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Abstract. Pediatric transplantation has always been chal- 
lenging for transplant surgeons. Although the higher im- 
munoreactivity and the faster metabolism showed by this 
unique population when compared with adults requires a 
heavy immunosuppresslve regimen, the possibility of dis- 
rupting the delicate balance of correct psychophysical 
development calls for a regimen of more selective and less 
toxic immunosuppressive drugs. In the past decade several 
new drugs have been investigated and some of them appear 
to be very promising, although pleiotropic toxicities have 
not yet been eliminated. An appropriate pharmacokinetic 
approach and the evaluation of synergistic multi-drug 
combinations by rigorous mathematical models would lead 
to highly selective immunosuppressive regimens which 
may result in virtually no toxicity. 
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History of immunosuppression 

Although the concept of transplantation is rooted in my- 
thology [1], it has only been during the past half century 
that surgical experience and immunological knowledge 
have resulted in its routine clinical application. Despite the 
success of identical twin renal allografts performed by 
Murray in collaboration with Merrill et al. 1956 [2], not 
until 10 years later were transplants successful in children 
[3]. With better understanding of the immunobiology of 
rejection, increasing numbers of transplants were success- 
fully engrafted into children during the subsequent decade 
[4, 5]. The obstacles to uniform success of transplants are, 
on the one hand, the more powerful immune responses of 
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children and, on the other hand, the need of pediatric re- 
cipients for a minimally toxic immunosuppressive regimen 
in order to achieve the optimal rate of growth and develop- 
ment. The major advance that addressed these obstacles 
was the introduction of the fungal endecapeptide cyclo- 
sporine (CsA) which provided a relatively specific action 
on T cells [6], in contrast to the nonselective drags, such as 
azathioprine (Aza) and corticosteroids, introduced in the 
clinical arena by Murray et al. [7] and Goodwin et al. [8], 
respectively, which act on elements of both specific and 
nonspecific resistance. A second advance in immunosup- 
pressive therapy was the evolution of antilymphocyte pre- 
parations from polyclonal antilymphocyte sera, produced 
in horses or rabbits, which act against cell surface determi- 
nants present on human T and B lymphocytes, as well as 
on monocytes, granulocytes and platetets, to the murine 
monoclonal antibody OKT3 [9], which specifically recog- 
nizes distinctive surface markers on T cell plasma mem- 
branes. Although the integration of these agents into a 
variety of immunosuppressive regimens has improved the 
likelihood of transplant success, these regimens still pro- 
duce considerable morbidity and do not effectively control 
rejection mechanisms leading to graft loss in the long term. 

Agents and their actions 

The current immunosuppressants can be divided into two 
groups based upon whether they act on a variety of tissues 
in a nonselective fashion [steroids, Aza, cyclophosphamide 
(Cy)], in addition to their actions on the immune system, or 
whether they specifically affect T and/or B cells by either 
inhibiting signal transduction pathways (CsA, FK506) or 
by recognizing selective T cell surface markers (polyclonal 
and monoclonal antibodies). 

Steroids 

Steroids act in the initial phase of the immune response by 
inhibiting the synthesis of co-stimulating lymphokines, in- 
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cluding interleukin-1 (IL-1) [10] and IL-6 [11], by antigen- 
presenting cells. After steroids bind to them, intracyto- 
plasmic heat-shock proteins translocate across the nuclear 
membrane to bind to specific DNA sites, thereby inhibiting 
gene transcription [12, 13]. In the pharmacological doses 
used for the treatment of rejection, steroids also drive lym- 
phocytes out of the circulation, stabilize the membranes of 
cells under irmnune attack and interfere with the synthesis 
of other cytokines. Although steroids are potent immuno- 
suppressive and anti-inflammatory agents, their pleiotropic 
side effects, including growth retardation, disfiguration, 
myopathy and osteopenia, make them a particularly haz- 
ardous class of drugs for pediatric patients. 

Aza and related antipurine nucleoside drugs 

pholinoethyl ester of mycophenolic acid, produced by the 
fungus Penicillin glaucum, which also blocks de novo 
purine synthesis [25, 26]. The drug is now undergoing 
multicenter phase III investigations in renal allotransplan- 
tation, since preliminary work suggests that in doses of at 
least 2,500 mg it reduces the incidence of acute rejection 
episodes [27]. The long-term use of MZB or RS-61443 in 
pediatric patients is likely to produce adverse side effects 
akin to those of Aza. 

Although it is thought that the drug combination 
MZB/CsA results in a better therapeutic effect than does 
Aza/CsA [24], MZB, mycophenolic acid (MPA) MPA and 
Aza have been shown in a rigorous mathematical model to 
exert only an additive effect when combined with CsA 
using in vitro assays [28]. 

Aza is a nitroimidazole derivative of the thiopurine drug 
6-mercaptopurine (6-MP) [ 14] that was synthesized to pro- 
tect the sulfhydryl group of 6-MP from in vivo methylation 
and subsequent oxidation. The immunosuppressive activi- 
ty of Aza depends primarily on the formation of intracellu- 
lar thiopurine ribonucleotides, which requires the conver- 
sion of 6-MP into thioinosinic acid by hypoxanthine 
guanine phosphoribosyltransferase (HGPRT) [15]. 
Thiopurines inhibit purine synthesis by competitive 
enzyme inhibition of both de novo and of salvage path- 
ways, which involves the interconversion of purine bases 
[16]. Because Aza appears to more potently inhibit mixed 
lymphocyte reactions (MLR) than 6-MP [17, 18], addition- 
al mechanisms of action have been postulated, including 
the generation of unique drug metabolites by hepatic alde- 
hyde oxidase via alternate catabolic pathways which by- 
pass the generation of 6-MP. This catabolic cascade, which 
eventually generates thiouric acid, may include intermedi- 
ates that display immunosuppressive properties [19]. A 
second hypothesis for the greater activity of Aza postulates 
that Aza causes cell surface action by alkylation of thiol 
groups, distinct from its antimitotic effect, and is based 
upon the capacity of Aza to inhibit formation of sheep 
erythrocyte rosettes around T cells [20, 21] and the MLR 
reactions by T cells from HGPRT-deficient patients [22]. 
Although Aza still tends to be used as a third agent with 
CsA and steroids, there is no evidence that it provides a 
major contribution. Furthermore, continued hepatic dys- 
function, increased susceptibility to malignancy and 
troublesome papillomatosis becloud the long-term admin- 
istration of Aza. 

Newer antipurine nucleosides 

The newer agents, Mizorbine (MZB) and RS-61443, act as 
noncompetitive inhibitors and are not incorporated into 
DNA, two advantages over Aza. MZB, a hydrophilic imid- 
azole nucleoside antibiotic isolated from EupeniciIIum 
brefeldianum, impairs T cell function by also depleting 
intracellular stores of guanosine monophosphate [23]. 
Widespread experience in Japan suggests that the drug is at 
least equally efficacious as, without producing the hepatic 
injury of, Aza [24]. RS-61443 is the semisynthetic mor- 

Cyclophosphamide 

Cy, synthesized in 1958, is an oxazaphosporine-substituted 
nitrogen mustard that acts as an alkylating agent [29]. The 
drug, originally developed as an anticancer compound, 
displays cytotoxic selectivity for neoplastic tissue with a 
better therapeutic index than other nitrogen mustard ana- 
logues [30]. After the loss of a chlorine atom and the 
formation of a positively charged intermediate, the drug 
irreversibly binds to nucleophilic sites, the most important 
of which are nucleic acids, thereby causing DNA cross- 
linking and cell death [31, 32]. Cy markedly depresses 
primary humoral responses in experimental animal models 
[33, 34] and inhibits human lymphocyte proliferation in 
response to the nonspecific mitogens phytobemagglutinin 
and pokeweed, as well as to specific antigens, purified 
protein derivative, candida and mumps [35-37]. Clinical 
transplantation has utilized Cy treatment in place of Aza in 
recipients suffering hepatic injury [38, 39] or for donor 
pretreatment in an attempt to reduce the content of passen- 
ger leukocytes in transplanted organs [40, 41]. Due to its 
high degree of toxicity and its narrow therapeutic window, 
Cy is rarely used for transplant immunosuppression today. 

Selective anti-T cell agents polyclonal antilymphocyte 
preparations 

Polyclonal antilymphocyte sera, which were first prepared 
by Metchinkoff at the beginning of the century [42], are 
obtained by immunizing animals with human lympho- 
blasts or thymocytes. The polyclonal reagents, regardless 
of their source (rabbit or equine), opsonize T cells, thereby 
leading to their removal from the circulation, reducing 
their numbers from 200- 500/mm3 to 50-150/ram 3. Addi- 
tional mechanisms such as blindfolding, altered reactivity, 
or inactivation of residual T cells may explain the long- 
term immunodepression observed in some patients long 
after the completion of the therapeutic course. Although 
they represent the most powerful antirejection agents pre- 
sently available, polyclonal sera produce a high degree of 
patient morbidity due to their unmasking of viral infec- 
tions, particularly polyclonal lymphoproliferative diseases. 
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Monoclonal antibodies New CsA formulation and analogues 

Although monoclonal antibodies offer greater purity and 
molecular specificity, the widely used OKT3 (Orthoclone, 
Raritan, NJ), an IgG2a which binds the 17-kDa e chain of 
the T lymphocyte pentapeptide surface antigen CD3 [43, 
44], which transduces T cell receptor signals, is associated 
with serious toxicity and only moderate immunosuppres- 
sire activity. 

Although high doses of OKT3 (10 mg) may opsonize 
circulating T lymphocytes, leading to their disappearance 
from the circulation [45], at the usual 5-mg doses it causes 
antigenic modulation of the CD3 complex from the T cell 
surface membrane without depletion. This modulation dis- 
rupts T cell recognition and signal transduction, thus pro- 
ducing immuno-incompetent T cells [46]. The limitations 
of OKT3 therapy include severe first-dose reactions due to 
the release of the lymphokine tumor necrosis factor and 
IL-2, adverse central nervous system effects, such as asep- 
tic meningitis, induction of human antimouse antibodies, 
generally of the anti-idiotype variety, but not uncommonly 
of broader reactivity, a not infrequent incidence of rebound 
rejection episodes upon completion of the therapeutic 
course, susceptibility to opportunistic viral infections and 
after multiple courses, a high incidence of post-transplant 
lymphomas, particularly when used after previous admin- 
istration of antilymphocyte serum. 

Cyclosporine 

CsA is a cyclic endecapeptide of molecular weight 
1,202 Da which is extracted from the fungus imperfecti 
Tolypocladium inflatum gams. Of the 11 amino acids, 7 are 
N-methylated, thus conferring an overall hydrophobic 
character with a hydrophilic active site, including residues 
11, 1, 2 and 3, towards the interior of the cyclic structure. 

CsA inhibits T cell synthesis of IL-2, IL-3, interferon-y 
(IFN-7), IL-6 and IL-7, while its effects on IL-1 and IL-2 
receptor generation remain controversial [47-49]. 
T helper and T cytotoxic cells are the primary targets of 
CsA; T suppressor cells are spared, probably due to their 
CsA-resistant activation cascade [50]. At the molecular 
level, CsA inhibits processes which depend on increased 
cytoplasmic calcium (Ca) burst. CsA binds to a cyto- 
plasmic protein, cyclophilin (CYP), which displays cis- 
trans-peptidyl-prolyl-isomeraseactivity [51]. Binding to 
CYP causes the hydrophilic group at position 1 of CsA to 
evert from the interior to the exterior of the molecule [52], 
to presumably convert the pro-drug to an active moiety. 
Liu et al. [53] and Friedman and Weissman [54] suggested 
that CsA binding changes the substrate affinity of the 
isomerase. CsA-CYP complexes with Ca 2§ calmodulin 
and calcineurins (CAN) A and B, thereby generating a 
pentameric unit which inhibits CaN phosphatase activity 
and consequently cleavage of the phosphate from the 
nuclear factor of activated T cells, NF-AT, the first regula- 
tory protein controlling the enhancer region of the IL-2 
gene. 

Numerous CsA analogues have been tested in an effort to 
improve the drug's therapeutic window [55]. Cyclosporin 
G is a naturally occurring analogue which bears a L-norva- 
line substituent at position 2. In several experimental mod- 
els the drug displays immunosuppressive effects equal to 
CsA [56-58], but less nephrotoxicity in Wistar rats [59]. 
Initial clinical trials suggested that the drug can produce 
hepatotoxicity; however, recent trials suggest that this ef- 
fect is dose related and that slightly better renal function is 
experienced than achieved with empirical, nonconcentra- 
tion controlled regimens of CsA. 

SDZ IMM-125 (Fig. 1) is a hydroxyethyl derivative of 
D-serine 8-cyclosporine which is only slightly more potent, 
but far less nephrotoxic, than CsA in animal and in vitro 
endothelial cell culture experimental models [60, 61]. Ini- 
tial clinical trials were complicated by a failure to recog- 
nize the unique pharmacokinetics of the compound. The 
agent has two possible applications: as a substitute for 
CsA, in order to achieve better renal function, or as a drug 
to be used at high doses in order to achieve greater immu- 
nosuppression without the increased hazard of nephrotox- 
icity, the latter possibly being more important in pediatric 
practice. Some small children display low CsA absorption, 
less than 20% of the administered dose. Attempts to in- 
crease CsA bioavailability have involved the concomitant 
administration of vitamin E [62] or pancreatic enzyme pre- 
parations. 

A recent advance is the dispersion of CsA in a glyco- 
furol preconcentrate that forms a microemulsion. This 
formulation displays a twofold enhanced bioavailability 
over the existing liquid or gelcap preparations. Its absorp- 
tion appears to be less dependent on bile than are the olive 
oil- and corn oil-based formulations. 

Optimal immunosuppressive regimens for the pediat- 
ric population using available agents 

Although numerous combinations of the above agents have 
been advocated by various groups, the majority (75%) of 
immunosuppressive protocols for pediatric kidney re- 
cipients utilize CsA, steroids and Aza, as documented by 
the 1989 report of the North American Pediatric Renal 
Transplant Cooperative Study [63]. Clearly, CsA is the 
linchpin of therapy, although the optimal regimen remains 
controversial. 

The first issue of debate is the time of inception, some 
workers preferring immediate post-transplant treatment 
and others delaying treatment for as long as 1 week after 
transplantation. Since most investigators believe that pedi- 
atric patients as a group are at high risk for rejection, there 
is widespread use of antilymphocyte preparations for in- 
duction therapy lasting between 5 and 10 days. Further- 
more, in pediatric transplant recipients, CsA displays phar- 
macological properties distinct from those found in adult 
transplant recipients [64], namely poorer absorption and 
much more rapid clearance rates. In addition, the plei- 
otropic toxicity of the drug demands appropriate adjust- 
ment of the management strategy in order to achieve thera- 
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peutic blood concentrations without nephrotoxicity, a par- 
ticularly worrying complication in children, who depend 
upon adequate allograft function for optimal growth 
[65, 66]. 

In studies using empirical methods the median initial 
CsA dose was 9.6 mg/kg per day and the maintenance 
dose, at 60 days posttransplant, 5.7 mg/kg per day. In con- 
trast, a pharmacokinetic strategy has been advocated in 
order to increase the efficacy of CsA management during 
the induction and maintenance phases of immunosuppres- 
sion [67-70]. During the induction period, our individual- 
ized pharmacokinetic approach allows administration, by 
continuous intravenous infusion, of a dose determined by 
the results of a pretransplant pharmacokinetic study. This 
dose successfully achieves steady-state concentrations of 
400 ng/ml. By using similar calculations based upon pre- 
and post-transplant test oral doses, the oral CsA dose is 
calculated to achieve a therapeutic target average concen- 
tration of 550 ng/ml per 24 h (area under the curve/unit) 
during the 1st post-transplant month. Monthly dosage ad- 
justments then lower the target values, 500 ng/ml per 24 h 
at 2 months, 450 ng/ml per 24 h at 4 months and 400 ng/ml 

per 24 h at 6 months. The dosing interval is determined by 
the patient's rate of CsA clearance. Frequently children 
under 10 years of age require dosing three times a day, 
particularly when they are under simultaneous treatment 
with antiseizure medications. 

The importance of an Aza component is directly related 
to the expertise and comfort of the physician with CsA 
dosing. Triple therapy is not uncommon during the first 
6 months, although no controlled studies document its real 
benefit over dual-drug regimens. At 6 months, if the child 
has had a benign course, one may consider withdrawing 
one drug. If the child has the potential for further growth, it 
may be reasonable to withdraw steroids. If growth is not an 
important aspect, it may be wiser to withdraw Aza and thus 
to reduce the risk of hepatic injury and lymphoproliferative 
disorders. Clearly the withdrawal should be performed 
slowly, generally over a 3-month period, with careful fol- 
low-up for the next 6 months. In the case of living-related 
donor grafts, in vitro MLR and cell-mediated lympholysis 
assays prior to withdrawal may be useful to select and 
monitor candidates at low risk of rejection upon withdraw- 
al of one agent. 
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Fig. 2. New immunosuppressive macrolides rapamycin 
and FK506 
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New immunosuppressive agents 

The optimal drugs would selectively interfere with the 
maturation and proliferation of allospecific T cells with 
minimal nonimmunological effects, however, even the 
newer, promising agents all display pleiotropic toxicities. 
Although children, particularly those under 10 years of 
age, may be less likely to display the nephrotoxic effects of 
CsA, their high level of immunoreactivity [71] appears to 
be associated with a CsA resistance. Thus there is special 
interest in the new immunosuppressive agents examined 
over the last few years: FK506, rapamycin (RAPA) and 
brequinar (BQR). 

FK506 

FK506, a polycyclic macrolide produced by a strain of 
Streptomyces tsukubaensis (Fig. 2), inhibits the production 
of IL-2, IL-3 and IFN-y by T cells in vitro [72]. Like CsA, 
FK506 also perturbs Ca 2+, particularly intracellular path- 
ways, but its effects upon T cell alloresponses are 10- to 
100-fold more potent than those of CsA [73, 74]. Because 
FK506 and CsA appear to act on a common pathway, their 
immunosuppressive effects are antagonistic to each other 
[75]. A preliminary nonrandomized study of liver re- 
cipients showed that FK506 therapy displays greater neu- 
rotoxic, equivalent nephrotoxic, but possibly fewer hyper- 
tensive complications than does CsA [76]. FK506, has 
clearly failed to improve the results of kidney transplanta- 
tion, because it does not provide better rejection prophy- 
laxis than CsA [77]. While the results of randomized trials 

have not yet been reported, it is likely that the high degree 
of toxicity of the agent will only be overcome when the 
unreliable enzyme-linked immunoassay has been replaced 
by an accurate, sensitive measurement technique to guide 
concentration-controlled trials. 

Rapamycin 

RAPA (914.2 Da), a macrolide produced by the actinomy- 
cete Streptomyces hygroscopicus, is structurally related to 
FK506, except for a triene segment and a distinctive cyclo- 
hexane moiety (Fig. 2). Unlike CsA and FK506 which 
affect lymphokine synthesis, RAPA potently inhibits re- 
ceptor-mediated cellular activation events [78] in the G1 
phase of the cell cycle [79]. The drug does not interfere 
with the binding of radiolabelled IL-2 lymphokines to its 
IL-2 receptor, nor does it interfere with the phosphoryla- 
tion of the 75-kDa beta-chain of the IL-2 receptor. In 
contrast, RAPA inhibits an enzyme p7056 kinase inase [80] 
involved in the G1 build-up and also blocks the endocyto- 
sis of the IL-2/IL-2 receptor complex. Because the site of 
action of RAPA is distal to that of CsA in lymphocyte 
activation [81], the two drugs show a synergistic interac- 
tion which may be of great clinical importance in permit- 
ting the reduction of the dose of each drug and thereby 
achieving effective immunosuppression with virtually no 
toxic side effects [82]. 

Brequinar 

BQR is a synthetic difluoroquinoline carboxylic derivative 
which noncompetitively and reversibily inhibits mito- 
chondrial dihydro-orotate dehydrogenase, the fourth 
enzyme in the de novo pyrimidine biosynthesis pathway 
[83, 84]. BRQ (Fig. 3) has two distinct effects: in addition 
to its effect as an antiproliferative agent which interferes 
with DNA synthesis, it also more importantly may show 
some effect on RNA synthesis and inhibit glycoprotein 
synthesis through a reduction in the generation of uridine 
diphosphate glycosylated compounds. The results of the 
rigorous median-effect analysis, show that there was not 
only an additive relationship between CsA and/or Aza, 
MZB or MPA, but a synergistic interaction between CsA 
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and /o r  R A P A  and B Q R ,  in bo th  in v i v o  and  in v i t ro  sys- 
t ems  [28]. Fu r the rmore ,  p e r m a n e n t  su rv iva l  o f  he t e ro top i c  
ca rd iac  t ransplants  is a c h i e v e d  in a rat  m o d e l  w i th  m o d e s t  
doses  o f  the  t r ip le  c o m b i n a t i o n  C s A  (0.5 n g / k g  per  day) ,  
R A P A  (0.01 m g / k g  per  day)  and B Q R  (2.0 m g / k g  pe r  day) ,  
d e m o n s t r a t i n g  the  poss ib i l i t y  o f  a c l in ica l  synerg i s t i c  
s t ra tegy  that  a ch i eves  e n h a n c e d  and  m o r e  spec i f i c  i m m u -  
n o s u p p r e s s i o n  wi th  m i n i m a l  toxic i ty .  
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