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Abstract. The objective of the paper is to provide a taxonomy of temporal systems 
according to three fundamental considerations: the assumed axiomatic theory, the 
expressiveness, and the mechanisms for inference which are provided. There is an 
discussion of the significance of the key features of the taxonomy for computer 
modelling of temporal events. A review considers the most significant representative 
systems with respect to these issues, including those due to Bruce, Allen and Hayes, 
Vilain, McDermott, Dechter et al., Kahn and Gorry, Kowalski and Sergot, Bacchus 
et al., and Knight and Ma. A tabular comparison of systems is given according to 
their main structural features. In conclusion, the characteristics of a general 
axiomatic system capable of representing all the features of these models is 
discussed. 
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1. INTRODUCTION 

In this article we consider the characteristics of modelling systems which have 
been proposed for capturing the temporal properties of events and processes in 
computer based systems. The objective is to give a taxonomy of systems, 
according to some fundamental features. We start with a brief discussion of 
what the fundamental features are, and why they are important for use in 
computer modelling. 

Basic to all computer systems dealing with temporal events is an assumed 
theory of time. We require that this theory satisfies our intuitive notions of time, 
so that we can say that the real world is a model of the theory. By this, following 
the ideas of Suppes (1961), and of Funk (1983), we mean that the statements of 
the theory may be interpreted as true in the real world. The most common 
theoretical basis is the standard time-point system assumed by classical physics. 
In this theory, the time domain consists of a continuum of time points, 
isomorphic to the real line. Time intervals are taken as intervals on the real line, 
and duration of intervals is the real number difference of their start and end 
points. However, for many applications, particularly those in artificial intel- 
ligence and natural language understanding, the time-point system is not ideal 
for either the expression of temporal facts, or for the storage and organisation 
of incomplete temporal knowledge. For these applications, other theories have 
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been proposed, for example, based on time intervals as primitive rather than 
time points. 

The importance of the theory to a database system is as a basis for reasoning 
over the database. Inference may be performed over the stored data, by logical 
deduction from the axioms of the assumed theory. In some systems, no formal 
mechanism for inference is proposed, it being left to the user to draw inference 
from the database. In other systems a deduction system is proposed, in which 
rules are provided that allow deduction of true facts by forward chaining from 
the database. It is a characteristic of these systems that they are undirected, and 
do not allow the specific determination of a given query. Finally, some systems 
provide a consistency checker, and allow deduction by refutation. In these 
systems the user may enter a specific query, and the system checks whether it, 
or its negation, is inconsistent with the database. In this way the system may 
deduce whether a fact is: known true, known false, or unknown. 

This view of temporal systems leads us to attempt a characterisation of 
temporal systems according to three basic elements, as follows: 
• The assumed axiomatic theory: For all of the systems which we shall 

consider, there exists an underlying theoretical basis. For some systems this 
basis is formally described, and for others it remains assumed as intuitively 
agreed. 

• The expressiveness of the modelling language: A computer based system may 
be viewed as a model of the fundamental theory, in the form of a finite data 
base of temporal facts. Given that the model is incomplete by reason of 
storage limitations, there is a drive for efficient storage and retrieval of 
incomplete temporal knowledge. Expressive modelling languages allow the 
storage of temporal information which is incomplete in various fashions. 

• The reasoning mechanisms which are provided: Deductive inference may be 
performed on the stored data, with reference to the underlying theory, so 
that any fact which can be proved from the axioms of the theory and the 
stored temporal database may be assumed true by inference. In this way, the 
axioms plus database may be viewed as a deductive system from which facts 
may be retrieved by inference. 

In summary, we can capture some fundamental characteristics of existing 
temporal systems with respect to the following set of questions: 
• What are the assumed primitives? 
• Is there a formal theory? 
• What are its good/bad features of expression? 
• What is its application domain? 
• What reasoning mechanisms are there? 
• Is there a consistency checker? 
In Section 2, we address the major issues of theory which characterise systems 
at a fundamental level. The questions of expressiveness and inference are 
particular to proposed systems, and these are discussed in a review of some 
representative temporal models in Section 3. Section 3.10 provides a summary 
table characterising these mdoels. In Section 4, the characteristics of a general 
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axiomatic system capable of representing the features of these models is 
discussed. 

2. MAJOR THEORETICAL ISSUES 

The theoretical nature of time is a question with a long philosophical tradition 
and the literature seems full of disputes and contradictory theories. This 
contrasts sharply with the commonly held view of time, which allows people to 
cope easily with time in their everyday life. However, there are several major 
issues which should be addressed in terms of the theoretical basis of proposed 
systems. These issues are as follows: 

2.1. The primitive nature of time 

This is the issue of what should be taken as the primitive elements of time. 
There are three known choices: points, intervals, or both of them. Additionally, 
there are two fundamentally different treatments of interval based systems. In 
the first, intervals are assumed to consist of points, and hence, the corre- 
sponding systems may be considered as models of point-based time theories. 
An example of this kind of interval is the time-segment of Bruce's model for 
temporal references (Bruce 1972). However, as Allen has commented (Allen 
1981, 1983), modelling intervals by taking their ending-points can lead to 
problems: the annoying question of whether ending-points are in the interval or 
not must be addressed, seemingly without any satisfactory solution. The second 
treatment takes intervals as primitive objects without any definitions of the 
"ending-point" and "internal-point" structures. Allen's interval logic (Allen 
1981, 1983; Allen and Hayes 1989), Vilaln's temporal system (Vilaln 1982; 
Vilain and Kautz 1986), Knight and Ma's extended temporal model (Knight and 
Ma 1992, 1993), are examples that treat intervals as primitive. 

2.2. Ordering relations 

Whatever primitive time elements are taken, all time systems must adopt axioms 
defining some sort of ordering relations. Two fundamental issues are associated 
with time ordering: the density of time elements, and the linearity of the time 
axis. We discuss these issues in the following sections. 

2.2.1. Density of time 
The density question is associated with the choice of whether the set of time- 
elements should be modeled as a continuum (such as rationals or reals) or as a 
discrete set (such as integers). For time-points, can we always assume that 
between any two distinct time-points there is at least another time-point? For 
time-intervals, can we always assume that any interval can be decomposed into 
two distinct contiguous intervals? If so, then the primitive elements form a 
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dense system. The alternative assumption is that of discrete time, "whereby each 
time (except the first and last if there is a beginning or end to time) is 
sandwiched between unique previous and next times" (Galton 1990). 

The fact that the database must consist of a finite set of time-elements has no 
beating on the density question at all, which is a question of the assumed theory 
only. This theoretical issue impinges upon the inferencing mechanisms which 
may be used to derive facts from the database, insofar that the denseness 
assumption is needed to prove the consistency algorithms. 

2.2.2. Linearity of time 
This issue refers to whether the time axis can be always considered as linear or 
non-linear. Linear time corresponds to the classical physical model of time, 

~where the structure is that of the real time, extending indefinitely in both 
directions. The majority of time modelling approaches consider the time axis as 
being linear, that is, there is a total order over the whole set of time elements. 
However, non-linear time structures have been proposed, where the funda- 
mental order relation allows topologies such as branching time, parallel time 
and circular time, etc. 

It is questionable whether computer based systems really require non- 
linearity to be built into the temporal axioms, since its raison d'etre appears to 
be involved with a lack of knowledge of temporal events, rather than with our 
intuition about time itself. For example, parallel time lines have been proposed 
as a way of modelling separate parallel processes. However, it is a limitation in 
our knowledge which gives rise to the parallelism. We believe that the two 
processes are actually operating in the same linear time -- it is just that we have 
no knowledge of synchronisation. We do not need a theory of parallel time lines 
for this application; what we need is a model which allows us incomplete 
knowledge of synchronisation over a single linear time line. Similarly, branching 
time is proposed as a useful model to handle possible worlds, uncertainty about 
the past or the future and the effects of alternative actions when planning. 
However, it is arguable whether we need a theory which assumes that time itself 
branches in order to model possible worlds, rather than a model which 
expresses our limited knowledge of causality in possible worlds over a single 
linear time. For most applications, linearity is sufficient at the theoretical level. 
This corresponds with the usual assumption of classical physics where all events 
may be universally synchronised with a single time measure. Only if we wish to 
model relativity would we be unable to assume synchronisation of distant events 
at a theoretical level. 

2.3. Duration assignment 

In most applications, it is expected that a temporal system can support duration 
reasoning. For example, if it is known that interval I a and interval I b start 
together and that the duration of I, is greater than duration of Ib, we may infer 
that Ib finishes before Ia. This inference can be made by use of duration 
knowledge. 
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The duration assignment to time elements may be characterised by a function 
from the set of time elements to R~-, the set of non-negative real numbers. 
Intuitively, of course, the duration of the points should be sero, while the 
durations of intervals are positive. For point-based intervals, their durations 
may be derived from the distance between their greatest lower bound and least 
upper bound. However, for systems which treat intervals as primitive, their 
durations may be directly defined by an abstract function from intervals to 
positive reals. Given a duration assignment over time elements, some corre- 
sponding operators, such as addition, may be required to be defined, providing 
consistency of the whole system. 

3. SOME REPRESENTATIVE MODELS 

In this section, we review some representative temporal models, with respect to 
the fundamental issues addressed in the introduction. 

3.1. Bruce's temporal model  

An early attempt at mechanizing part of the understanding of time within an 
artificial intelligence is Bruce's model for temporal reference (Bruce 1972). In 
this system a formal framework, based upon first-order logic, is established for 
the analysis of tenses, time relations, and other references to time in natural 
language. The axioms of the framework are based on the following definitions: 
A time-system is a pair, (time, <~), where time is a set whose elements are 
called time-points, and ~< is a partial order over time. Because there is nothing 
that has been defined about time other than that it is partially ordered by ~<, 
the theory allows linear time or branching time, discrete time or dense time. 
The theory is thus more general than that for the standard point-based system, 
and inferencing mechanisms must be built on weaker axioms. 

Bruce then defines point-based intervals, termed time-segments, as chains 
which are convex in the sense that there are no points missing within the chains, 
where a chain is a totally ordered subset of time-points. The related issues about 
time-segments, such as: density and linearity, may hence be derived from the 
corresponding issues of the time-points which make up the time-segments. The 
ordering relations between segments are also inherited from the partial order 
over the time points. Bruce gives seven binary relations between time-segments, 
which can be derived from the ordering relations over their greatest lower 
bounds and the least upper bounds: Before, During, Same-time, Overlaps, After, 
Contains and Overlappped. In terms of these binary relations, a tense is defined 
as a special n-ary relation on time-segments with the following form: 

R I _ R 2  . . . . .  Rn_I(S1, $ 2 , . . . ,  Sn) =- 

RI(S1, 82) /~, R2(S2, 33) A . . .  ~ Rn_l(Sn_l, Sn) 

where each S i is a time-segment and R i is a binary relation between S i and Si+ 1. 
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$1 is called the time of speech, $2, . . . ,  Sn_ 1 are called the times of reference, 
and S n is called the time of event. For example, the following sentence 
• He will have been going to be going to go 
has the tense 

Before After__Before Before(S1, $2, $3, $4, $5) - 

Before(S1, $2) A After(S2, Ss) A Before(S3, $4) A Before(S4, $5) 

where S 1 is the time of speech, $2, $3; S 4 are reference times, and S 5 is the time 
of event. 

Bruce provides a natural language system, termed CHRONOS, which con- 
sists of a simple English sentence parser, a theorem prover, and a database of 
facts and events. The system accepts facts about events from the user and the 
information which is given by tense and time relations can be combined with 
other facts to allow inferences about the temporal ordering of events. However, 
a consistency checker for the database has not been provided explicitly. No 
heuristics are used in searching the network of temporal ordering links. Addi- 
tionally, as argued by Allen (see next section), there are some problems in 
dealing with the treatment of open or closed intervals. Mechanisms for duration 
reasoning a re  not specified, although these may be defined by introducing a 
mapping from the time-points to the reals. 

3.2. The interval logic of Allen 

Allen introduces his temporal logic in order to provide a framework for the 
naive treatment of two major subareas of artificial intelligence: natural language 
processing and problem solving. Instead of adopting time points (or states 
which are associated with time points), he takes intervals as the primitive 
temporal quantity, as being the natural means of human reference to time. As 
an example, in (Allen 1983), Allen gives the following story: 

Ernie entered the room and picked up a cup in each hand from the table. He drank from the 
one in the right hand, put the cups back on the table; and left the room. 

In  this account we can identify several time intervals, e.g.: the time Ernie was in 
the room, the time between entering the room and picking up each cup, the 
time between putting down the cups and leaving the room, and many others. 
However, the claim is that intervals are sufficient for modelling all the temporal 
references in human accounts such as this. Even references to apparent point 
events, such as the time Ernie entered the room, or the time that he put down a 
cup, are best modelled as small time intervals. The argument is put forward that 
all apparently instantaneous events can be decomposed further if we examine 
them more closely. For example, "entering the room" may be decomposed into: 
opening the door, moving through the doorway, and closing the door. And 
again, "opening the door" can be decomposed into turning the handle and 
pushing the door open. As Allen puts it (Allen 1983) 
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There seems to be a strong intuition that, given an event, we can always "turn up the magnifi- 
cation" and look at its structure. 

In order to express temporal relationships over time intervals, Allen took 
originally as primitive a set of nine (mutually exclusive) basic binary relations 
between any two intervals (Allen 1981), extended later to 13 (Allen 1983): 
Equal, Before, Meets, Overlaps, Starts, Started-by, During, Contains, Finishes, 
Finished-by, Overlapped-by, Met-by, After. These are based on Bruce's seven 
relationships, but whereas Bruce's relations are derived from the partial order 
within a point-based theory, Allen's are taken as primitive. 

These relationships are later formally defined in terms of the single primitive 
relation "Meets" by Allen and Hayes (1989). This is done by positing the 
existence of related intervals for some relations. For example: 

Before(ix, i2) ¢* 3i(Meets(i 1, i) A Meets(i, i2) ) 

In Allen's system, consistency checking is performed by formation of the 
transitive closure, according to a transitivity table with 144 entries which 
describes the composition of the thirteen (mutually exclusive) relations. If no 
conflict is found according to the exclusivity, then the system is consistent. For 
example, for the system: 

Before(a, b), Before(b, c) 

we may use the transitivity entry: 

Before(il, i2) A Before(i2, /3) ~ Before(il, i3) 

to deduce that Before(a, c). Hence facts may be derived by forward chaining 
from the database, using the transitivity rules (termed truth propagation by 
Allen). Possible inconsistencies in a database can also be established by truth 
propagation. For example, from: 

Before(a, b), Before(b, c), Before(c, a) 

we can deduce Before(a, c) from the first two predicates, and After(a, c) from 
the third. Hence we have two distinct relations between a and c, which are not 
allowed due to the exclusivity of temporal relations. 

Allen and Hayes show that the transitivity table in (Allen 1983) is a result of 
the their axioms in (Allen and Hayes 1989), following the intuitive reasoning by 
possibel cases which has been used to construct the table originally. Addi- 
tionally, in (Allen 1983), Allen has suggested that duration reasoning may also 
be incorporated into the interval-based system by giving examples of rules for 
duration reasoning. For example: 

During(a, b) V Starts(a, b) V Finishes(a, b) 
duration(a) < duration(b). 

However no comprehensive mechanism has been proposed, and hence the 
duration reasoning is rather weak. 
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The most disputed aspect of Allen's system is its exclusion of time points as 
primitive, although in the later paper (Allen and Hayes 1989), Allen and Hayes 
define a point as the "meeting place" of intervals or as a maximal set, termed 
"nest", of intervals that share a common intersection, at a subsidiary status 
within the theory; and use the concept of a "moment", i.e., a very short interval 
which is non-decomposable, to model some instantaneous events. Their conten- 
tion is that nothing can be true at a point, for a point is not an entity at which 
things happen or are true (Allen 1983). Except for the assumption that 
moments have positive length, while points have zero length, another obvious 
structural difference between points and moments is that moments are treated 
as primitive objects, and hence can meet other intervals (although they are not 
allowed to meet other moments), while points are not treated as primitive 
objects and cannot meet anything (Allen and Hayes 1989). 

However, as Galton shows in his critical examination of Allen's interval logic, 
Allen's theory of time is not adequate, as it stands, for reasoning correctly about 
continuous change (Galton 1990). This problem stems from Allen's determina- 
tion to base his theory on time intervals rather than on time points, either 
banishing points entirely, or, latterly, relegating them to a subsidiary status 
within the theory. The following example of a ball thrown vertically into the air 
intuitively shows the problem involved with references to time points: The 
motion may be described qualitatively by the use of two intervals, interval i 1 

where the ball is going up, and interval /2 where the ball is coming down. 
According to classical physics, there is a point where the ball is stationary. In 
the interval calculus, we have two alternatives: we may assume that there is a 
small interval where the ball is stationary, or we may assume that interval i 1 
"Meets" interval /2. The first alternative does not seem tenable, not being 
consistent with the laws of physics. On the other hand, the second alternative 
also gives problems, since the interval calculus allows us to combine two 
intervals which meet; that is, /1 ~ /2 = /3. However, although both of the 
intervals /1 and /2 have the property "ball-in-motion", the combined interval /3 
doesn't have this property. 

3.3. Vilain's temporal system 

Noting that intervals are not the only mechanism by which human beings 
understand time, another common construct being that of time points, Villain 
(Vilain 1982; Vilain and Kautz 1986) proposes a system which handles time 
points in much the same way that it handles intervals. The logic of points is 
arrived at by expanding Allen's logic of intervals: adding new primitive relations 
and composition rules over them to Allen's interval logic. The new primitive 
relations may be classified into three groups: 
(Point-Point) Equal, Before, After, which relate points to other points; 
(Interval-Point) Before, Started-by, Contains, Finished-by, After, which relate 

intervals to points; 
(Point-Interval) Before, Starts, During, Finishes, After, which relate points to 

intervals. 
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The mechanism by which Vilain's system makes deductions about points is an 
extension of that which it uses to make deductions about intervals. In an 
approach similar to that of Allen, the system maintains a "complete picture" of 
all relations over intervals and points by means of a transitive closure operation. 
The operation is performed over the expanded set of composition rules in the 
newer logic. 

However there is a critical omission from the primitive relations between 
points and intervals in Vilain's system; for the "Meets" relation is defined only 
between intervals and is not allowed between points and intervals. Hence, the 
problems in modelling continuous change by Allen's system mentioned by 
Galton in (Galton 1990) still exist in Vilain's system. For example, the system is 
still not capable of modelling the processes of a ball thrown vertically into the 
air: Let interval ii refer to ball-going-up, point p refer to ball-stationary, and 
interval/2 refer to ball-coming-down. On the one hand, it is easy to see that p is 
neither in i I n o r  /2. On the other hand, according to Vilain's classifications of 
relations over points and interval, point p is not allowed to meet or be met-by 
any interval. Hence, we deduce that p is after /1 and before /2, that is, there is 
another time element between i 1 and p, and another time element between p 
and/2. This is obviously contrary to our intuition of the processes. 

N.B. In (Beck 1992), Beek has proposed an interval-based framework,-IA, 
and point-based framework, PA, for representation of and reasoning about 
incomplete and indefinite qualitative temporal information. However, it is 
interesting to note that the frameworks, IA and PA, deal with temporal 
relations between intervals, and relations between points separately, that is, the 
interval-based framework IA deals with the thirteen temporal relations (defined 
by Allen (1981)) between intervals only, while the point-based framework PA 
deals with temporal relations between points only, which are addressed in 
Vilain and Kautz's point algebra (Vilain and Kautz 1986). Relations between 
intervals and points, such as that proposed in (Vilain 1982), are not addressed 
at all. Additionally, like Dechter et al.'s framework (see next section), time 
intervals are not defined as primitive. Indeed, time intervals, and temporal 
relations between intervals are defined in terms of points (rationals) and the 
corresponding order relations between points, respectively. 

3.4. Dechter, Meiri and Pearl's TCSP 

Dechter et al. (1991) have presented a unified approach to temporal reasoning 
based on constraint-network formalism. In this framework of temporal con- 
straint satisfaction problems (TCSP), variables represent time points, and 
temporal information is represented by a set of unary and binary constraints, 
each specifying a set of permitted intervals. The unique feature of this frame- 
work lies in the inclusion of duration information, namely, time differences 
between events. Algorithms are presented for performing some reasoning tasks, 
such as finding all feasible times at which a given event can occur, finding all 
possible relationships between two given events, and generating one or more 
scenarios consistent with the information provided. A TCSP involves a set of 
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variables, X1, . . .  , Xn, having continuous domains; each variable represents a 
time point. Each constraint is represented by a set of intervals: {11, . . .  , In}, 
where these intervals are similar to Bruce's time-segments, that is, they are 
point-based, may be closed, open, or semi-open. A simple temporal problem 
(STP)is a TCSP in which all constraints specify a single interval. The duration 
of an interval may be defined by the distance between its greatest lower bound 
and least upper bound. Relations between intervals, such as the thirteen 
relations defined by Allen, may be derived from the known total order relation 
among their greatest lower bound and least upper bound. Consistency checking 
for a TCSP is transformed to a corresponding examination of its graphic 
representation. 

The theory is formally stated, with points and real numbers as primitives, and 
intervals being constructed out of points. It assumes a dense set of time- 
elements, but time may be branching. Duration reasoning is encompassed by the 
system by means of a consistency checking algorithm. The limitation of the 
TCSP model is it's assumption that point based intervals have the same 
open\closed nature, that is, either intervals are all assumed to be closed, or they 
are all assumed to be open (semi-open). This assumption can lead to problems: 
if intervals are all closed then adjacent intervals have ending-points in common, 
which when adjacent intervals correspond to states of truth and falsehood of 
some property, can lead to situations in which a property is both true'and false 
at an instant. Similarly, if intervals are all open, there will be points at which the 
truth or falsity of a property will be undefined (The solution in which intervals 
are all taken as semi-open, so that they sit conveniently next to one another, 
seems arbitrary and unsatisfactory), 

3.5. The time specialist of Kahn and Gorry 

In order to store, retrieve, and reason about temporal information, Kahn and 
Gorry (1977) have designed and implemented a module, called the time 
specialist, to maintain separate mechanisms for dealing with dated and undated 
information. The time specialist is endowed with the capacity to order temporal 
facts in three major ways: 
(1) relating events to dates, 
(2) relating events to special "reference events", 
(3) relating events together into before-after chains. 
The time specialist can answer different types of questions such as: 
• Did event X happen at time expression T? 
• When did event X happen? 
• What happened at time expression T. 
The time specialist is able to make deductions and check if they are consistent 
with the facts known in the database. However, it is weak if the time indications 
are not definite. Also, each of the three methods to organize temporal state- 
ments has its own special data structures and routines to work with those 
structures. For a given set of temporal facts, it is up to the user, not the time 
specialist, to choose the most appropriate methods. 
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The time specialist can check the consistency of the latest fact with facts 
previously accepted, and try to resolve inconsistencies through interaction with 
the user. In such an interaction, the user may withdraw either the new fact, or 
some old facts whose removal would lead to consistency. However, removing 
old facts may involve undoing some prior deductions. In order to be able to do 
this, a deduced fact is marked by those facts used to deduce it. 

No formal theory is stated as a basis for the time specialist. The basis for 
temporal reasoning is contained in the algorithms which make up the system. 

3.6. The temporal logic of McDermott 

McDermott  (1982) has developed a first-order temporal logic to provide a 
versatile "common-sense" model for temporal reasoning. In accordance with the 
"naive physics" advocated by Hayes (1978), McDermott  adopts an infinite 
collection of states (points) as the primitive temporal elements and adds several 
crucial axioms. Every state has a time of occurrence, d(s), a real number called 
its date. Time is assumed to be a continuum, with an infinite numbers of states 
between any two distinct states, where states are partially ordered by the "no 
later than" order relation "~<". The future (not the past) is branching, that is, 
there are many possible futures branching forward in time from the present. 
Each single branch, called a "Chronicle", consists of a connected series of states 
and is isomorphic to the real line. Developing his theory, McDermott  examines 
three major problems that a temporal reasoning system must face: reasoning 
about causality, reasoning about continuous change, and planning actions. 

McDermott 's system has formal axioms with time-points (states) and reals as 
primitives. The theory assumes a partial ordering relation, which gives rise to 
branching time. Reasoning is via the assumed theory of the real numbers, and 
no special mechanisms are needed. We can represent a time state, s, as the pair 
(C s, t), where t ---- d(s) and C s is the set of chronicles that s belongs to. Possible 
events may be associated with time states. 

For illustration, we shall consider the example of a man, called John, 
planning a trip to the theatre. We assume that a decision will be made to go by 
train or bus. If the decision is made to go by train at time strain1, where d(strainl ) 
= tl, then John will arrive at the theatre at time Str~n2, and the play will start at 
time Strain3 , where d(strain3 ) = t 3. All of these time states lie on a chronicle Ctrai n. 
Alternatively, if the decision is made to go by bus at time Shush, where d(Sbusl) = 
t~, then he will arrive at the theatre at time Sbus2 , and the play will start at time 
Sbu~3, where d(Sbus3 ) = t 3. All of these time states lie on chronicle Cbu S. These 
events and states may be represented by the following data: 

(decides-to-take-train, Ctrain, tl) 
(arrives-at-theatre-by-train, Ctrain, t2) 
(play-starts, Ctrain, t3) 

(decides-to-take-bus, Cbus, tl) 
(arrives-at-theatre-by-bus, Cbus, t;) 
(play-starts, Cbus, t3). 
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Here, Strainl has been represented by the pair (qrain, tl), Strain2 by (Ctrain, ~rain2) etc. 
In this example, illustrated in Figure 1, we see that time states divide into two 

separate chronicles qr~. and Cb,s, from the state So as a result of the John's 
decision. Although it is obviously possible for us to compare times on different 
chronicles by means of the t component, McDermott uses the "no later than" 
relation over time states which is restricted to states on the same chronicle. This 
is to prevent us from making "/lO later than" comparisons for events which 
cannot both occur in reality. For example, we are not allowed to ask whether he 
arrives at the theatre by bus before he arrives by train, since he cannot do both. 
These two events are said to be in different possible worlds (i.e. chronicles). 

~traln2 

: S ~ = 2  

t l  t2 t~ 

8train3 
,r~ Ctraln 

Cbu8 
Sb ~3 

~ ' R  
t3 

Fig. 1. 

McDermott also provides axioms which ensure that chronicles branch only 
into the future, and this limits the expressiveness of the  logic. For, in the 
example, we have the event "play starts" on two different chronicles which 
cannot be compared. Using McDermott's logic we must view these as two 
separate events: "play starts after John's arrival by train", and "play starts after 
john's arrival by bus". Since we may judge that the play is independent of John, 
we may wish to join the two chronicles at the state that play starts. 

It is in fact arguable whether we need to consider time as branching in order 
to model possible worlds. In fact, it is possible to conceptualise the world 
number, or chronicle, as related to the event data, and not to the time. For 
example, we can regard the predicate: 

(decides-to-take-train, qra=, tl) 

as relating: 

(event, possible world, time) 

rather than: 

(event, time__state) 

In this case, time elements are standard linear dense time points, and the axioms 
for chronicles can be specified independently of those for time. 
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3.7. Kowalski  and Sergot's event calculus 

The event calculus of Kowalski and Sergot (1986) is an approach for repre- 
senting and reasoning about time and events within a logic programming 
framework. It is based in part on the situation calculus (McCarthy 1963; 
McCarthy and Hayes 1969), but focuses on the concept of events as highlighted 
in semantic network representations of case semantics. Its main intended 
application is the representation of events in updating databases (Kowalski 
1992) and discourse representation. 

Primitives of the theory are events, which are considered to be structureless 
"points" in time, where "point" is used here only to convey the lack of internal 
structure. Events start and finish periods of time, during which states are 
maintained. Events are considered to be after the time periods that they finish 
and before the time periods that they start, not fully contained within either of 
these periods. 

Sadri (1987) has illustrated a number of the general characteristics of the 
event calculus: 
(1) Event descriptions can be assimilated in any order, independent of the 

order in which events actually take place. 
(2) Events can be used for temporal references and need not be associated 

with absolute times. 
(3) Events can be simultaneous. 
(4) Events can be partially ordered. 
(5) All updates are additive. The effect of deletion is obtained by adding 

information about the end of periods. 
(6) The event calculus rules are in Horn clause logic augmented with negation 

by failure. 
(7) The event calculus allows events to be input with incomplete descriptions. 
In (Kowalski 1992), Kowalski specially investigates the case of the event 
calculus connected with database updates. The way in which relational data- 
bases, historical databases, modal logic, and the situation calculus deal with 
database updates is discussed in detail. It is claimed that the event calculus may 
overcome the computational aspects of the flame problem in the situation 
calculus, and it can be implemented with an efficiency approaching that of 
destructive assignment in relational databases. Bernard et al. (1991) have 
recently presented an adaptation of the event calculus to the problem of 
determining the temporal structure of operations that must be performed during 
the realization of some complex objectives. In (Borillo and Ganme 1990), an 
extension to Kowalski's event calculus model is proposed by Borillo and 
Gaume, by means of the additional spatial component, and the introduction of 
uncertainty and a general abstract relation among propositions. 

The formal theory of Kowalski and Sergot's event calculus may be taken as 
the Horn clause system plus negation by failure. However, the use of negation 
by failure introduces a procedural element into the axioms. In this respect, the 
system is thus akin to the time specialist, in that the theory is presented in terms 
of algorithms. 
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3.8. Bacchus, Tenenberg and Koomen's BTK 

Bacchus, Tenenberg and Koomen present a many-sorted temporal logic, termed 
BTK (Bacchus et al. 1991), for reasoning about propositions whose truth values 
might change as a function of time. In order to provide a clear semantics and a 
well-studied proof theory, Bacchus et al. partition both the universe of dis- 
course and the symbols of their language into two sorts, temporal and non- 
temporal, by which time is given a special syntactic and semantic status without 
having to resort to reification. In BTK, propositions are associated with time 
objects by including temporal arguments to the functions and predicates, where 
terms and wffs are defined in the standard fashion, with the only restriction 
being that arguments of the correct sort must be given for each function and 
predicate. 

Actually, BTK is sorted in much the same way as Shoham's reified logic 
(Shoham 1987a, b). Unlike Shoham's first-order logic in which propositions are 
expressed just with respect to a pair of time points (denoting a time interval), 
propositions in BTK can be expressed and interpreted with respect to any 
number of temporal arguments: there is neither a syntactic commitment to the 
number of temporal objects that any function or predicate may depend upon, 
nor is there any commitment to interpreting the temporal objects as either 
intervals or points. 

It is interesting to noted that, in their paper (Bacchus et al. 1991), Bacchus et 
al. have shown that Shoham's logic can in fact be subsumed by BTK by defining 
two transformations, a syntactic transformation, ZCsyn, and a semantic trans- 
formation, arse m • ~syn maps sentences of Shoham's logic to sentences of BTK, 
while Z~s~ m maps models of Shoham's logic to mdoels of BTK. Additionally, 
Bacchus et al. argue that Shoham's categorization of propositions over point- 
based time intervals may also be translated to BTK, and the ontology of BTK is 
richer since it allows time intervals to be the primitive temporal objects rather 
than being defined as pairs of time points. 

The major difficulty involved in reasoning in a BTK system lies in reasoning 
with the temporal terms, while the complexity of reasoning is highly dependent 
on the nature of the temporal domain. However, in BTK, there is no axiomatisa- 
tion characterising the time structure. This question is left open, so that the 
temporal domain of BTK may be defined to be any temporal structure which 
can be characterised by a set of axioms, for example that of Bruce (1972), of 
Allen and Hayes (1989), or of McDermott (1982). A complete proof theory 
may then be generated by adding the axioms for the temporal domain to the 
fundamental axiomatisation of the logic. 

3.9. Knight and Ma's ETM 

As mentioned in Sections 3.2 and 3.3, there are some difficulties with Allen's 
and Vilain's approaches in the qualitative modelling of everyday occurrences. 
The authors have proposed an extended temporal model, ETM (Knight and Ma 
1992), which treats both intervals and points as primitive time elements on the 
same footing, and supports duration reasoning and consistency checking. 
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The definition of a temporal system supporting duration reasoning consists 
first of a definition of an underlying well-ordered set E. The elements of the 
elementary set E may be both points and intervals with a duration assignment 
which is defined by a mapping from the primitives to the non-negative reals. 
The temporal system is then defined as the closure, T, of E under the binary 
operations (9, representing the combination of adjacent elements, and the 
conventional addition of the corresponding durations. This model provides 
axioms for a single successor relation, termed "Meets", over time intervals and 
points, and supports duration reasoning, which has been a problematic aspect in 
many temporal systems. Excepting the axiom that the duration of an interval is 
positive while the duration of a point is zero, the differentiating property 
between intervals and points which is proposed is that while intervals may meet 
points or intervals, points are not allowed to meet points, although they can 
mee6t (or be met-by) intervals. This characteristic is in line both with modelling 
requirements where points are defined as separators or end-points of intervals, 
and with the denseness of points on the real line. But this is the only extra 
requirement which is made of elements if they are to be points. According to 
their definitions, points, as primitive elements of ETM, are different from either 
Allen's points or moments. It seems that Allen's moments may be taken as the 
elementary intervals in E. 

An intuitive graphical representation of an incomplete temporal system, 
(K, MK, DK), is introduced in terms of a directed, partially weighted graph, 
where K is a set of time elements, and MK, D~c are the "Meets" knowledge and 
duration knowledge over K, respectively. And necessary and sufficient condi- 
tion for the consistency of an incomplete system (K, MK, DK) (Knight and Ma 
1992), and the corresponding limited system (K, MK) (Knight and Ma 1993), is 
formally presented. 

If we let intervals ii and /2 refer to ball-going-up, ball-coming-down respec- 
tively, and point p refer to ball-stationary, we can now satisfactorily model the 
processes of a ball thrown into the air (see Sections 3.2 and 3.3) as: Meets(il, p) 
and Meets(p,/2). 

Additionally, although intervals are taken as primitive, as in Allen's system, 
the ETM allows formal expression of open and closed nature of intervals with 
the following meaning: 

interval i is left-open at point p iff Meets(p, i); 
interval i is right-open at point p iff Meets(i, p); 
interval i is left-closed at point p iff 3i'(Meets(i', i) A Meets(F, p)); 
interval i is right-closed at point p iff 3i'(Meets(i, i') A Meets(p, i')). 

which is in fact consistent with the conventional meaning of the "open" and 
"closed" nature for point-based intervals. 

In terms of "Meet", 30 relations over intervals and points may be formally 
defined. This is indeed an extension of Vilain's primitive relations (see Section 
3.3), by means of adding four critical relations: Meets, Met-by that relate 
intervals to points, and symmetrically, Meet, Met-by that relate points to 
intervals. 
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The consistency condition given in ETM implies an inferencing mechanism 
including duration reasoning. It is straightforward to prove that all Allen's 
duration reasoning rules are explicit results of the inferencing mechanism, by 
using the consistency condition. 

A limitation of this system is the assumption of discreteness. The theory on 
which the system is based assumes a discrete set as time domain. However, 
since any computer based system must be in a finite form, this requirement does 
not in fact place any restriction on the application field. In Section 4, it is 
proposed that the system may also be based on a dense time domain. 

3.10. Overview of models 

Based on the above discussions, we present an overview of these representative 
temporal models in terms of Table 1. 

4. CONCLUSION 

In this paper, we have examined the bases of various temporal systems, concen- 
trating on the differences of approaches taken. However, apart from differences 
of terminology, the models show a commonality of structure at a fundamental 
level. All the systems rely on theories based on a primitive set of time elements, 
which may be points, intervals, or both of them. The systems are axiomatised by 
primitive order relations over the time elements. This suggests the question as to 
whether a general axiomatic system is possible, which ~ express this common 
structure at a theoretical level. We first discuss the properties that we might 
wish for a general axiomatic system, and then how it might be possible to 
achieve it. 

To start we ask the question as to what we might ideally require of a general 
axiomatic system. Firstly, we might require that it should take both intervals and 
points as primitive time elements, and thus allow point-based, interval-based, or 
point- and interval-based models. Secondly, primitive order relations should be 
defined over the primitive time elements, from which the order relations for the 
main temporal systems, outlined in Section 2, may be derived. For point based 
systems such as those of Bruce, of Dechter, Pearl and Meier, and of McDer- 
mott, the primitive order is "no later than". For interval based systems, it is 
"Meets", in terms of which thirteen possible temporal relations can be defined. 
Thirdly, a primitive duration function is needed, assigning a real number to each 
time element. 

To ensure the generality of the axiomatisation, it should allow discreteness or 
denseness of time, which could be specified by additional axioms if required. It 
should also provide a special axiom for linearity of time, without which the time 
structure is branching. Finally, we would like a consistency checking algorithm 
for any finite database of temporal facts to be proved from the axioms, so that 
inference by refutation is possible. 

In (Allen and Hayes 1989), Allen and Hayes have provided formal axioms 
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Table 1 

417 

Issue 

Model 

Primitive Ordering Theory 
relation 

Duration Inference 
reasoning mechanism 

Bruce's 
CHRONOS 

Allen and Hayes' 
interval logic 

Vilain's 
temporal system 

Dechter, Meiri, 
and Pearl's 
TCSP 

Kahn 
and Gorry's 
time specialist 

McDermott's 
temporal logic 

Kowalski 
and Sergot's 
event calculus 

Bacchus, 
Tenenberg 
and Koomen's 
BTK 

Knight and Ma's 
ETM 

point-based 7 binary formal no 
intervals relations 

primitive 13 binary formal weak 
intervals relations 

formed by 
"Meets" 

primitive 26 intuitive no formal no 
intervals and binary axioms 
points relations 

point-based total order formal yes 
intervals 

points (event "before-after" no formal no 
dates) chains axioms 

refutation 
(no consistency 
checker provided) 

deductive rules 
(transitivity table) 

deductive rules 
(transitivity table) 

refutation 
(consistency 
checker provided) 

not formal 

points (states) "no later formal no assumed theory of 
than" binary the real numbers 
order 

points partial order no formal no resolution 
(events) axioms (negation by 

failure) 

not specified not specified not presented no none 

primitive successor formal yes refutation 
intervals and relation (consistency 
points checker provided) 

for  their interval based system, including a special axiom, (M2) ,  for  the linearity 
of  time. The  primitive o rde r  assumed in Allen 's  theory  is the "Meets" relation 
between time intervals, which may  be used to define all the thirteen possible 
tempora l  relations be tween intervals. In  ETM, it is also used to define the three 
relations between two points: Before, Equal  and After. Hence,  the fundamenta l  
o rder  relation for  time point  systems, "no later than", may  be  defined in terms 
of  "Meets". 

The  p rob lem is that neither Allen 's  system, nor  E T M  are a sufficient basis 
for  this purpose :  Allen 's  system does no t  include points,  while E T M  deals with 
finite sets of  time elements only. 

However ,  Al len and Hayes '  interval based axiomatisat ion of  time (Allen and 
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Hayes 1989) is in fact very appropriate for extending to a general time theory. 
What is needed is an extension of Allen's axiomatisation to include points. In 
ETM there is a critical axiom that a point cannot meet another point, and it 
seems that this is likely also to be necessary for the general axiomatisation. In 
fact, in (Ma and Knight (in press)), the authors have proposed a general 
temporal theory which addresses both intervals and points as primitive time 
elements of equal footing. The funda/nental axiomatisation is independent of the 
specification of density and linearity, while additional axioms specifying the 
linearity and density of time are separately presented. It is shown that Allen and 
Hayes' interval based theory may be subsumed, and the authors's ETM may be 
taken as a special finite model of the general theory. 
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