TWO-DIMENSIONAL STABILITY OF THE
COMBUSTION OF CONDENSED SYSTEMS

G. M. Makhviladze and B. V, Novozhilov UDC 536.46

The question of the combustion stability of candensed systems relative to curvature of the
front is investigated in a linear approximation. Two of the simplest combustion models are
examined, a gasless system and a model of flameless combustion of a solid fuel. In the
first case, the combustion products are condensed, just as are the initial materials, and in
the second the solid fuel is converted into a gas in which no chemical reactions occur.
Boundaries of the stability of the stationary combustion mode are found. It is shown that
gasless systems are less stable with respect to two-dimensional perturbations than to one-
dimensional perturbations. For the flameless combustion model the result depends on the
relationship between the thermophysical constants of the initial material and the products.
The question of the influence of heat emission on the one-dimensional stability of the gas-
less composites is considered, An increase in the heat emission diminishes the stable
combustion region, where a one-dimensional instability originates earlier than collapse of
combustion occurs because of strong heat emission to the wall,

1. Stability of the Combustion of Gasless Systems

Combustion of a solid fuel is ordinarily accompanied by the transition of the material from the con-
densed into the gaseous state. However, there are cases when reaction products remain in the condensed
state behind the front of an exothermal reaction being propagated over a solid fuel. An example might be
the combustion of thermites which were investigated experimentally in [1,2]. An analogous picture origi-
nates in the propagation of a polymerization front in a condensed medium. The question of the stationary
velocity of reaction front propagation in such systems was considered theoretically in [3-6].

Let us investigate the combustion stability of a gasless composition by using the assumption of a
strong temperature dependence of the chemical reaction rate. This assumption permits consideration of
the narrow zone of initial material conversion in comparison with the width of the heating zone, and to con-
sider it as a surface separating the initial material (zone 1) and the reaction products (zone 2), (The quan-
tities referring to each of these zones are marked with the subscripts 1 and 2, respectively.) Let us take
a coordinate system in which the unperturbed powder surface is at rest (x = 0) and the initial material
located at x < 0 moves at the veloecity u equal to the stationary propagation velocity of the chemical reac-
tion front.

The stationary temperature distributions
Ty0=To+ (To— To)ew, Te=T, t.1)
satisfy the same heat-conduction equation

A —pue i =0 1.2)
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and the boundary canditions

T],o |x=—oo = TO, Tl0 ‘x=0 = Ta

(L.3)
dr}

TZO lx=0 = Ta; —d? =0

Here T, is the initial powder temperature, T, = T, + q/c is the combustion temperature, p is the
density, ¢ is the specific heat, » = A/p c is the coefficient of temperature conductivity (A is the heat-conduc-
tion coefficient), and q is the thermal effect of the reaction., The stationary temperature values are marked
with degrees.

Using the method of small perturbations, let us give the curvature of the combustion surface in the
following manner:

E = D exp (ot + iKy) (1.4}

where y is a coordinate directed along the unperturbed reaction front, w is the frequency, t is the time, K
is the wave number, and D is the amplitude of the perturbation. Without limiting the generality, the two-
dimensional problem can be examined.

Let us seek the perturbed solution in the form
T, =TT/ (z)exp (ot + iKy) (i=1,2) - (1.5)

Substituting (1.5) into the nonstationary heat-conduction equation

ar, T, T, ar,
W S STk ) BN
L ( 32 ay2> puc 57 1.8

results in ordinary second-order differential equations in T,'), T,' (x), whose solution yields

T, = Aexp(zuzr/2x), =1+ V1240 F s
T, = Bexp (z.uz / 2x), 2, =1—VT+4Q F &
a.m

Q=20, s=2--K
u u

Here Q is the dimensionless frequency, s characterizes the ratio between the width of the Michelson
heating zone w/u and the perturbation wavelength 27 /K, and A and B are integration constants. The condi-
tion that the perturbations damp out at infinity was used in selecting the signs of z; and z,.

The perturbed solutions are interrelated by conditions on the surface where the chemical reactionoc-
curs: the temperature is continuous, but the heat flux is changed because of heat liberation in the reaction
zone, In the approximation under consideration we have

z =g, T1=Tz, AL gg

25 o(u—B)g= -2 0 1.8)

It has here been taken into account that the derivative with respect to the normal is different from the
derivative with respect to x by a second-order infinitesimal.

Henceforth, let us consider the combustion velocity to depend only on the temperature in the zone of
chemical conversion. Then in the linear approximation the change in combustion velocity with temperature
can be described by the coefficient

dl
k=(To~ To) 5" (1.9)

whose explicit expression depends on the form of the stationary combustion law u(T,). In the case of the

Arrhenius chemical reaction rate dependence, which was considered in [3-6], we have when we neglect the
power dependence as compared to the exponential dependence
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' (T,—T)E '
u~exp (— E/2RT,), k=—?m-;,—— (1.10)

Here E is the activation energy, and R is the gas constant.

The introduction of a coefficient of temperature response of the combustion velocity permits writing
the condition of the total consumption of the reacting material as follows:

i3 k Ty~ T
. 1' = g: '_— = .u](sa?__TOO) (1 .11)

Let us linearize (1.8), (1.11) relative to small admixtures; hence for x = 0 we have

dTy° dT
S b =+ T
d’T Ty T'9°
e Y i
17 k dT»°
a_f=___..1,a_To( > §+T,\u, (1.12)

Substituting the solutions (1.1), (1.4), and (1.7) into these relations, we obtain a homogeneous system
of three linear equations in A, B, and D, whose solvability condition yields

16QF + 408 (1 +.4k — k* + &) + 4Qk (1 + &) + s%® = 1.13)
Setting @ = +iy here, we find the stability boundary k, (s?)
=@A+32+ VE+ 3P+ 4+ )20 +5) (1.14)

The minimal value is k; = 4 and is achieved for s =1. Putting s = 0 into (1.14), we obtain that the
domain of instability to one-dimensional perturbations is located at k > 2 + V5 ~ 4.24. Therefore, the
chemical reaction front is more stable relative to one-dimensional, than to three-dimensional perturbations.

The frequency is pure imaginary on the stability boundary, i.e., the loss of stability is oscillatory in
nature, It is expressed as a function of the perturbation wavelength in the form

B =g (4432 + V{E+ 3P+ 4 (T + 5%) (1.15)

As we recede from the stability boundary (an increase in k), we can reach a domain where the perturba-
tions will grow exponentially, The boundary of the oscillatory and exponential instability k,(s?) can be ob-
tained by using Cardano formulas for the cubic equation (1.13). It is determined by the equation

(2P — (%) (2hs® +6ky — 3) + 5 (gt — 10k,% + 26 k2 — 12k, + 3)
+ kza _ sz + 1 = 0 (1.16)

This curve can be constructed numerically by finding the zeroes of the function in the left side of
(1.16) for each k. In particular, for s = 0 we have k, = 3 + 2V2 ~ 5.83. Graphs of the functions k(s?), k,(s?),
and ¥ (s?) are represented in Fig. 1. The instability domain is located above the curve k; (s%).

The stability analysis made above shows that gasless systems are less stable to two-dimensional than
to one~-dimensional perturbations. The loss of one-dimensional stability occurs in the domain of developed
two-dimensional perturbations. This circumstance should be taken into account in attempts at a numerical
computation of the nonstationary velocity of the chemical reaction front in an unstable domain, The one-
dimensional approach to such problems is incorrect,

It should also be noted that the stability analysis performed above duplicates the investigation of the
diffusion-thermal stability of a gas flame to three-dimensional perturbations [7] to a significant degree.
The authors of [7] limited themselves to a clarification of the influence of the factor D — % (D is the diffu-
sion coefficient) on the stability of a gas flame to longwave perturbations. Moreover, the problem was
solved for a medium with constant density. Hence, if we do not limit ourselves to just longwave perturba-
tions and we pass to the limit as D /% —~ 0 in the appropriate relations [7] then we obtain the dispersion re-
lation (1.13) which yields unstable roots for k > 4,
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17 9. Influence of Heat Emission on the One-

k’ 3 .
4 % Dimensional Instability of Gasless Compositions
§ // : Ya. B, Zel'dovich [8] has shown that heat emission can result m the col-
/ lapse of combustion. A minimal temperature in the reaction zone Tb at which
g stationary combustion is still possible was found in [8] and the combustion velo-
P city corresponding to this temperature u’{) has been calculated
I3
/ VRF 2
4 TIJ =1g Ea ’ ub*=i‘/u‘e~" (2-1)
2 ,/F/7 Although the theory of combustion limits has been developed for gases in
[8], it can be applied also to the combustion of condensed systems subjected to
52 an Arrhenius kinetics jthe combustion law is expressed as a dependence of the
g 7 P I form (1.10) in this case],
Fig. 1 1t is shown in this section that the instability of the stationary combustion

mode of a gasless compound originates earlier(with fewer heat losses) than col-
lapse of combusnon is realized. To do this, let us investigate the one-dimensional stability of a reaction
front being propagated under heat-emisgsion conditions, Considering the temperature constant over the tube
cross section, let us add a.term taking account of the heat losses to the right side of (1.6).

ar. e,
i i
pe at A a9z

— puc s —ﬁ(T — Ty (2.2)

Here 6 is the heat-transfer coefficient.

Let us first present the stationary relations, In place of (1.1} we have
u, (4 + Bz

T°=T,+{(Ty—T,exp P
Zp: (p=t+ix25) 2.3

Ty = Tu+(Tb—To)exP
Here Ty, and up are the temperature in the reaction zone and the linear velocity of combustion under

heat-emissionconditions, respectively, g is a parameter characterizing the intensity of heat emission (8 =
1, Ty=T4, up=ufor 6 =0).

The equation of thermal energy balance on the combustion surface

dTs°
dx

2=0, —2L 4 pug =—h 2.4)

determines the combustion temperature

ﬂ.

Tb=TO+—c%z ﬁ“ (2.5)
(We assume T, « Ty, in this section.)

The relations on the combustion limit (2.1) follow from (2.5) and the stationary connection between the
combustion velocity and the temperature in the reaction zone of form (1.10). The introduction of the param-
eter 3 permits rewriting the first relationship in (2.1) as '

B* = ;,[ =14 (k:ﬁ%) @.6)

Let us investigate the one-dimensional (K = 0) instability by the scheme used in the previous section,
The perturbations of the combustion surface and the temperatures in zones 1 and 2 are

£ = Dexpot
P = depislue 20, 5 <ALV (e .
= Bexp(z/uyz/2%), 2z, =1 — VB F+ 40 4
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The first two relations in (1.12) remain the same; in place of the third we have

% _ Pouyr o, | dTw
7=t (T + 5y @.8)

Substituting the solutions (2.3), (2.7) into the first two relations in (1.12) and in (2.8), and taking ac-

count of (2.5), we obtain a homogeneous system of equations in A, B, and D, from which the characteristic
equation for 2 follows

AP+ BQEB 4k — KB - AR (B — AR 4-K) =0 2.9)
For § =1 the relation (2.9) agrees with (1.13) if s = 0 is inserted in the latter. The equation for the
stability boundary k(@ ') resulting from (2.9) is

k=g @+ VITEY, B T (2.10)
b

where Tp' is the temperature in the combustion zone corresponding to the limit of one-dimensional stability.

The dependence g (k) determined from (2.10) and g * () from (2.6) are represented in Fig. 2. The in-
stability domain is located above the curve g'(k); the domain under the curve g * (k) corresponds to the col-
lapse of combustion. For this compound (k fixed), as the heat emission increases, the stationary combus-
tion mode becomes unstable earlier than the collapse of combustion sets in because of heat transfer to the
wall, This holds for 2.7 < k < 4.24 (for k > 4.24 the combustion front is unstable to one-dimensional per-
turbations even under adiabatic conditions). Therefore, the temperature Ty' in the reaction zone (the com-
bustion velocity up', respectively) corresponding *to the loss of stability, can considerably exceed the com-
bustion temperature at the limit of combustion T}, (the combustion velocity at the limit u’f), respectively,
which is ve-fold less than the adiabatic value),

Constructed in Fig. 3 as a function of the parameter k is the magnitude of the combustion velocity on
the stability boundary ,

uy'/uq = exp (k1 — B’ (k)]) (2.11)

3. Stability of the Flameless Combustion Model

Now, let us consider the other simplest model of combustion of a condensed material when gaseous
products are formed because of reaction and the chemical transformation occurs on a solid phase surface.
Such a mode, called flameless combustion, is observed in tests in the combustion of ballistic powders under
conditions of very low pressure [9].

Let us analyze the stability of such a model relative to three-dimensional
perturbations, The stationary temperature distributions in zones 1 and 2 are

X I =T+ (To—To)exp(uz /%), T°=T, (3.1)
1.2
ﬁ\ Because of the continuity equation we have
*
Uy = Pollg = J, Uy [ Uy = pg / < 1
11 \f\ Priby = Polig = J, Uy [ Uy = 0,/ p; (3.2)
i
4 . The equation of thermal energy balance on the powder surface
A
40
Z 4 § d7r,*
r=0, — A'r;[xl + 01U (9 + erTs) = pattacs T, (3.3)
Fig. 2
determines the stationary temperature in the reaction zone
T, =27 + L 3.4
1. .
v” ”p‘,/[{]// ¢ Ce 0 C2 ( )
b7 v The perturbations of the powder surface and temperatures in zones 1 and
0.6 , # 2 have the form (1.4), (1.5). The solution of the linearized heat-conduction
2z J 4 4 s s .
equation (1.6) in zone 1 yields
Fig. 3
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T, = Aexp (zu,x/ 2%y), 2z =1+ Y114Q+s

o g% (3.5)
Q = F @, S§= 2 -7-;- K
The heat-conduction equation in the domain of gaseous reaction products
aT 8T, |, T . ary, . T
paca Tt = b (Gt + 5 ) — s Gt — s 3.6)

contains the components jx and jy of the material flux along the coordinate axes., However, since the sta-
tionary temperature distribution in zone 2 is independent of the coordinates, perturbations of the quantities
jx and jy will not originate in the linearized equation (3.6)

peea T8 = b (T + G ) — e @.7)
Substituting the expression for T,' into (3.7) and solving the equation obtained, we have
Ty = Bexp(z,usx/2%y), 2y =1 — ‘/ 1 4 s%a 4 4—;% ®, o= (7% -%:-)2 (3.8)
Let us note that taking account of (3.2)
oo i<t ©.9)

This permits neglecting the last member in the radicand in (3.8). The condition (3.9) denotes the non-
inertia of the processes in the gas phase,

Substitution of the solutions (3.1), (3.5), (3.8) into the first equation in (1.12), which expresses the con~
dition of temperature continuity on the combustion surface, yields

%(TE—TO)D—FA—-B:O (3.10)

Introducing the coefficient of temperature response of the combustion velocity in conformity with
(1.9), let us write the condition of total consumption of the reacting material in the reaction front analogous
to (1.11)

_ 6& __ k (2 ’
=% G T, (3.11)
For a combustion law of the form (1.10)
(T,— Ty E

k= —SEri ?:_ (3.12)

Substituting the expressions for ¢ and T,' into (3.11) yields

2 BLQD=0
T,—To « = (3.13)

The energy-balance condition on the solid phase surface is in the approxi-

R mation under consideration
kg
. aTy at ar 9%
/‘7/ r=§ —h—o-+p (ux— W) (@+el)=—h L+ (ux— 3;) Ty {3.14)

Linearizing (3.14) and substituting the expression for small admixtures
results in the equation

(za—1)a—2(k—t+52)B=0 (3.15)

Equating the determinant of the system of linear homogeneous equations
(3.10), (3.13), (3.15) to zero, we obtain the characteristic equation for Q
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4Q3 4 Q2[4 4 8kr s — (1 4 2kr —7 +- rV I L %) ,
+szr(sz+r+r;f1+s%c)+k2rzsz 0 (3.16)

ea. (dT )
a1
(31 dl’o

The stability boundary is determined by the equation

k=g ([ B —aem)

+V [+ R = g + o —ra) 2R — 1) } (3.17)
R=r(l +¥VT+5%)

The frequency on the stability boundary is pure imaginary (2 = i¥) and depends on the perturbation
wavelength as follows:

W2 = Ykr (s + R) (3.18)

where k is expressed as a function of s from (3.17).

An investigation of the behavior of the neutral curve (3.17) as s — 0 shows that the reaction front is
less stable relative to three-dimensional than one-dimensional perturbations for the following relationship
between the thermophysical constants of the initial material and the products:

114+ VIiter

<2r”z+ ViEsr

(3.19)
Constructed in Fig. 4 are the dependences (3.17) and (3.18) for r =1 and the values oy = 0 (curve'l},

a, = 0.5 (curve 2), a3 =1 (curve 3). The neutral curves are shown dashed. The unstable combustion domains

are located above these curves. The k = 3 corresponds to the one-dimensional stability boundary, which

agrees with the results of the theory of one-dimensional stability of powder combustion [10] which yields the

following relationship between the parameters on the stability boundary r™ = k —1)2/(k + 1).

A diminution in the parameter « results in expansion of the instability domain. For a < 0.4 the sys-
tem becomes more stable relative to one-dimensional than three-dimensional perturbations. The minimal
boundary value k~ 2,91 is reached for @ = 0, hence s ® 1. A comparison between Figs. 1 and 4 permits the
conclusion to be made that noninertia of the zone of combustion products results in expansion of the insta-
bility domain.
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