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Interest in the interaction of elastic structures with moving objects has increased 
dramatically with the development of high-speed ground transportation and the increase in 
the speed of operation of machines and mechanisms (see, for example, [i, 2]). In spite 
of the many studies which have been performed, however, wave processes which arise in 
carrying structures, in particular, effects due to wave formation and the accompanying 
pressure effect of the waves on moving objects, have not been studied [3]. From the prac- 
tical viewpoint, the case when the structure is substantially nonuniform is of greatest in- 
terest. The uniform motion of an object along a structure is accompanied by excitation of 
elastic waves. It is natural to call this phenomenon, by analogy to the phenomena first 
described in [4] in application to electromagnetic waves, transition radiation. 

In the present paper we give a general formulation of the problem of the interaction 
of a moving concentrated object with a nonuniform elastic guide [3]. The uniform motion of 
a body along an infinite string on an elastic base is investigated in detail. It is shown 
that in the case of motion of a body near a region of nonuniformity (clamping point) transi- 
tion radiation arises in the string and in the process the waves propagating along the string 
exert a pressure on the body. An expression relating the work of this force and the energy 
of the radiation is derived. 

i. Consider a one-dimensional elastic system, whose motion is defined in the region D: 
{=~t~ ~, e~x~ b} and is characterized by the Lagrangian 

b 

L = ~ . ( z ,  t)dx, 
a 

where % = %(t, x, U(x,t); U t, Ux) the Lagrangian density; U(x, t) is the vector of generalized 
coordinates with the components Uz, U 2 ..., U n, under the assumption that a finite jump in 
the parameters of this system (for example, the density per unit length, the elasticity of 
the base, etc.) occurs at x = d (a < d < b). 

Let a concentrated object, characterized by the Lagrangian L ~ = L~ y(t), y, l(t), ~ and 

vector of generalized coordinates with the components Yl, Y2 ..... Ym, move along an elastic 
system according to some law x = /i(t): 

We assume that the elastic system and the motion of the concentrated object are continu- 
ous at x = l(t): 

u.(t, l ( t )  - 0)  = u . ( t ,  z(t) + 0) = y . ( t ) ,  ~ = 1, p ;  p ~< n ,  m .  (Z.l) 

Then, according to the Hamilton--Ostrogradskii principle, 

5~(LwL ~ ~ Q(t) 6gW R6l +5 q(x,t) Udx dt=O. (1.2) 
a 

Here Qi(t)  and q ( x ,  t )  a r e ,  r e s p e c t i v e l y ,  v e c t o r s  o f  t he  e x t e r n a l  g e n e r a l i z e d  c o n c e n t r a t e d  
and d i s t r i b u t e d  f o r c e s  and R ( t )  i s  t h e  t o t a l  f o r c e  ( i n c l u d i n g  t h e  e x t e r n a l  and d i s s i p a t i v e  
f o r c e s ) ,  which g i v e s  r i s e  to  t h e  mot ion  a c c o r d i n g  t o  t he  law x = / ( t ) .  

Pe r fo rming  t h e  v a r i a t i o n  in  Eq. ( 1 . 2 ) ,  a p p l y i n g  t h e  c o n d i t i o n  ( 1 . 1 ) ,  and e q u a t i n g  wi th  
t h e  same v a r i a t i o n s ,  we o b t a i n  t h e  b o u n d a r y - v a l u e  problem [3,  5] 
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OL o o% o ol qh 
"ov~ Ot ou~ O, ey~ + (x, t) = O, k = l ,  n, 

OL ~ d OL ~ 
o-r - dt " + B (t) = [T  - -  ip ]x=~( , ) ,  

em dora [0 _i + Q (t) = > ? 

OL ~ d OL ~ 
+ Q v ( t ) = O ,  ? = p + l ,  m, 

Oy v dt �9 Oy? 

I ] [uq~=~= ov~ ==~ 
---- O, U (t, a) = ~0 (t), U (t, b) = ~ (t), 

(1.3) 

where T ~-- U~oX. k o~ ~, p = U~ ; and F = --[T -- ip]x=t(O is the pressure forceLexerted by 
k=l OUx h=l  

the waves on the moving object; the brackets denote the difference between the 
values of the enclosed quantity to the right and left of the indicated value of x. The 
functions ~ (t) and ~(t) are assumed to be given. 

The boundary-value problem (1.3) describes the interaction of a moving concentrated 
object with a nonuniform elastic system. One can see that the oscillations of the object 
and the guide are coupled. It is especially important to take this factor into account for 
mechanical systems because real objects have high inertia. 

2. As an example, consider Winkler's model of the motion of a body of mass m, located 
in a gravitational field, along a semiinfinite string on an elastic base (Fig. I). The 
Lagrangian of the string and the Lagrangian of the moving concentrated system in this case 
have the foI~ [3] 

t )~(x, t) = . ~ ( p U ~ _ N U ~ _ k U 2 ) , .  LO(t ) =m_2( l'2 + y 2  2gy).. ( 2 . 1 )  

Here U(x, t) is the amplitude of small transverse oscillations of the string; p is the den- 
sity per unit length; N is the tension; and ~k is the stiffness of the elastic base. 

Substituting Eq. (2.1) in Eq. (1.3) we obtain 

Utt --  c~U~ + h~U = O, x <~ O, --co < t < -{-oo, 
c 2 - - N / p ,  h 2 = k / p ,  U(t ,  l ( t ) - - O )  = U(t ,  l(t) + 0 )  ----y(t), 

R( t )  - -  [T - -  i( t)p]x=z(t)  ---- mi i t ) ,  my i t )  = [ N U x  -{- p l i t )Ut  lx=z(,) - -  P ,  
U(t,  O) = 0 ,  U - +  O as x - -  vt  ~ - - o %  

(2.2) 

w h e r e  T = ( ~ 2 ) ( p U ~ + N U ~ - - k U 2 ) ;  p = - - p U x U t  ; and  P = m g .  

In what follows we shall consider the stationary motion of the body, when R == [T-- 
UP]x=vt and I = u = r As initial conditions we chose a stationary profile, formed 
in the coordinate system moving with the uniformly moving body, in the case when the string 
is infinite and the base is uniform [5]: 

U ( x , t ) _ , . P  ( h  ) 2 - - ~ - ~ e x p - - - ~ ] x - - v t [  as t - , - - - o o .  ( 2 . 3 )  

Here and below 9 = ~ C z - - V  ~. 

3. As one can see from Eq. (2.2) ,  i f  

~(t)i<<g Vt~<O 

the transverse force exerted by the body on the string can be assumed to be constant. 

(3.1) 
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u(x, ~),,y(~) 

[ - - - -  e(~) o 

z=z#} ~: 

Fig. 1 

Assume that the condition (3.1) holds. We now construct the solution of the problem 
(2.2)-(3.1) using the method of images [6], i.e., we associate to the problem of the motion 
of two sources along an infinite string lying on a uniform elastic base. We choose the ad- 
ditional source so that the solutions of both problems are identical for x < 0. It is ob- 
vious that the source of the force -- P, moving according to the law x = --v~, satisfies the 
given condition. Proceeding in this manner and using (2.3), we have the solution of the 
starting problem (2.2)-(3.1) for t ! 0: 

h x + U-(x, t ) =  --  2-~h~ (exp(--  ~ (3.2) 

For t > 0 we obtain the problem of free oscillations of a string with initial conditions 
determined by the expression (3.2) as t + 0, i.e., the boundary-value problem 

Utt -- c~Uxx + h2U = 0 ,  t >10, x < O, U(x, O) = 0 ,  
Ut(x, O) = (Pv/pf3 ~) exp (hx/[3), U(O, t) = O, U ~ 0 as z ---)- --oo. 

(3 .3 )  

We find the solution of Eq. (3.3) by proceeding similarly, i.e., by constructing an odd con- 
tinuation of the initial conditions: 

U +(x, t)=o~z~(exp (--~ x) sh(-~vt)--sh(@ (x + vt))O(x + 

h 

P~ j dzO (z + ct). +~--~ 
--h Z2~2 - -  h2v2 

ct)) + 
(3.4) 

Here O(x, t) is the unit step function. 

The expressions (3.2) and (3.4) describe transition radiation under the following condi- 
tion, imposed on the parameters of the initial problem: 

(z2/(i -- cz2)s/2 << pN/2km, ~ = v/c. (3.5) 

We now calculate the energy of this radiation in the form IV r- -- H(O) H(t) = 9U~ + 

" ~ kU~)dx ' is the energy level of the string on the elastic base). As one can see 2~U~ + 

from Eq. (3.2), Ux(x, 0) = 0 , so that, taking into consideration Eq. (3.3), we have 

0 p2v2 
W r ~  "~ pUt(x, O) dx 4h0~3~. (3 .6 )  

The energy of the radiation increases with the velocity of the body, and hence the prob- 
ability that the structure collapses also increases. In addition, the energy consumed by the 
external source which maintains the body in uniform motion in the process of radiation be-, 
comes significant. 
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In this connection it is of interest to find an expression for the pressure force exerted 
by the waves on the body. The work performed by this force determines the energy consumed by 
the external source. Taking into consideration the continuity of the string and the boundary 
conditions at x = vt, we obtain from Eq. (3.2) 

(2,)  37) 
F = - -  [T - -  Up]x=vt 2p15 ~ exp ---ff v t  ; 

0 

S W t = - -  v F dt = 4hp-~" 
- - o o  

(3.s) 

Analysis of the solution found shows that in order to describe completely the energy 
conversion process in transition radiation the change in the energy of the string deflection 
moving together with the source AH and the work performed by gravity Ag must be taken into 
account. Indeed, calculating the values of AH and Ag in the form 

p2c2 
AH = 0 - -  t~-~lim H (t) = - -  4 h ~ '  

A g = P ( 0 - -  ~-)-~lim U (vt, t)) = 2ph~ 

(3.9) 

and comparing Eqs. (3.6), (3.8), and (3.9) we obtain an expression relating W f and W r. This 
relation is an integral law expressing the change in energy accompanying transition radiation: 

A g + W j -- AH = WL (3.1o) 

As one can see from Eq. (3.10), when the body moves near the clamp, the energy of the 
string deflection, moving together with the object, is converted into radiation energy. In 
the process, work is performed not only by the external source, which mantains the object in 
uniform motion (as happens in electrodynamic systems [4]), but also by the gravitational 
field, which acts in a direction transverse to the direction of motion of the body. 

4. We now consider the solution of the initial problem, making the assumption that the 
inertia of the body cannot be neglected compared with the weight of the body(the condition 
(3.1) is not satisfied). Using once again the method of images, we associate this problem 
to the auxiliary problem of the motion of two sources of a transverse force: the real source 
PI = m(g + y(t)), moving according to the law x = vt, and a fictitious source P2 = --PI, moving 
according to the law x = -vt along an infinite string on a uniform elastic base: 

Utt - -  c2Uxx + h2U = 0 ,  t ~ O, - -oo  < x < -~oo' ; 

Y ( t ,  vt - -  O) =- U(t,  vt -4- O) = y(t) ,  [U(x,  t)l:~=-ot = O, 

[ N U x  + pvUt]~=+_~t = -+-m(g q- y),  R( t )  = [T - -  v p ] x = , t ,  

U - - + 0  as x ~ v t - - ) - •  

U - - - ~ - - G e x  p - - - ~ l x - - v t .  as t - - + - - c o .  

( 4 . 1 )  
( 4 . 2 )  

We apply to Eq. (4.1) the Fourier transform 

Using the operational equations 

-~oo 

V (k, t) = J" U (x, t) exp ( ikx) dx. 
- - o o  
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mu 2 

Ut~- -  V t t -  (g + y)(exp(ikvt)  - -  exp ( - -  ikvt)), 

m y) (exp (ikvt) exp ( - -  ikvt)); U= § -- k 2 V  - -  - ~  (g  + 

written so as to take into account the conditions (4.2), we obtain for the transform 

Ytt + (c2k 2 + h 2) V = ~ (g + y) (exp ( - -  ikvt) - -  exp (ikvt)). 

We now s e e k  t h e  s o l u t i o n  o f  Eq.  ( 4 . 3 )  a s  V = V ~ + V 1, w h e r e  V ~ i s  t h e  s o l u t i o n  o f  t h e  
tion 

the 

m V~t + (c2k ~ + h 2) V = 7 g (exp ( - -  ikvt) - -  exp (ikvt)), 

i n v e r s e  t r a n s f o r m  o f  w h i c h  i s  d e t e r m i n e d  by  t h e  e x p r e s s i o n  ( 3 . 2 ) .  

I t  i s  o b v i o u s  t h a t  i n  t h i s  c a s e  V 1 w i l l  s a t i s f y  t h e  e q u a t i o n  

Fit + (c2k ~ + h 2) V 1 = ~y(exp ( - -  ikvt) - -  exp (ikvt)) 

initial conditions 

V t = V ~ = O  as t - + - - o o .  

with the 

(4.3) 

equa- 

(4.4) 

(4.5) 

The general solution of Eq. (4.4) with the initial conditions (4.5) has the form 

t 

##1, y Vl (k ,  t ) = - ~  g ( T ) ( e x p ( - - i k v m ) - - e x p ( i k v ~ ) )  s i n ( ( t -  x) ] / ~ )  dr. 
_ o o  ]/h2 + ~k2 

We now switch to the inverse transform. Using the formula [7] 

~-oo 

cos(kl) ~m(= ] / ' ~ ) d k =  ~ J o ( b  Va-r-:-7- F')O(a- III) 
~ + b ~ 

0 

where 0 

Finally, 

i s  the unit step function and J0 is a zeroth order Bessel function, we obtain 

--oo 

using Eq. (3.2), for t~O, x~O we find 

U (x, t) = U ~ (x, t) + Y 1 ( 2 ,  t) = - -  2-~-~ g exp - -  -ff I x - -  vt I - -  exp (x + vt) + 

f ~+1~- ~+I~+ 

i S ] x<v,, 
i o o  - -co 

+ ~pcmp ~+la- -~-l~- 

x>v, ,  
( - - o o  - - o o  

(4.6) 
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where ~t~: = x ~ ct; h:l= = c -+- v; v i ( x ,  t, ~) -~ (h/c) V c ' ( t  - -  ~c) ~ - -  (x • w )  2. 

In  o r d e r  t o  d e t e r m i n e  t h e  unknown y ( t )  we u s e  t h e  c o n d i t i o n  t h a t  t h e  mot ion  o f  t h e  body 
is continuous y(t) = U(vt, t): 

tA - -  

y(t) --2@hh~ g t - - e x p  vt + ~ _ y ( T ) J o ( v + ( v t ,  t, T ) ) d T - -  ~ y ' ( T ) J o ( v - ( v t  , t , T ) )  dT ,, t<o. (4,7) 

The integrodifferential equation (4.7) obtained by differentiation reduces to a Volterra 
integral equation of the second kind for y(t), which can be solved conveniently on a computer. 

The function y(t) for different values of ~ = v/c < i (a I < a2), which was found by 
numerically integrating Eq. (4.7), has the qualitative form shown in Fig. 2. The solution 
(4.6) and (4.7) makes it possible to determine the time dependence of the pressure force 
exerted by the waves on the moving body. Figure 3 shows for fixed parameters of the problem 
the qualitative time dependence: the curve i is the pressure force F exerted by the waves 
on the body and was found by neglecting the inertia of the body (according to Eq. (3.7)): 
the curve 2 is the force F obtained from Eqs. (4.6) and (4.7). One can see that taking into 
account the inertia of the body increases F. Therefore the energy consumed by the external 
source which maintains the body in uniform motion also increases. The equation of energy 
balance (3.10), in which only the quantities W f and W r change when the inertia of the body 
is taken into account, allows us to assert that the energy of the transition radiation also 
increases. 

Thus we have shown that when a moving object interacts with nonuniform carrying struc- 
tures the transition radiation is a characteristic source of vibrations. The analysis per- 
formed also shows that the energy consumed on radiation can be equal to the energy of the 
translational motion of the object and the pressure force of the waves which acts on the 
moving object in the process of radiation can be impulsive, especially near regions where 
the change in the parameters of the elastic structure is significant (in particular, near 
clamps). 
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