HYPOELASTIC FORM OF EQUATIONS IN NONLINEAR
ELASTICITY THEORY
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It is shown that the complete system of equations of elasticity theory for an isotropic medium
admits a unigue representation in the hypoelastic form (the tensor of the rate of change of
stresses is a linear function of the tensor of strain rates with coefficients depending on the
invariants of the stress tensor). It is necessary to this end that the hypothesis be satisfied
on the determination of strains by stresses which are unknown. Any arbitrariness in the
choice of the coefficients of the hypoelastic relation may result in the thermodynamic identity
being infringed.

To describe deformation processes of a medium one usually uses such tensor expressions as strain
tensor, stress tensor, strain-velocity tensor, tensor of the rate of change of stresses. In constructing a
determining system of equations of motion for the medium a relation is established to complete the system
between any tensor quantities as shown above. The most often used forms of such a relation are now enu-
merated [1].

Hyperelastic Medium. The existence is assumed of an elastic potential (of inner energy for adiabatic
processes) which depends on the strain tensor by means of which the stress tensor is determined.

Elastic Medium. The stress tensor is given as a function of the strain tensor.

Hypoelastic Medium. The tensor of the rate of change of stresses is given as a linear function of the
tensor of strain velocities the coefficients depending on the stress tensor.

It can be shown that with such a classification an elastic medium is also a hypoelastic one, and the
hyperelastic medium is elastic as well as a hypoelastic one. Moreover, if one starts with the thermodyna-
mic identity which must hold for a hyperelastic medium (similarly as in the case of gaseous media the
thermodynamic identity dE =—pdv + TdS takes place) then such a hyperelastic medium uniquely determines
the elastic and the hypoelastic relations.

An adiabatic deformation is considered of a hyperelastic isotropic medium by assuming that the inner
energy depends on three independent invariants of the tensor of the Cauchy strains gij and on the entropy
S. The independent invariants chosen by us are
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If the notation hj=—1/2 In gj is used where gj are the principal values of the tensor gij then the
thermodynamic identity is

odE (hy, hy, hgy S) = o,dh, + cydhy + odhs + pTdS Q)

In the above p is the density of the medium, o are the principal values of the stress tensor, T is
the temperature (see, for example, [2]). The tensor | hjjll =—1/2 In || gij || is called the Hankey strain

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 133-138, March-
April, 1974. Original article submitted October 24, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available Jfrom the publisher for 315.00.

255



tensor. As regards the tensor gj; in a coordinate system independent of the principal axes of the strain
tensor, the equation is obtained for the stress tensor, namely

oE
S = — 20 Gy~ Hai

These Murnaghan formulas give the stress tensor in terms of the strain tensor, that is, they are
elastic relations for the hyperelastic medium under consideration. The density is calculated by the formula
o= poKai/ % where pp is the density of the unstrained medium. In our further considerations matrix notation
is used; thus by using the notation

OE oE
Z=|oyl G=lgi] gz= "EH
one obtains the Murnaghan formulas in the matrix notation,
S=—2%36 @)

The use of the thermodynamic identity (1) whose corollaries are the Murnaghan formulas (2) enables
one to formulate a complete system of differential equations for the nonlinear elasticity theory,

] dEjdt — o;;0u;/0x; = 0 @)
pdul/tit - 60i,-/6.z_,- =0 (4)
dg;;/dt + g1a0Ua/0z; + gjalUa/dz; = @) ()

In the above d/dt=9/8t +u, (0 /38X ) denotes the derivative along the trajectory of the motion.
Equation (3) is the law of energy conservation, Eq. (4) the momentum equation, Eq. (5) describes the time
change of the strain tensor. The tensor ¢j; is the velocity tensor of plastic deformations. The model can
be made complete with the aid of Maxwell viscosity which ensures relaxation of the tangential stresses. If
the deformation of the medium takes place in the elastic domain only one should assume ®ij =0; therefore,
subsequent results are valid for the elastic-medium model with no need for additional assumptions.

The actual form of ¢;; is not discussed since this was done in [2]. We only notice that ¢jj are the
nfirst® terms of the differential equations, that is, they do not contain any derivatives.

One fact, however, should be noted; in view of the system of Eqs. (3)-(5) the thermodynamic identity
(1) implies the law of increasing entropy [2],

dsjdt =% >0 (6)

Equation (6) can be obtained as a linear combination of Eqs. (3)-(5). The right-hand side % then
represents the corresponding combination of the right-hand sides ?ij (if ¢ ij =0 then « =0).

The system of equations of the nonlinear elasticity theory (3)-(5) can also be written in a hypoelastic
form; to this end one has to proceed from Egs. (5) which describe the time change of the strain tensor to
equations which describe the time change of the stress tensor, A very general form which constitutes a
basis for various models of hypoelastic relations can be found in the survey [3], namely

dE/dt -+ 32U+ U*Z = aol te W+ o, W+, 2 teW +
o Itr (SWY+ Yoaa (EW + W)+ 027 tr Wtaed tr (EW) +
+ It (Z2W) 4 Y, ag(S2W 4+ WEH + 022 tr (EW) + o2 tr (22W) + o, Z2tr(Z2W) @
U'=|uy| = oujoz;|, W="(U+ U
where @, oy, ..., &y are any continuous scalar functions of the three principal invariants of the matrix

Z:tr T, tr 22, tr23. The model of the hypoelastic medium depends on the choice of the arbitrary coefficients
aj. The thermodynamics of such models is still at present not clear.

It will be shown below that Egs. (5) and (6) together with the Murnaghan formulas (2) imply (if the
plastic terms ¢jj are ignored) hypoelastic relations where the coefficients oy, ¢y, ..., @y are computed
by specific formulas resulting from the thermodynamics of the equations.

Equation (5) is rewritten in matrix form as
dGjdt = — GU — U*G + @, @ = |y ®)
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Using the expressions for the invariants K,, K;, K; in terms of the 8 it can be shown that
AK 3G = I, 0K,/0G = K, — G, 8K,/0G = G* — K,G + K,I 9)

Moreover, it follows from the Cayley—Hamilton theorem for the matrix G that any integral power
of the matrix G can be represented by a second-degree polynomial in the matrix G with coefficients depend-
ing only on the invariants K;, K,, K.

By using (2) and (9) the Murnaghan formulas are transformed into

S = + LG + L,G? (10)
y OF _ vy (O oF \
lo'—‘”zPoKs/m’ Iy = — 2p,K3" (m“&‘ 1m),
o OF
l, = ZpoK?,/haT2 (11)

It is expedient to consider the invariants tr G, tr G2, tr G3 side by side with the invariants K, Ky, K
which are related by

K, =1rG, K,=1,1[trG?* —1tr @], K;=1I[(tr G —
— 3tr G tr G* -+ 2tr G?]
Equations (8) then yield

dtr Gjdt = — 2tr (GW) + tr @, dtr G¥/dt = — 4 v (W) + 2ur (GD)
dtr G3dt = — 6Ky tr W + 6K, tr (GW) — 6K, tr (G2W) -+ 3tr (G*0), dK,/dt = — 2tr (GW) + tr @
dKyjdt = — 2K, tr (GW) + 2tr (G2W) + tr (K, ] — G) @],
dKfdt = — 2K, tr W + tr (G-10) (12)

It is noted that since the equation Ky implies the continuity equation then the identity
tr (G-'@) =0

must be valid; the latter was considered in [2] as a constraint on the manner of introducing the relaxation
terms @i

The equation for the time-change of the stress matrix is now obtained. It follows from (10) that

fl_f:zlidf_Jrlzidt‘ia+zza‘i_f+(%1+%c+§_l[;m) %I%+(%5}I+—Z’SLG+%G2)%
Using (6), (8), (12) one obtains
dd—y; = — U —U*S L 4lW — 2L,GWGE + Qotr W + Qy tr (GW) -+ Qutr (BPW) + ¥ (13)
Qi=g¢ (i.j=0,1,2)
q00=—2K3—g-;-<%, q01=—2K366—[l<‘8, q02=—2K3%
Gr2 = "‘2(3%+K1%) (14)

dla ol aly
on=2m, Q21=23—Kz, Q2z=2m

¥ = 1O 4 L, (GP + BG) — - 0 tr @ — - Oy tr (GD)
The right-hand side of (13) is now transformed using a generalization of Cayley—Hamilton formula
(see, for example, [3]),
CWG = — G*W — WGt + K, (GW + WG) — K,W +
+ (G — KG + KDy tr W+ (G — K D) tr (GW) + I tr (G*W)
Then (13) can be rewritten as

d2jdt = —3U — U*Z + 2 (2ls + Kyly) W — 2K 1, (GW + -
+ WG) + 21, (GFW + WG + Roytr W + R, tr (GW) + R, tr (GFW) + ¥

Ri=ry@(i,j=0,1,2) (15)
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Foo = oo — 2Ksly, 7oy = qor + 2K by, Tor = oz — 2,
ryo = quo + 2K1ly, 1y = gy — 2, T =g

o = Qoo — 203, Tay = Gays Tea = oz
The above can be written in a form similar to (7),

dS)dt + SU + U*S =Bl tr W + BW +BGtr W + .
1 Bol tr (GW) + YoBa (GW + WG) + P62 tr W + BeG tr(GW) + (16)

+ Bol tr (GEW) + yBe(GEW -+ WG + BeG? tr (GW) + Bro G tr (G*W) + Py G® tr (G*W) + ¥

Bo = rg0, 1 = 2 21y + Kyly), ﬁz = ropy Ps = Ty0, s = — 4K\l,,
Bs = ro2r Be = T11, Br =120 Bs= 4ly, Bo = rgy Bro = T, (17)
Brn =1

Thus a relation close to the hypoelastic one has been obtained which differs from (7) in that the right-
hand side of (16) depends on G and not on Z. The coefficients g, By, ..., B1; 28 well as the derivatives of
the energy are uniquely determined by the invariants K, Ky, K.

The matrix ¥ describes the attenuation of tangential stresses; only in the case of elastic strains one
sets ¥ =0.

It is usual when constructing a complete system of equations to proceed from the relations (7) to the
continuity equation and to the equations for the deviator of the stress tensor, £Z'=2 —1/3 Itr Z which can
be obtained from (7),

A2 fdt+ 1,2 (U — U*) — YU — U = ay (W — Yl te W) +

F a2t W4 ay (W + W2 — 2] tr (W) +

+aa (T2 =Y I tr 2 tr W 4 a2 tr (2'W) + ag(Z2W + (18)
+ WX 2L Ttr (272) + a; (B2 — Yol tr 22 tr (2'W) +

+oag T tr (Z2W) + ao (272 — VoI tr 2'2) tr (272W)

where the coefficients ai are determined by the coefficients «; in Eq. (7).

Equation (16) can be written in the form (18). To this end a hypothesis is required that the strain
tensor can be computed from the stress tensor with the aid of the equation of state (for the entropy re-
maining constant). The hypothesis is formulated as follows:

1) for a fixed deviator of the stress tensor the density can be calculated from the known pressure;

2) for a fixed density the deviator of the strain tensor can be calculated from the known deviator of
the stress tensor.

An example of an equation of state is now given which satisfies these requirements. In the principal
axes of the tensor hji one has ‘

0; = thi (hp h29 h37 S)v [ Po exp [_' (hl + h2 + h3)]

Let us consider the state equation

E=E® (g, 5) +2f(p, ) D
D =1, (d2 +d? +di?), d = hy — Yy (hy + by + hy)

One finds
oi=—p(,D,8) +2f(p,S)d:
P, D, 8) = —Ya (0y+ 03+ 05) = p*ES + 20%.D
Hence
o 1 __G1+0z+0s
& = sy [ 72

which is an illustration of part 2) of the hypothesis.
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Moreover,

%, (e, ) 1
P=0E’ (0, 8) + s 2( m+_ﬁ)

=1
and for part 1) of the hypothesis to be valid one needs
op/dp # 0

It is usual when using the hypoelastic relations on the right-hand side of Eq. (18) to neglect the terms
containing 2' and higher powers of Z'., The complete system of equations is then (see, for example, [4])

du, 3 ds..*
u; q i4 ij
dt +P oz; 3=0, P dt + az; - 0z; =0

8ui - 0 (19)
9=

p dt + p a 1 61]
dsy! u Bu, du, ou ' Ou; du; 9 Bu
—Y9 1 * _dy_.1 g% e\ —pf{——tp % "
dt 1% ( o - Bza) /254 (89:al oz, ) =W < oz + dx; 3 oz, 6“36”>

where p is identical with a, in (18). In the model (19) one usually assumes that u =y (p). The thermodyna-
mic properties of the equations are infringed as a result of neglecting the terms with ='. Whereas for the
system (3)-(5) the conservation law holds for the entropy (6), if the viscous terms are neglected, for the
system (19) with the equation of state E =E (p, 0jj', 5) one has p= szp
4s _ dE dp o doy' 4 _, ,
Esd—t—‘T—Ep—(ﬁ_WT?= pc” c’)a: Sik 06’(61‘ 01)

o 9E [ Ou; au]. 2u [ OFE uy Oug dus
p 95 (ax]- -+ axi)_l—?;;(asn’ + 3622' + 6533’)(62:1 + dz2 + 3903)

In view of the fact that the terms with =' are neglected, the right-hand side of the above equation is
not equal to y on the right-hand side of (16). In particular, for purely elastic processes (golJ =0) the law
of conservation of entropy does not hold for the solutions (19). N

Thus the system (3)-(5) can be reduced to a hypoelastic form if the strain tensor can be calculated
from the stress tensor. The coefficients appearing in the hypoelastic form can be uniquely evaluated from
the state equation. Arbitrariness in the choice of coefficients may result in an infringement of thermo-
dynamics. The system (3)-(5) has a more suitable form for computations than its hypoelastic form since
strains can be expressed by stresses only for simple forms of the equations of state.

The author would like to express his thanks to V. F. Kurapatenko, V. A. Svidinskii, and S. K. Godunov
for the interest they have taken in this work and their critical remarks.
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