. Golub, Cyclic Creep of Heat-Resistant Materials [in Russian], Nauk. Dumka, Kiev (1983). 
V. P. Golub, "Evaluating endurance under high-temperature high-cycle loading," Zh. Mekh. Tekh. Fiz., No. 2, 68-76 
(1984). 
V. P. Golub, "Time to failure during the interaction of creep and fatigue," Mashinovedenie, No. i, 69-74 (1985). 
V. P. Golub, "Damage and unidirnensional probtems of failure under cyclic loading conditions," Prild. Mekh., 23, 
No. 10, 19-29 (1987). 
V. P. Golub, "Nonlinear damage mechanics and its application," Crack Resistance of Structural Elements and Materials 
[in Russian], Kiev (1980), pp. 19-20. 
V. P. Golub, "Nonlinear models of damage accumulation under creep conditions," Probl. Mashinostr. Avtomat., No. 
1, 51-58 (1992). 
V. P. Golub and I. I. Ishchenko, "Deformation and fracture of heat-resistant materials under high-cycle loading," Prikl. 
Mekh., 21, No. 4, 57-65 (1985). 
V. P. Golub and E. A. Panteleev, "Damage accumulation and calculation of the fatigue life of rods under axial loading," 
Probl. Prochn., No. 4, 3-12 (1992). 
V. P. Golub and A. V. Plashchinskaya, "Fatigue life of thin plates with cracks with allowance for damage to the material0" 
in: Thermoviscoelastoplastic Deformation Processes in Structural Elements: Summary of Documents of a Conference, 
Kiev (1992), p. 20. 
V. P. Golub and A. V. Romanov, "Kinetics of damage in isotropic materials under creep conditions," Prikl. Mekh., 
25, No. 12, 107-115 (1989). 
V. P. Golub and A. V. Romanov, "Problem of constructing nonlinear models of damage accumulation in creep," Probl. 
Prochn., No. 6, 9-14 (1990). 
V. P. Golub, E. A. Panteleev, and A. V. Romanov, "Calculation of the endurance of rods in tension-compression," 
in: Structural Dynamics of Civilian Hovercraft [in Russian], Izd. KIIGA, Kiev (1987), pp. 70-77. 
V. P. Golub, E. A. Panteleev, and A. V. Romanov, "Calculation of the fatigue life of smooth and notched rods in axial 
loading," in: Reliability and Strength of Machine Elements [in Russian], Izd. KuAI, Kuibyshev (1988), pp. 4-11. 
A. A. II'yushin, "Theory of long-term strength," Mekh. Tverd. Tela, No. 3, 21-35 (t967). 
L. M. Kachanov, Principles of Fracture Mechanics [in Russian], Nauka, Moscow (1974). 
J. Collins, Damage to Materials in Structures: Analysis, Prediction, Prevention [Russian translation], Mir, Moscow 
(t984). 
V. V. Moslcvitin, Cyclic Loads on Structt~al Elements [in Russian], Nauka, Moscow (1981). 
V. V. Novozhilov, "Plastic loosening," Prikl. Mat. Mekh., 29, No. 4, 681-689 (1965). 

803 



22. 
23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966). 

J.-L. Chaboche, "Continuous damage mechanics -- a tool to describe phenomena before crack initiation," Nucl° Eng. 
Des., No. 64, 233-247 (1981). 
B. F. Dyson and F. A. Leckie, "Damage equations for physically based creep life," in: Proc. 7th Intern. Conf. on Fracture 
(ICF), 3, 2169-2176 (1989). 
V. P. Golub, "Lebensdauer warmfester Legierungen unter den Bedingungen des Zusammenwirkens von Krieck -- und 
Ermudungsprozessen," Warmfeste Metallish Werksoffe, VI Symposium (1987), pp. 22-34. 
V. P. Golub, "Nonlinear models of creep damage accumulation," Mechanics of Creep Brittle Materials, Vol. 2, Elsevier 
Appl. Science, London--New York (1991), pp. 254-267. 
V. P. Golub, "Nonlinear models of fatigue damage accumulation," in: Mechanical Fatigue of Metals, Vol. 2, Kiev 
(1992), pp. 228-236: 
V. P. Golub, "Creep-fatigue interaction and lifetime prediction," 4th Int. Symposium on Creep and Coupled Processes, 
Bialystok (1992). 
V. P. Golub, "Nonlinear models of creep and fatigue life of nickel base superalloys," 5th Int. Conf. on Creep, New 
York (1992). 
A. A. Griffith, "The phenomena of rupture and flow in solids," Philos. Trans. R. Soc. London, A211, No. 2, 163-198 
(1920). 
N. J. Hoff, "The necking and rupture of rods subjected to constant tensile loads," J. Appl. Mech., 20, No. 1,105-108 
(1953). 
G. R. Irwin, "Anaysis of stresses and strains near the tip of crack traversing a plate," J. Appl. Mech., 24, No. 3,361-364 

(1957). 
J. Lemaitre, "Coupled elastoplasticity and damage constitutive equations," Computer Methods in Applied Mechanics 
and Engineering, No. 51, 31-49 (1985). 
S. Murakami, M. Kawai, and H. Rong, "Finite element analysis of creep crack growth by a local approach," Int. J. 
Mech. Sci., 30, No. 7,491-502 (1988). 

804 


