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Abstract. We give an introduction to default logic, one of the most prominent 
nonmonotonic logics. Emphasis is given to providing an operational interpretation 
for the semantics of default logic that is usually defined by fixed-point concepts 
(extensions). We introduce a process model that allows to exactly calculate the 
extensions of a default theory in a quite easy way. We give a prototypical imple- 
mentation of processes in Prolog able to handle the examples that can be found in 
literature. Finally, we develop some theoretical results about default logic and give 
new simple proofs using the process model as a theoretical tool. 
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1. DEFAULT REASONING: MOTIVATIONAL EXAMPLES 

Logic is a promising knowledge representation method (Bibel 1984; Moore 1982; 
Nilsson 1991). The best known logical system is predicate logic (Mendelson 
1969), and its usefulness is out of  question. It is a logic originally developed 
to capture mathematical reasoning, and provides thus a formal background for 
this discipline. One of  the main properties of  predicate logic is that derivation 
of  new results does not destroy previous conclusions. This property is called 
monotonicity and can be formalized as follows: 

If  M C_ M'  and tp follows from M, then q~ also follows from M'. 

Now consider an agent acting in a heavily changing environment without having 
available complete knowledge about this environment. This situation is typical 
for acting in the real world. Reasons for the incompleteness of knowledge may 
differ from example to example: it may be lack of  time to wait for further infor- 
mation, or economical reasons that prevent a collection of  complete information. 

1. EXAMPLE 
Suppose I wake up in the morning and am asked how I shall get to work. My 
answer is by bus, because I usually drive to work by bus, and I do not have 
any information that this is not possible. This kind of  reasoning is called default 
reasoning. So I leave home, get to the bus station and hear that there is 
surprisingly a bus strike called out in the night before. Now I have to revise 
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my previous conclusion of  default reasoning which is invalidated now. My 
behaviour is thus nonmonotonic. Note that the rule of thumb (default) I used 
before does not have to be rejected. It is simply no more applicable, because 
now I have heard that there is a bus strike, so it is impossible to drive by bus. 
Of course, the situation could be modelled by a predicate logic formula like 

(~strike A ~snow A oil-embargo A . . .  ) ~ drive-by-bus 

instead. The problem with this axiom is twofold. First, all possible reasons why 
it is impossible to drive by bus would have to be listed; but there could always 
be an unforeseeable reason not captured by this axiom. Second, there remains 
the problem of proving(!) that all these reasons are not true in order to conclude 
that I can drive by bus. So, I would have to phone with news agencies, look 
out of my window etc. before making up my mind. If I have luck, I could draw 
my conclusion early in the afternoon (a little bit too late!), but often it is not 
even possible to gather the information needed. 

2. EXAMPLE 
Suppose you are told Saturday morning by telegram that you will receive a bird 
named tweety (the most prominent bird in the history of nonmonotonic logic!), 
and that tweety will arrive Sunday morning. Shops being closed on Sunday, 
you must quickly provide for some food and decide whether to buy a bird-cage. 
In the supermarket you get troubled whether to buy indeed the offered, quite 
expensive bird-cage, or to buy corn or meat as food. You definitely know: 

Fact 1 Tweety is a red coloured bird. 
Fact 2 By lack of enough money you may buy either the bird-cage, or else 

corn and meat, but not all of these things together. 
Rule 1 If you get a bird that can fly, buy a bird-cage. 
Rule 2 Eagles are carnivorous birds that can fly. 
Rule 3 Penguins are carnivorous birds that cannot fly. 
Rule 4 Ostriches are granivorous birds that can fly. 

What do you decide to do? Classical logic would require to know what sort of 
bird tweety exactly is. By lack of such knowledge no decision would be possible, 
so tweety would either escape or starve. Default-reasoning might offer to you 
the following rules of thumb: 

Default 1 Every bird may be assumed to fly unless the contrary is actually 
known. 

Default 2 Buy corn unless it is known that tweety is carnivorous or you are 
out of money. 

Default 3 Buy meat unless it is known that tweety is granivorous or you 
.are out of money. 

Since is it not known that tweety cannot fly (in particular, it is not known that 
tweety is a penguin or an ostrich) you may conclude from default 1 that tweety 
can fly. Thus, by rule 1, you buy the bird-cage. So far, it is not known that 
tweety is carnivorous. So you may apply default 2 and decide to buy corn. Now 
default 3 cannot be applied, since by current knowledge (you already bought a 
bird-cage and corn) and fact 2, you are out of money. 
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Applying the defaults in a different order, namely first 1, and then 3, you might 
decide to buy the bird-cage and meat. So there exits a concurrent set of beliefs 
leading to a different action. 

Another effect occurs if you first apply default 2 and then 3. Then you buy 
corn and meat, and are thus out of money. Nevertheless, default 1 is applic- 
able, since it is not known that tweety cannot fly. So, you might conclude that 
tweety can indeed fly and, by rule 1, buy a bird-cage. Now, having bought corn, 
meat and a bird-cage, you get trouble with fact 2. Logically spoken, a contra- 
diction has occurred. So, application of default 1 after defaults 2 and 3 contradicts 
the prior justifications for the these applications. This disqualifies thereafter 
this considered application of default rule 1. 

Summarizing, there are two concurrent sets of beliefs (they will later be 
called extensions) that an agent may hold. Note that the addition of further 
information (in form of new facts, rules, or defaults) may enforce a revision of 
any of these belief sets. If you get more information about tweety, for example, 
that tweety is a penguin, the application of some of the default rules in a certain 
order may be no longer justified. 

3. EXAMPLE 
A common situation in robot planning is that a particular action of a robot only 
slightly changes the environment. For example, taking away a box out of a 
room changes the presence of this particular box, but leaves unchanged tem- 
perature, colour of the floor, number of doors, and so on. In describing the altered 
environment after execution of such a robot action it is desirable to concentrate 
on the actual changes, and describe what has been left unchanged by an overall 
default rule instead of thousands of single rules. 

Frame default rule: for every situation S, ground atom 13 and action 
act, if holds([3, S) and if holds([3, act(S)) is consistent with current 
knowledge, then infer holds(13, act(S)). 

Obviously, holds([3, act(S)) is inconsistent with current knowledge only if 
executing the action act in situation S yields a new situation act(S) satisfying 
7[3. 

In this paper we shall present the basics of a logic dealing with such defaults 
called default logic, with emphasis put on the applicability and operationality 
of its concepts. We assume familiarity with basic notions of predicate logic. 
We are using standard notation, representing predicate logic formulas by Greek 
letter tg, q0 etc. In case of any uncertainties, please refer to (Sperschneider and 
Antoniou 1991). 

2. DEFAULT LOGIC: FORMAL DEFINITIONS 

4. DEFINITION. A default 5 is a string q0:tgl . . . . .  ~gn/Z with closed first- 
order formulas q0, ~gl . . . . .  tg n and Z (n > 0). We call q0 the prerequisite, 
gt 1 . . . . .  ~gn the justifications, and Z the consequent of 5. A default schema is 
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a string of the form cP:Vl . . . . .  V./)~ with arbitrary formulas. Such a schema 
defines a set of defaults, namely the set of all ground instances 9~:~t~ . . . . .  
~.t~/Xt~ of tp:~l . . . . .  ~IX, where t~ is an arbitrary ground substitution assigning 
values to all free variables of tp, ~1 . . . . .  ~., X. 

5. DEFINITION. A default theory T is a pair (W, D) consisting of  a set of closed 
formulas W (the set of truths) and a denumerable set of defaults D. The default 
set-D may be defined using default schemata. 

Remarks. 1. A default schema p(X):q(X)/r(X) stands, for instance, for the set of 
all defaults p(t):q(t)/r(t), for all ground terms t in the considered logical language 
(signature). 

2. The informal reading of default 9 : ~  . . . . .  ~,/X is: 

If tp is currently known and it is consistent with the current knowl- 
edge to believe in each ~i, then conclude Z. 

When we define the meaning (semantics) of defaults, we shall be primarily 
concerned with giving an appropriate interpretation of the notion 'current 
knowledge'. 

The purpose of a default theory T is to lay down what an agent may believe 
in. The current belief of an agent forms a set E of closed formulas, called an 
extension for T. Usually, there will be several concurring (perhaps mutually 
excluding) extensions. Before giving the definition of extensions let us motivate 
it by postulating desirable properties. 

• An extension E for T = (W, D) should contain all truths of T: W C_ E. 
• An extension E for T = (W, D) should be closed with respect to logical 

conclusion (clearly, we do not prevent an agent from logical argument): 
Th(E) = E. 

• An extension E for T = (W, D) should be closed with respect to application 
of defaults from D: if (p:~, . . . . .  ~ / X  is a default in D, 9 E E and 
--,W1 ~ E . . . . .  --,~/n ~ E, then X e E should hold. Note that here we are already 
making use of E. This circularity of argument will be apparent in the following 
definitions that will be based on fixed-points. Our operational model in the 
next section is intended and will resolve this difficulty. 

• An extension E for T = (W, D) should be in some sense grounded on W w.r.t. 
D, i.e. that the formulas of E are obtained from the default theory with E as 
a proposed belief set. As an example, consider the default theory (0 ,  
{true:A/--,4}) and let E be Th({--,E}) (the set of all predicate logic formulas 
derivable from ---A). E is not grounded in the sense above: If we take E as a 
belief set (relevant for the consistency conditions), it is not possible to obtain 

from the default theory as the default is not applicable w.r.t, belief set E 
(its justification A is inconsistent with E). 

6. DEFINITION. Let 8 = {p:¥, . . . . .  ¥,,/% be a default, and E and F sets of 
formulas. We say that 8 is applicable to F with respect to belief set E iff 
tp ~ F, and --,~,~ E . . . . .  --,~n ~ E. For a set D of defaults, we say that F is 
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closed under D with respect to E iff, for every default tp:~l . . . . .  ~n/X in D 
that is applicable to F with respect to belief set E, its consequent Z is also 
contained in F. 

7. DEFINITION. Given a default theory T = (W, D) and a set of closed formulas 
E, let At(E) be the least set of closed formulas that contains W, is closed under 
logical conclusion and closed under D with respect to E. 

8. DEFINITION. Let T be a default theory. A set of closed formulas E is 
called an extension of Ti f f  At(E) = E. 

Note that condition At(E) = E, for a default theory T = (W, D), realizes the 
above discussed groundedness property: given belief set E, we subsequently 
justify the presence in E of each of its formulas by deriving it from W via 
logical conclusion and application of defaults from D with E as assumed belief 
set governing the consistency check for the justifications in defaults. The other 
postulates for extensions are also fulfilled. 

9. EXAMPLE 
Consider the default theory T = (0 ,  {50 = true:B/B, 51 = true:--43/--~B}). 
E l = Th({B}) is an extension of T: It trivially includes the truths of T, 
Th(E1) = E l, and E1 is closed under the default set w.r.t. E 1, as only 50 is 
applicable to E w.r.t. Th({B}) (is it clear why?) and B ~ El. Furthermore, El is 
a minimal such set: the only deductively closed proper subset of E1 is Th(O), 
but Th(~) is not closed under D w.r.t. El, as 50 is applicable to Th(O) w.r.t. E l, 
but B ~ Th(O). 

This shows that At(E0 = El, so El is an extension of T. Likewise, 
E 2 = Th({--~B}) is also an extension of T. Are there any more extension? We 
feel quite sure that this is not the case (as 50 'blocks' application of 51 and vice 
versa) but how could we prove our claim? And if we have such difficulties in 
this trivial example, what about really complicated theories? In the next section 
we shall present a method for obtaining an overview of all extensions of a default 
theory, thus giving an answer to these pessimistic questions. 

3. AN OPERATIONAL MODEL OF EXTENSIONS BASED ON PROCESSES 

10. DEFINITION. Let T = (W, D) be a default theory and H = (50, 51, 52 . . . .  ) 
a finite or infinite sequence of defaults from D not containing any repetitions 
(modelling an application order of defaults from D). We denote by I-l[k] the initial 
segment of 17 of length k, provided the length of 1"I is at least k. Then we define: 
(a) In(H) is Th(M), where M contains the formulas of W and all consequents 

of defaults occurring in H. 
(b) Out(H) collects the negations of justifications of defaults occurring in 1-I. 
(c) I-I is called a process of T iff 5k is applicable to In(I-Ilk]) w.r.t, belief set 

In(I-l[k]), for every k such that 5k occurs in H. 
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(d) I-I is called a successful process of T i f f  In(U) N Out(U) = 0 ,  otherwise it 
is called a failed process. 

(e) I-I is a closed process of T i f f  every S ~ D which is applicable to In(H) 
with respect to belief set In(U) already occurs in I-I. 

For the default theory from example 9, 1-I 1 = (S0) is a process, but not 1-I 2 = 
(S0, $1): In(I-12[1]) = Th(B), and $1 is not applicable to Th(B) w.r.t. Th(B). 

In(U) collects all formulas in which we believe after application of the defaults 
in 1-I, while Out(N) consists of  all those formulas which we should avoid to 
believe for the sake of consistency. The following theorem states the fundamental 
relationship between the extensions of a default theory T and the closed successful 
processes of  T. It should not be surprising, since successful processes avoid 
contradictions to the justifications of  an already applied default, while closed 
process I-I guarantee that In(N) is closed under application of defaults in D. Its 
proof can be found in Appendix A. 

11. THEOREM. Let T = (W, D) be a default theory. I f  I-I is a closed suc- 
cessful process of  T, then In(U) is an extension of  T. Conversely, for every 
extension E of  T there exists a closed, successful process I-I of  T with E = In(U). 

The extensions of a default theory T are thus just the In-sets of closed, suc- 
cessful processes of T. So, to determine extensions, we may simply apply defaults 
in an arbitrary order hoping that never a failure occurs. Having arrived at a failure 
situation, we must give up the current knowledge base and trace back within 
our process. There is no reason to control the selection of defaults in order to 
avoid failed processes. 

If D contains only a finite number of defaults, there is no problem with closed- 
ness at all: as long as defaults are applicable we apply them. These leads to a 
closed process. Closed processes must (obviously) be calculated differently when 
D contains an infinite number of  defaults. The definition of  closed processes 
seems to require a look ahead to the final extension In(U) already while 
constructing I-I. This problem is simply resolved by the following lemma. 

12. LEMMA. An infinite process FI of  T is closed iff every 8 ~ D that is 
applicable to In(Fl[k]) with respect to belief set In(N[k]), for  infinitely many 
numbers k, is already contained in I-l. 

The simple proof is an application of the compactness theorem of predicate 
logic. So, to achieve closed processes we must eventually apply each default 
which is, from some stage on, constantly demanding for application. This is 
nothing more than fairness, a situation commonly known from various fields 
dealing with concurring processes. If a survey of all possible processes of a default 
theory T is aspired, we may arrange all possible processes in a canonical manner 
within the so-called process tree of T. 

13. DEFINITION. Let T = (W, D) be a default theory. The process tree of  T 
is a finite or infinite tree with edges labelled with defaults from D and nodes 
labelled with a theory I (the In-set built up so far) and a formula set O (the 
Out-set obtained so far) as follows: 
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• The root node is labelled with Th(W) and 0 .  
• Consider a node N labelled with theory I and formula set O. 

If I fq O = O then N possesses a successor node N(6) for every default 
6 = tp:Vl . . . . .  ~n/X such that 6 does not already occur along the path from 
the root to the considered node and 6 is applicable to I with respect to belief 
set I. The edge from N to N(6) is labelled with 5, and N(6) is labelled with 
Th(IU{~}) and O U { ~ I  . . . . .  ~ , } .  
If I tq O # O then N is a leaf. 
A path  is be any maximal sequence of nodes starting at the root of T. 

Note that the process tree of T may contain four types of paths with respect to  
the sequence H of defaults along it: 
• failed (thus finite) paths 
• successful paths of finite length (these are automatically closed) 
• successful paths of infinite length which are closed 
• successful paths of infinite length which are not closed. 

14. EXAMPLE 
Consider T = (0 ,  {true:A/--d}). The process tree of T is found in Figure 1. 
T has no extensions. This is an example of a default application that a postiori 
invalidates a previously successful consistency check. 

Th(~) ° O 

I 
Th({--A}) • {-~} 

failed 

Fig. 1. 

15. EXAMPLE 
Consider T = (0,  D) with D = {50= t rue:P/~Q,  61 = true:Q/--~P}. The process 
tree of T looks as shown in Figure 2. T has exactly two extension, Th({--~P}) 
and Th({~Q}). 

Th(O) • 0 

Th(-~Q) . ~ .  {-~a} 
closed closed 
successful successful 

Fig. 2. 

16. EXAMPLE 
Consider the default theory T = (0 ,  {S 0, 61}) with S0 = t rue:P/P and 61 = 
true:Q/---~. It has the only extension Th({--~P}), as seen from its process tree 
in Figure 3. 
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Th(O) • 0 

Th(P) • { - ~ P }  Th({-~P}) * {-~Q} 
closed 

~l successful 

Th({P,-.P}) • { - ~ P , - . Q }  

failed 

Fig. 3, 

17. THEOREM. A default theory T = (W, D) has an inconsistent extension iff 
W itself is inconsistent. 

Proof. If W is inconsistent then E = Th(W) coincides with At(E), so E is an 
extension of T. Conversely, assume that T has the inconsistent extension E, that 
is, E is the set of all formulas. Since for every non-empty process H of T with 
E -- In(H) the intersection Out(H) A In(H) is non-empty, it follows that the 
only successful process of T with E = In(H) is the empty process. Then, by 
definition of extensions, W is inconsistent. Note that in this case E is the only 
extension of T. • 

4. A STRAIGHTFORWARD PROLOG IMPLEMENTATION OF PROCESSES 

Although we have now a method for operationally determining extensions, it may 
still be a little bit clumsy to write down the whole process tree of a bigger 
default theory. Fortunately, the operational model can be implemented in Prolog 
in a very simple way. For the sake of simplicity, we restrict ourselves to defaults 
with one justification. Defaults A:B/C are represented as default(A, B, C), the 
negation symbol ~ as -. The Prolog code for determining extensions of a default 
theory looks as follows. 

extension (W, D, E):- process(D, [ ], W, [ ], _, E, _). 
process(D, Pcurrent, InCurrent, OutCurrent, P, In, Out):- 

element(default(A, B, C), D), 
not element(default(A, B, C), Pcurrent), 
sequent(InCurrent, [A]), 
not sequent(InCurrent, [-B]), 

% default A:BIC can be applied to In w.r.t. In 
process(D, [default(A, B, C)lPcurrent], % extend current path P 

[Cl InCurrent], 
[~BIOutCurrent], P, In, Out). 

process(Di P, In, Out, P, In, Out):- % P is a closed and successful process 
closed(D, P, In), 
success(In, Out). 
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closed (D, P, In):- % P is closed under D w.r.t In 
not(element(default(A, B, C), D), 

not element(default(A, B, C), P), 
sequent(In, [A]), 
not sequent(In, [~B])). 

success(In, Out):- not(element(B, Out), sequent(In,[B])). %Th(In) n Out = O 

Missing are an input component for default theories, and a theorem prover 
(it is predicate sequent  in the program text above; it could be Wang's algo- 
rithm for theories in pure propositional logic). Note that we do not build the 
deductive closure of In (it is clear why), so we must call sequent when testing 
success of a path P. 

5. NORMAL DEFAULT THEORIES 

Often, the consistency check in a default concerns just the formula to be derived, 
i.e. its consequent (see examples 1 and 3); such defaults with the same justifi- 
cation and consequent are called normal. Default theories consisting solely of 
normal defaults have some very desirable properties. Example 14 shows that 
general default theories need not have an extension. But theories consisting solely 
of normal defaults do always have at least one extension. In the proofs of the 
results below we shall see that processes are not only useful for the calculation 
of extensions, but also as a theoretical tool for proving properties of the logic. 

18. DEFINITION. A default theory T = (W, D) is called normal iff the defaults 
in D are of the form ~P:Wg. 

19. LEMMA. Let H be a process for a normal default theory T = (W, D) with 
consistent set W. Then FI is successful. 

Proof. It is easy to see that for a process H of a normal default theory 
(W, D), In(H[/]) is consistent, for all i such that YI[i] is defined. If YI is non-empty 
then In(H) is consistent. If H is empty the assumption of consistency of W also 
implies that In(H) is consistent. In any case, Fl is successful. [] 

COROLLARY. Let T = (W, D) be a normal default theory. Then the process 
tree of T does not contain any failure path. In particular, every finite process 
for T can be extended to a closed, successful process of T. Thus, normal default 
theo[ies always possess extensions. 

20. THEOREM (Semi-monotonicity of normal theories). Let T = (W, D) and 
T' = (W, D') be normal default theories with D C D'. Then every extension E 
of T is contained in an extension E '  of T'. 

Proof. For inconsistent set W there is nothing to prove, so assume that W 
is consistent. Let E be an extension of T. Choose a closed process H = 
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(50, 51, 52 . . . .  ) of T such that E = In(H). Obviously, H is also a process of T'. 
(But note that H is not necessarily a closed process of T'.) 

Case 1. H is a process of finite length. Then, by the corollary above H can 
be extended to a closed, successful process I l '  of  T'. 

Case 2. Fl is a process of  infinite length. Now we cannot extend II  as done 
in case 1, but must weave the application of the defaults in D'  into H in such a 
way that the applicability of  the old defaults in H is not destroyed. To do so 
we define a process F = (To, TI, 3'2 . . . .  ) of T' as follows: 

(1) T2.i = 5k, with k minimal such that 5k~ {TO, Tl . . . . .  3'2.(i-1) , 3'2.i-1} 
(2) 3'2.i+1 is the first default 5 in D' - {To, T~ . . . . .  T24} (referring to a fixed 

enumeration of D') such that 5 is applicable to In(T o, "/1 . . . . .  3'2.~) with respect 
to belief set Th(E U In 0'0, 3'1 . . . .  3'24)). 

Since in case (2) we use belief set Th(E U In(3'o, "[1 . . . . .  3'24)) instead of merely 
In(TO, 3'~ . . . .  3'2.g) the following properties are obvious from the definition of F: 

• {50 ..... 5,_i} c_ {3'0, 3'i ..... T2.~-I} 
• the prerequisite of 7~ is contained in In(TO ..... 3'i-i) 
• In(T0, 3'i ..... 3'~-t) U E is consistent. 

So we obtain a process r of T' containing H as a subsequence. We finally show 
that r is a closed process. Consider a default 5 in D' that is applicable to In(F) 
with respect to belief set In(F). Since E is a subset of In(F) we may conclude 
that 5 is applicable to In(TO ..... 3'~-i) with respect to belief set In(TO, Y1 ..... 
Ti-1) U E, for infinitely many i. Having chosen in case (2) of the construction 
above the 'first default such that...' we are sure that 5 will be selected at 
some stage of construction. • 

21. THEOREM. (Orthogonality of extensions). Let E and F be different exten- 
sions of a normal default theory T = (W, D). Then E U F is inconsistent. 

Proof. Let E and F be different extensions of  T. Assume that E is not 
contained in F and suppose that E t.J F is consistent. Choose closed processes 
H = (50, 51, 52 . . . .  ) and F = (TO, "/1, 72 . . . .  ) of T such that E = In(H) and 
F = In(F). Consider the least i such that 5i ~ F. Let 5i be ~ :~/~ .  By minimality 
of i, q~ e In(50 . . . . .  5~_~) C In(F). Choose a number k such that 9 ~ In(F[k]). 
Since ~ ~ E, In(F[k]) C F and E t.J F was assumed to be consistent it follows 
that 5; is applicable to In(T0 . . . . .  Tk) with respect to In(F). But we know that 
5i ~ F. This is only possible if  ~ e In(F[1]) for some 1 > k. But then, ~ e E 
and --,~ e F, a contradiction to our assumption that E U F is consistent. • 

Orthogonality of extensions is not fulfilled in general for arbitrary default theories. 
As an example consider T = (W, D) with W = O and D {true:--~/Q, true:~Q/P}. 
Its extensions are E = Th({P}) and F = Th({Q}). E U F is consistent. 
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6. A PROOF THEORY FOR NORMAL DEFAULT THEORIES 

The process model in Section 3 applies defaults in a 'blind', bottom-up manner, 
meaning that no concrete goal exists. But what if a goal is given? The problem 
we are thinking about is the following: 'Given a formula tp, determine whether 
tp is included in at least one extension of default theory T = (W, D)' (in this 
case we say that q~ is weakly provable from T). We would like to use a goal- 
oriented strategy, starting from the goal and working towards the truths using 
defaults. 

22. EXAMPLE 
Consider the default theory T = ({P}, {8o = P:Q/R, 8~ = R:Q/S, 82 = 
true:true/--,Q}). Given the goal ?- S, a goal-oriented approach would look as 
follows: 

?-S 
Use default 8~; Q is consistent 
?-R 
Use default 80; Q is consistent 
?-P: P is a fact, so we are through. 

This could be a 'proof' we were looking for. Unfortunately, this approach cannot 
work, in general. The reason is that a process rI including the goal needs not 
be extendable to a closed, successful process of T. Indeed, even in our example 
(80, 81) cannot be extended. Default 82 is applicable to In(H) = Th(P, R, S) w.r.t. 
In(H), leading to a failed process I-I' = (80, 8~, 82), as ~Q ~ In (17') fq Out(Fl'). 
In fact, S is not weakly provable from T, since it is not included in the only 
extension of T Th({~Q}). 

This kind of problem cannot occur when considering normal default theories, 
as we know from Section 5 that any process YI can be extended to a closed, 
successful process. So, if q~ ~ In(H), then ~ ~ E for an extension E of the 
normal default theory. The following definition is a formalization of the approach 
outlined above. 

23. DEFINITION. A default proof of tp in a normal default theory T = 
(W, D) is a finite sequence (Do . . . . .  D~) of subsets of D such that: 
• tp follows from W and the consequents of Do. 
• For all i < n, the prerequisites of defaults in D,~ follow from W and the 

consequents of Di+~. 
• D~ is the empty set. 
° The set of all consequents of defaults in one Di is consistent with W. 

COROLLARY. ~ has a default proof in a normal default theory T iff there is 
an extension E of T such that ~ e T. 

24. EXAMPLE 
Let T= ({P}, (8o=P:R/R , 81=R:S/S}). ({81}, {80}, t~) is a default proof of S in T. 
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7. HISTORICAL AND BIBLIOGRAPHICAL REMARKS 

Default logic was developed by Reiter (1980) and is established as one of the 
standard approaches to formalizing nonmonotonic reasoning. It is treated in all 
standard books on nonmonotonic logic, like (Besnard 1989, Brewka 1991a, 
Lucaszewicz 1990 or Marek and Truszczynski 1993). Through the basic concepts 
of the logic are treated in them, little attention has been given to how to deal 
with these concepts in an easy way. The idea of operational interpretation goes 
back to (Lucaszewicz 1990, Schwind 1990 or Levy 1991). 

Several variants of default logic have been investigated in literature. Poole 
presented 1988 a simple but efficient system essentially equivalent with normal 
default theories without prerequisites, and demonstrated its applicability in many 
situations. Other variants of default logic include semi-normal defaults and 
ordered default theories (Etherington 1987), modified extensions (Lucaszewicz 
1990), and disjunctive defaults Gelfond et al. (1991). A good overview is found 
in (Froidevaux and Menjin 1992). 

Several implementational methods for default logic have been proposed, e.g. 
(Hopkins 1993, Antoniou and Langetepe 1994). They cover various paradigmata, 
like truth maintenance systems (Junker and Konolige 1990), resolution-based 
(Levy 1991), tableau-based (Schwind 1990) or graph-based (Dimopoulos and 
Magirou 1994). Of course, there are big differences in efficiency and represen- 
tational power (most of them apply to some subclasses of default logic only). 

Skeptical derivability of a formula ~0 from a default theory T = (W, D) 
(T l-- cp) means that 9 is included in all extensions of T. One theoretical 
disadvantage of default logic is that skeptical derivability is not cumulative, as 
shown in Makinson (1989): It is possible that (W, D) b- cp, but not (W, D) b 
¢~ (W U {~0}, D) I-- tp for some formula tp. This means that formulas skepti- 
cally derivable from a default theory may not be used as lemmata as in 
mathematics or predicate logic. The observe.tion led to the development of 
cumulative versions of default logic (Brewka 1991b, Brewka 1992). 

APPENDIX A: PROOF OF THEORM 11 

Let H be a closed, successful process of T and E = In(H). Then In(H) O Out 
(H) = O and every ~ ~ D which is applicable to In(H) = E. with respect to 
belief set E already occurs within H. We show that At(E) C_ E. First, W C_ E 
and Th(E) = E by definition of the In-operator. Also, E is closed under D with 
respect to E, since H was assumed to be closed. This show At(E) C_ E. 

Next we show E C_ At(E). By induction on k we show that In(H[k]) C_ At(E), 
for all k such that H[k] exists. For k = 0 we must show Th(W) C_ At(E). This 
follows from the definition of At(E) as a deductively closed set that contains 
W. Assume we have already shown In(H[k]) C_ At(E) and cp:~tl . . . . .  ~ , /2  is 
the k-th element of H. By definition of a process, cp ~ In(H[k]), and thus 
cp e E. Also ~ 1  . . . . .  ~ ,  e Out(H[k]) C_ Out(H). Thus ~ . . . . .  ~ ,  
In(H) = E. This shows that cp:~l . . . . .  ~,/Z is applicable to E with respect to 
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belief set E. The definition of At(E) implies that X ~ At(E). Thus In(17[k+l]) 
= Th(In(1-I[k]) tO {X}) ___ At(E). Altogether, we have shown E = At(E). Thus, 
E is an extension of T. 

Conversely, consider an extension E of T. We choose an enumeration 
{ 5 ° . . . . .  ~5 k . . . .  } of the set of defaults D. Then we define a process 17 of T 
such that In(H[/]) ___ E and Out(H[/]) n E = O for all i such that H[i] is defined. 
The definition is as follows (note that case 2 preserves the above property): 

Let rI[i] be already defined such that In(H[/]) C E (*) and Out(H[/]) n 
E = ~ (for i = 0, this is trivially true). 

Case 1. Every ~i ~ D which is applicable to In(H[/]) with respect to belief 
set E already occurs in 17[i]. Then finish the construction of 17. 

Case 2. There exists some ~5 ~ D which is applicable to In(H[/]) with respect 
to E and does not occur in H[i]. In the fixed enumeration of D choose the first 
such ~ and append 5 to 17[/] to obtain 17[i+ 1]. 

For case 1, we show that E C_ In(HI/l). Since E = At(E) it suffices to show 
that In(H[/]) is a deductively closed set that contains W and is closed under D 
with respect to belief set E. The former properties are clear, the latter property 
by definition of case 1. Together with (*) we have E = In(17[/]). Thus, we may 
reformulate the property defining case 1 by saying that every ~i ~ D which is 
applicable to In(HI/l) with respect to belief set In(I-l[/]) already appears within 
17[i]. Altogether we have shown that, in case 1, 17[i] is a closed, successful process 
of T with E -- In(17[/]). 

Now we consider the case that the construction above yields a process 17 of 
infinite length. We shown that 17 is a closed process T. By construction, In(H) 
n Out(H) = ~ since In(I-I[/]) C E and Out(17[/]) n E = ~ for all i. So 17 
is a successful process of  T. Next we show that In(H) = Eo One inclusion, 
namely In(H) C_C_ E, holds by construction. For the reversed inclusion, namely 
E C_ In(17), we note that In(H) is a deductively closed set that contains W and 
show that it is closed under D with respect to belief set E. For this, consider 
an arbitrary default 8 = tp:~l . . . . .  ~n/2 in D with tp ~ In(H) ___ E and 
~ g l  . . . . .  ~ V  ~ E. Now we choose a number i such that tp ~ In(H[/]) and 
every ~5' e 17 that appears before 5 in the fixed enumeration of D is already 
contained in 17[i]. By definition of  case 2, 8 is the default chosen in stage 
i + 1. Thus, its consequent X is contained in In(H). The argument above together 
with the just proved equation E = In(I-l) also shows that 17 is closed. [] 

REFERENCES 

Antoniou, G. & Langetepe, E. (1994). Relating Some Classes of Default Logic to Normal Logical 
Programs with Standard Semantics. Journal of Automated Reasoning (submitted). 

Besnard, P. (1989). An Introduction to Default Logic. Springer. 
Bibel, W. (1984). Knowledge Representation from a Deductive Point of View. Proc. IFAC Sym- 

posium Artificial Intelligence. Pergamon Press: Oxford. 
Brewka, G. (1991a). Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge 

University Press 1991. 
Brewka, G. (1991b). Cumulative Default Logic - In Defence of Nonmonotonic Inference Relations. 

Artificial Intelligence 51: 183-205. 



16 G. ANTONIOU AND V. SPERSCHNEIDER 

Brewka, G. (1992). A Framework for Cumulative Default Logics. Technical Report TR-92-042, 
International Computer Science Institute, Berkeley. 

Dimopoulos, Y. & Magirou, V. (1994). A Graph Theoretic Approach to Default Logic. Information 
and Computation (forthcoming). 

Etherington, D. W. (1987). Formalizing Nonmonotonic Reasoning Systems. Artificial Intelligence 
31: 41-85. 

Froidevaux, C. & Menjin, J. (1992). A Framework for Default Logics. Technical Report 755, 
Universite de Paris-Sud. 

Gelfond, M., Przymusinska, H., Lifschitz, V. & Truszczynski, M. (1991). Disjunctive Defaults. Proc. 
2nd International Conference on Knowledge Representation and Reasoning. Morgan Kaufmann. 

Hopkins, M. S. (1993). Default Logic: Orderings and Extensions. In Proc. European Conference 
on Symbolic and Quantitative Approaches to Uncertainty, Springer LNCS 747. 

Junker, U. & Konolige, K. (1990). Computing the Extensions of Autoepistemic and Default Logics 
with a TMS. In Proc. AAAI-90, 278-283. 

Levy, F. (1991). Computing Extensions of Default Theories. In Proc. European Conference on 
Symbolic and Quantitative Approaches to Uncertainty, Springer LNCS 548. 

Lucaszewicz, W. (1990). Non-Monotonic Reasoning. Ellis Horwood. 
Makinson, D. (1989). General Theory of Cumulative Inference. In Proc. 2nd International Workshop 

on Nonmonotonic Reasoning, LNCS 346, Springer. 
Marek, V. W. & Truszczynski, M. (1993). Nonmonotonic Logic. Springer 1993. 
Mendelson, E. (1978). Introduction to Mathematical Logic. 2. ed., Van Nostrand: New York. 
Mooie, R. C. (1982). The Role of Logic in Knowledge Representation and Commonsense Reasoning. 

Proc. AAAI-82. 
Nilsson, N. J. (1991). Logic and Artificial Intelligence. Artificial 47: 31-56. 
Poole, D. (1988). A Logical Framework for Default Reasoning. Artificial Intelligence 36. 
Reiter, R. (1980). A Logic for Default Reasoning. Artificial Intelligence 13: 81-132. 
Schwind, C. (1990). A Tableau-Based Theorem Prover for a Decidable Subset of Default Logic. 

In Proc. lOth International Conference on Automated Deduction. Springer LNC 449. 
Sperschneider, V. & Antoniou, G. (1991). Logic: A Foundation for Computer Science. Addison- 

Wesley. 


