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Abstract. In this paper we critically survey the AI programs that have been 
developed to exhibit some aspect of creative behaviour. We describe five necessary 
characteristics of models of creativity, and we apply these characteristics to help 
assess the programs surveyed. These characteristic fea~tres also provide a basis for 
a new theory of creative behavior: an emergent memory model. The survey is 
concluded with an assessment of an implementation of this latest theory. 

Bill sings" to Sarah. Sarah sings to Bill. Perhaps they will do other dangerous things together. 
They may eat lamb or stroke each other. They may chant of their difficulties and their 
happiness. They have love but they also have typewriters. That is interesting. 

1. INTRODUCTION: RANDOMNESS AND RIGIDITY 

Intelligence involves creative behaviour. Few would challenge this statement, 
but agreement on what is meant by "creative behaviour" would be much harder 
to find especially if the meaning had to be couched at the level of pro- 
grammable specifics. Nevertheless, the historical record in AI is dotted, albeit 
sparsely, with attempts to build creative programs. But it should come as no 
surprise that these programs tend to differ greatly in both what they attempt to 
do (to exhibit creativity), and how they attempt to do it. In this paper we shall 
critically survey a wide range of these programs designed to exhibit creative 
behavior. 

The opening quotation was written by the computer  program Racter which, 
in turn, was written by William Chamberlain (Racter 1984). Racter works by 
constructing sentences, poems and stories according to "syntax directives" using 
random words and phrases. This is modified by an ability to adapt previously 
used phrases to give a sense of continuity. The effect of reading Racter's 
compositions is very interesting. Initially, they are too bizarre to be taken 
seriously. After a while, though, the general surrealism becomes appealing and 
some parts quite brilliant: "reflections are images of tarnished aspirations." This 
effect, however, is also short-lived and soon gives way to dissatisfaction and 
eventual boredom. What is missing? If creativity is about producing something 
new then Racter should certainly qualify, but it seems that novelty is not 
enough. The impact of Racter's prose can best be described as superficial. An 
interesting comparison here is with some modern  art. This has the same kind of 
shock value at first sight but, when this has worn off, it is replaced by a long- 
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lasting appreciation. It bears examination and re-examination. It is easily 
detected that Racter's work has no semantic relevance. Any interest it does 
provoke is almost entirely due to the work the reader's mind does on the words 
that Racter produces. This is aided slightly by Racter's habit of repeating words 
and phrases. The reader, though, becomes hard-pushed to construct any 
detailed model of the narrative. Randomness, then, is not enough, even though 
it (trivially) generates flexible and ambiguous behaviour. Because there are 
no semantics behind the output, there is no way for Racter to avoid useless 
products or to assess what is produced. If randomness is a necessary element of 
creativity, it must operate much more subtly than this. 

Another early program that generated stories was Meehan's TALE-SPIN 
(Meehan 1977). The theory here was that a story is about a problem and how it 
gets solved. Characters were set up with different goals which they tried to meet 
by forming plans and taking appropriate actions. The story was a natural 
language trace of the events produced by this process. This method is almost a 
directly opposite approach to that of Racter. The program is full of knowledge 
about the world in which the characters move, about their goals and their social 
relationships. The problems were solved using a planner. Thus, for the most 
part, only sensible stories were produced. However, much flexibility was sacri- 
ficed, not so much with the events that could occur (although these were also 
limited) but with the structure of the stories that could be written. They all 
followed from how a top-down, subgoaling recursive planner operates. Repre- 
sentation of knowledge (about stories) was fixed. The only ambiguities that 
arose were in "mis-spun" stories (that is, those that came from bugs in the 
system). Clearly there is a need for both flexibility and control. Finding a way to 
combine these properties has presented many problems for AI programs. 

2. FIVE CHARACTERISTICS 

Our study of the history of creativity in AI, together with a survey of psycho- 
logical theories of human creative behaviour, has led to a formulation of five 
necessary characteristics of computational creativity. These five will be used as 
a basis for the critical survey. The characteristics are as follows. 

Firstly, it is necessary that knowledge is organised in such a way that the 
number of possible associations (the creative potential) is maximized. Thus 
programs require a flexible knowledge representation scheme. Any individual 
concept should be related to as many others as possible with only small 
variations in the relative strengths of associations. If two concepts are much 
more strongly related than any others then they will always be activated 
together; a rigid, uncreative response. Rather than using a spreading activation 
technique (which would be computationally expensive on a sequential machine), 
a probabilistic selection method could give the same behaviour, statistically 
speaking, in the long run. Creative programs should allow for this kind of 
behavior. 

Secondly, it is necessary to tolerate ambiguity in representations. Thus 
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programs should, under appropriate circumstances, allow the generation of 
seemingly incorrect associations in order to build connections between con- 
cepts. In other words, in should be possible to relax constraints on concepts to 
enable the activation of more disparate ideas. The control of constraint relaxa- 
tion needs analysis. The decision on which constraints to relax is a hard one, 
and similarly difficult is the problem of when to do it, and when the constraints 
need to be tightened up again. This process is analogous to the regression stage 
of the creative process, and thus has both external and internal influences. 

Thirdly, there is a need for multiple representations. A single concept should 
not just be applicable in a single situation. Rather, a concept should be indexed 
to many situations. This would help avoid the problem of functional fixity, 
where people have a fixed idea as to the use of an object (or concept) and this 
prevents it from being applied elsewhere. It has been shown that creative people 
are less prone to functional fixity than uncreative people (Duncker 1945). 

Fourthly, the usefulness of new combinations should be assessable. It is of no 
use of create many combinations if they are all useless. It is too computationally 
expensive to generate many combinations and then try to filter out the good 
ones (see, for example, the later discussion on AM and Eurisko). Rather it 
should be generally expected that most new combinations will be worthwhile 
and only in a small number of cases need adjustment or rejection. 

Lastly, any new combinations need to be elaboratable to find out their 
consequences. It may be expected that this would involve more logical problem 
solving techniques (analogous to secondary processing). This process of verifi- 
cation should assess whether or not the new idea has been successful or if more 
combinations (primary processing) need to be made. The consequences dis- 
covered should be applied to the problem situation; the usefulness of a 
discovery is decided by its applicability. 

3. GENERATIVE GRAMMARS 

A number of programs that attempt to be creative have been based on genera- 
tive grammars. A grammar consists of a set of production rules that re-write 
strings of symbols. Symbols that can be re-written are called non-terminals; 
those which cannot are terminals. Starting with a distinguished non-terminal, the 
rules are applied until a string of terminals is obtained. The set of all producible 
strings is called the "language" defined by the grammar. 

For example, Rumelhart (Rumelhart 1975) has written a story grammar with 
such rules as: 

story --, setting, episode 
setting ~ time, place, characters 
episode ~ event, reaction 

and so on. The terminals are the actual words and phrases that make up the 
story. The question to ask here is: what is the relation of the language defined 
by this grammar to the set of all stories? In other words: how plausible is this 
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system as a story writer? Unsurprisingly, the system does not seem to write 
good stories. A great limitation is the scope of known words and phrases; it is 
small and fixed. Worse, as with TALE-SPIN, the known form of story structure 
is rigid. It does, however, incorporate a random element into the generation, in 
the choice of phrases used to fit the sturcture. But this flexibility seems to be 
entirely on the wrong level. It is knowledge about what constitutes a story that 
needs to be flexible. 

This kind of criticism applies, in general, to other grammar systems. One 
such system, a jazz bass improviser, was written by Johnson-Laird who claims 
that randomness is essential to overcome the deterministic nature of computer 
programs (Johnson-Laird 1987). However, this view misunderstands the nature 
of determinism. It is quite possible that a deterministic system be unpredictable 
(say, if the system is a non-hnear dynamical one). Behaviour can appear random 
without having to posit an explicit random source. More usefully, Johnson- 
Laird looks at three classes of creative algorithm: neo-Darwinian, neo-Lamarckian 
and multi-stage. Neo-Darwinian creativity is when all possible combinations are 
made and then filtered. Neo-Lamarckian makes only those combinations that 
satisfy the constraints and then arbitrarily selects an output. As usual in such 
cases, the preferred solution, multi-stage, lies somewhere between the two. Neo- 
Darwinianism is clearly a suppressor oriented system whereas neo-Lamarckian 
creativity employs censoring. Multi-stage uses partial censoring and suppression 
in turn. 

The limitation of grammar-based systems is in the rigidity of the rules. 
Narayanan suggests that a grammar could be given an "open" re-write produc- 
tion as a sort of carte blanche (Narayanan 1983). This would allow the 
introduction of any new string at a suitable time which could be checked for 
consistency and applicability. If it passes these tests, it can be added as an 
axiom. Though this does provide a means for accumulating and adapting rules, 
Narayanan does not give any criteria by which a suitable string may be chosen. 
A purely random choice would almost certainly produce rubbish. Again we 
have the issue of control versus randomness. 

Both Rumelhart's and Johnson-Laird's programs produce orginal output, but, 
as it is not very domain plausible, their novelty is not worth much (one wonders 
why Johnson-Laird chose modern jazz as a domain). They have a similar shock 
value to the productions of Racter. Constraining the domain by tightening the 
possible non-terminals could help. Steedman has produced a grammar for jazz 
chord sequences based entirely on the 12 bar blues (Steedman 1984). Here the 
results are, apparently, more acceptable but the originality of the output suffers. 

In summary, grammar systems are too restrictive and inserting a random 
element does not seem to be an appropriate solution as it breaks down the 
essential control. 

4. DISCOVERY PROGRAMS 

A classic program in the field of computational creativity is AM, a program that 
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discovers mathematical concepts (Davis and Lenat 1982). AM starts with an 
initial set of concepts arranged in a specialisation hierarchy. Each concept is 
represented by a set of slots containing information such as: definition, 
examples, domain and range (for operations), specialisations, worth and so on. 
An example of a concept can also be a concept, for example, the concept 
multiply is an example of the concept number-function. To start with, many of 
the slots are empty and AM, guided by heuristics, attempts to fill them. There 
are four types of heuristic: fill, check, suggest and interest. Fill rules attempt to 
fill in a slot. For instance, to fill in examples of a concept, one rule might look 
for functions which have that concept as the range and run them over their 
respective domains. Check rules make sure entries are correct and also watch 
regularities. They may have side-effects such as creating new concepts or 
proposing new tasks. Suggest rules are purely side-effects and are useful when 
the program is running low on interesting tasks. Lastly, interest rules are used to 
gauge the worth of a concept. The program is controlled by an agenda which 
maintains a hst of tasks sorted according to the worth of the concepts involved, 
the number of reasons for a task's suggestion and their worths and also the type 
of the task. The top task is chosen, relevant rules are gathered and operated, 
possibly with side-effects such as new concepts and new tasks. 

AM's initial concepts included sets, lists, ordered pairs, some functions such 
as union, intersect and some more general operations such as compose, 
coalesce and canonise. On a "good run", AM discovers natural numbers, 
addition, multiplication, primes, prime factorisation and Goldbach's conjecture. 
It is important to note that AM never proved any of its results; it made 
conjectures based on the examples which it generated. AM came to a halt soon 
after Goldbach's conjecture, failing to produce any more new, interesting 
concepts and eventually proposing only boring tasks. Lenat conjectured that this 
happened because of the nature of the heuristics. These were applicable to 
general concepts such as sets but less powerful with more specialised concepts 
such as numbers. By the time AM had reached prime numbers the heuristics 
were virtually useless and pottered about making small and ineffectual conjec- 
tures. Though it discovered integer division, it never found the rationals. It knew 
about perfect squares and prime factorisation but didn't conjecture that the 
square root of a non-perfect square isn't rational. In fact, it didn't consider 
looking at such things, let alone conjecture about them. 

The solution, as Lenat saw it, was to automatically synthesise new heuristics 
to go with the new concepts. Lenat attempted this by allowing AM to work on 
its own heuristics as well as on maths concepts. The results were disastrous. A 
vast number of completely useless heuristics were created. What had gone 
wrong? Lenat re-examined the method by which new concepts were made 
(Lenat 1983). Many heuristics generated new concepts by syntactically manipu- 
lating the definitions of old concepts. When these were definitions of maths 
concepts they were implemented as small pieces of Lisp code. A minor 
modification to the Lisp code produced a (usually) meaningful result. This was 
attributed, by Lenat, to the close correspondence between lisp and elementary 
mathematics. However, when similar modifications were made to the lisp code 
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representing a heuristic, the results were virtually meaningless. This is because 
there is no close link between lisp and heuristics; heuristics operate at a much 
higher-level than lisp, and many lines of lisp code are required to implement 
each heuristic. What was needed, according to Lenat, was a new representation 
language that did have such a link. Then, syntactic mutations would correspond 
to meaningful semantic changes. In a new program, Eurisko (Lenat 1982), 
heuristics are represented as frames with many slots, each slot a small piece of 
lisp. Now mutations in the values of these slots produce a meaningful change in 
the heuristic. New slots could be added and old ones merged as the system 
experimented with the utility of a rule. Eurisko was run in several domains: 
VLSI design, space-ship fleet design and elementary number theory. It worked 
best when interacting with a user that could save time in checking obviously (at 
least to the user) bad heuristics. Surprisingly, in the maths domain, Eurisko got 
no further than AM. Lenat attributed this to the fact that elementary number 
theory is already well-explored. It seems more likely, though, that the heuristics 
were again insufficient. To advance in number theory requires tools from many 
other advanced domains of mathematics (for example, algebra, geometry, graph 
theory, complex analysis). 

AM has been criticised on several grounds. Ritchie and Hanna have high- 
lighted methodological problems, particularly concerning Lenat's reports on 
AM (Ritchie and Hanna 1990). Firstly, they question whether the control 
structure was as uniform and minimal as Lenat suggests. For example, are the 
interest rules a separate body of rules or are they really concerned with tasks of 
the form '~ill in worth of C", for some concept C? There are some indications 
that the rules are not stored in such a well-organised manner as Lenat states; 
many seem to be "lumped together" in large pieces of lisp. According to Lenat, 
rules are stored in subfacets of the slot to which they apply, but this does not 
seem, generally, to be the case. 

Secondly, the organisafion of concepts is not uniform. One particularly 
confusing notion is the concept non-concept which is supposed to hold infor- 
mation about things which are not concepts. There are two kinds of links 
relating concepts: generalisation-specialisation and isa-example. For instance, 
multiply is a generalisation of square but both are examples of numeric func- 
tions which, in turn, is a specialisation of operations. Such a set up is the cause 
of great confusion about the relationship between concepts. 

Many rules contain "special purpose hacks" which Lenat does not describe. 
Unfortunately, some of AM's most interesting results depend crucially on such 
rules. It can easily be conjectured that these hacks were written for the special 
purpose of making just these rediscoveries. 

The role of the user is also unclear. When a user renames an AM concept, it 
receives an increase in worth. So the user effectively guides the search. This 
makes it hard to evaluate the exact power of the heuristics. In a way, the user 
can be seen as fulfilling the role of a teacher of the program, supervising the 
path of discovery. 

Ritchie and Hanna are not arguing that a program could not be written to 
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Fig. 1. The relationships between bags, sets, lists and ordered sets in AM. 

achieve what Lenat describes, rather that Lenat has not done so and that this 
somewhat invalidates his claims. 

A more methodologically acceptable version of A M  has been developed by 
Haase (Haase Jr. 1986), who makes the following points about discovery 
systems in general. Firstly, they may be seen as "search processes that recon- 
figure their own search space." Whenever a new definition is made, or a new 
operator introduced, some new vocabulary is added which alters the space of 
concepts to be searched. Second, concept formation must be a functionally 
modular process: there must be a clear beginning and end to each concept 
creation. A M  clearly falls down on this point, as well as on the next which is 
that concept formation must be consistent. This means that the form of a new 
concept must be the same as that of the old ones, as this will allow them to be 
used again in the discovery cycle. Lastly, any inquisitive process must eventually 
be introspective. This corresponds to Lenat's aim of trying to synthesise new 
heuristics. 

Haase has implemented a system, Cyrano, along these lines. Cyrano main- 
tains its concepts as a lattice of generalisations and specialisations. New 
concepts are inserted appropriately into the lattice, guaranteeing consistency. 
However,  things cannot be this simple. Consider the lattice in figure 1. A bag is 
an unordered list. Thus bag [2, 1, 3] and [1, 2, 3] are equal, while the lists (2, 1, 
3) and (1, 2, 3) are not. Sets are those bags without repeated elements. Now, 
just what is the relation of lists to bags compared with sets to bags? Clearly, any 
set is also a bag so: 

A isa set ~ A isa bag 

but is the same true of lists and bags? Rather, lists and bags deal with the same 
kind of object, but partitioned by different senses of equality. Sets are still 
partioned by bag-equality, lists arise by specialising this to ordered-equality. A 
bag is thus an equivalence class of lists: 

A isa list ~ A isa representative of a bag. 

This is a very different kind of relation. AM's discovery of numbers comes 
about by generalising bag-equality to same-length. A number is an equivalence 
class of bags. Is the concept number then a generalisation of bag? This would 
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Fig. 2. A subsumption lattice with isa finks showing instances. 

imply that set is a specialisation of number. It would be clearer to maintain the 
distinction of generalisation by subsumption and generalisation by partition. 
The situtation is made worse by the isa links previously mentioned. Consider 
figure 2). Multiply is a generalisation of square which isa (that is, it is an 
example of) numeric function. This makes the categorisation of multiply prob-  
lematical. A simple subsumption lattice is clearly insufficient to keep track of 
these details. 

A further point made by Haase is related to Lenat's comments on repre- 
sentation. Haase describes the closeness of syntax and semantics as the 
"tightness" of the representation. In a tight representation, syntactic changes 
correspond to sensible semantic changes. This is surely the wrong way of 
looking at discovery. Any changes should be semantically motivated in the first 
place. The syntactic description should ease the process of making semantic 
changes, not determine it. The whole approach of generating concepts by 
manipulating the definitions of old ones seems inappropriate. New maths 
concepts should be made in mathematical ways for mathematical reasons. The 
discovery program should know about composition, substitution and recursion 
of functions explicitly. Partitioning should be explicitly recognised and moti- 
vated. AM was playing in the dark with bits of lisp code and was lucky because 
lisp is tightly bound to maths. However, the general solution is not to ensure a 
tight representation but to stop playing in the dark. 

Some work has been undertaken on a re-implementation of AM along these 
lines. In this version, all new concepts arise as mathematical objects: composi- 
tions and substitutions. Recursion and partition have not been implemented as a 
further problem has been uncovered, that of motivation. A discovery process 



CREATIVITY:  A SURVEY OF AI A P P R O A C H E S  51 

cannot make do with fixed "interest" rules, any more than other rules can 
remain fixed. It needs to learn to be intersted; it should develop "intuition". 

AM and the related programs offer some interesting insights into cognitive 
modelling. First, there is the question of how a mathematician perceives mathe- 
matical objects. Doubtless such information as domain and range are closely 
linked with the idea of a function but the list of slots does not fully capture the 
sense of "mapping", "transfer" and "transformation". These ideas are more 
dynamic: a function sends an argument to its value. A fuller account of the 
concept function is necessary. In other words there is a need for multiple 
representation of concepts. 

A second psychological phenomenon which AM highlights is functional 
autonomy. This happens when a subgoal becomes more important than the task 
which set it up. Imagine a baby reaching for a toy. The current goal is to get the 
toy for which the subtasks of learning to move the arm and grasp with the hand 
are set up. Of course, these skills become much more important than the original 
goal: they have outgrown their originator. In AM, the agenda control mecha- 
nism produces similar behaviour. Suppose the current task is to find examples 
of the function first element. If few domain examples exist (lists) then the task 
"fill in examples of lists" will be proposed. However, there is no backtracking. 
Though it is likely that the task "fill in examples of first element" will be suggested 
again, once some lists have been found, it is by no means necessary. In the 
meantime, many interesting properties of lists may be found, making them far 
more interesting than first element. An added feature of the agenda system is 
that, once a task has been dealt with, the values of any other tasks involving the 
same concept are temporarily raised. This gives a focus of attention to the pro- 
gram's behaviour. While attention is focused on one concept, other tasks involv- 
ing other concepts will be building up. Eventually one of these will overtake the 
tasks in focus and become the new task; the focus will switch accordingly. Ideas 
and suggestions seem to bubble up the agenda, occasionally "bursting" others. 
The visible behaviour is, for the most part, purposeful and directed, with the 
occasional random flash. However, there is no attempt to control the broaden- 
ing of the focus of attention in order to draw concepts together in useful ways, 
nor to relax constraints on concepts to allow for ambiguity. 

The contrasting roles of the interest and suggest (sometimes check) rules 
bear some resemblance to the actions of suppressors and censors. These rules 
decide when to create a new concept (suggest and check) and when to stop 
using a concept (interest). There are some differences, however. When a suggest 
rule activates the creation of a new concept, it is a constructive action. There 
are many possible ways of making new concepts and the rules suggest the best 
possible type of concept to make. A censor, however, guards against certain 
types of combination. It would be interesting to see how the implementation of 
censors per se would affect the quality of the output. Interest rules are more 
iiterally suppressors, though they also have the task of encouraging good 
behaviour. For example, if a function turns out to be the identity, its worth 
slumps dramatically, making it an unlikely candidate for future combinations. 
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However, if a function is found to have identical domain and range, its worth is 
increased. A delineation of these two roles would be helpful, to show their 
relative importance and actions. 

Eurisko has a lot to say about the accumulation and adaptation of heuristics, 
though as its results are fairly indecisive, it is difficult to draw any conclusions. 
An achievement of some significance is the representation of heuristics in an 
adaptable fashion. Slots can be created and destroyed; indeed each slot has its 
own descriptive flame. A program needs to know about a heuristic, not just be 
able to use it. The problem of how certain heuristics can control the develop- 
ment and action of others is very important. To a great extent, this factor 
governs the flexibility of a system: the trade,off between completely directed 
search and completely random search. 

The originality of the behaviour of these programs is hard to assess in the 
light of Ritchie and Hanna's criticisms. Attempts to clean up AM have yet to 
produce any significant discoveries. Most discoveries are new to the program 
but known to the programmer. AM did, apparently, produce one idea that was 
new to Lenat: maximally divisible numbers. However, AM had little to say 
about them and subsequent work was done by Lenat himself. 

In conclusion, the AM family of programs have not been too impressive in 
terms of actual results, but they give hope in that they are displaying that fight 
kind of behaviour. 

A more recent discovery program, GT, has a sufficiently novel representa- 
tion scheme to warrant separate discussion. GT, the Graph Theorist, reasons 
and conjectures about finite undirected graphs (Epstein 1988). Graph theory is, 
in some senses, a good domain for computational study as it does not require a 
large amount of knowledge from other fields as does, say, topology. The 
representation system used, though, does not, at first glance, compare with that 
of the mathematician. However, it is sufficiently powerful to build up some 
"intuitions". Graph theoretic concepts are represented by triples of the form (f, 
S, s). S is a (minimal) set of graphs with the property (the seed set); f is a 
function of graphs and s is a selector, giving conditions on f. Repeated iteration 
of f on S under s is guaranteed to completely and correctly generate those 
graphs which have the appropriate property. Extra information is held in 
additional slots: examples, origin, pointers to generalisations and so on. One 
clear advantage of this representation is that as many examples as are required 
can be generated. Another advantage is that it allows certain proofs to be 
constructed. The two basic proof methods are subsumption (p ~ q) and merger 
(the intersection of p and q). These can cover four basic theorem forms: 

1. p ~ q: q subsumes p 
2. p ¢* q: p subsumes q and q subsumes p 
3. (p /k q) ~ r: r subsumes the merger of p and q 
4. p ~ . q : the merger of p and q is empty. 

There exist methods for constructing mergers and proving subsumpfions 
using f, S and s for each concept. It can be appreciated that GT has an inductive 
approach to graphs, based on testing conjectures made through observations on 
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small graphs with certain properties. However, whilst mathematicians do use 
induction, there is something inescapably visual about graph theory. As work 
progresses, developing new proof techniques, maybe the overall view of a graph 
will begin to play a part. 

A different approach to discovery is found in the BACON family of 
programs (Langley et  al. 1987). These operate on a data-driven basis. The 
underlying philosophy is founded on ideas similar to those of Francis Bacon. 
Starting with a body of data, the goal is to find a theory that adequately 
describes or explains it. The BACON programs are good describers: given data, 
suitable laws are sought and found by a heuristically-guided process. Thus, 
given information about planetary co-ordinates and trajectories, Kepler's laws 
are deduced. The whole process is an ad hoc curve-fitting exercise. BACON 
never constructs any models or structures to help its predictions, rather it plays 
"syntactic number games until it has completely summarised the data." To 
remedy this, the programs GLAUBER, STAHL and DALTON were written. 
GLAUBER examines qualitative data and produces classifications that allow 
general laws. For example, given the result from a chemistry experiment: 

(reacts input {HCL NaOH} output {NaC1}) 

GLAUBER suggests the law: 

(reacts input {acid alkali} output {salt}) 

In contrast, STAHL uses similar inputs but with the aim of model building. 
STAHL works in the domain of phlogiston theory -- the idea that fire is 
composed of a substance called "phlogiston". Reactions are studied using three 
basic rules: INFER, SUBSTITUTE and REDUCE. For example, consider the 
following initial information: 

(reacts input { charcoal air } output {phlogiston air }) 
(reacts input { calx-of-iron charcoal air } output{iron ash air }) 

indicating that charcoal and air react to produce phlogiston (in the flames) and 
ash. REDUCE produces: 

(reacts input {charcoal} output {phlogiston ash}) 
(reacts input {calx-of-iron charcoal} output {iron ash}) 

INFER (components charcoal are {phlogiston ash}) 
SUBSTITUTE (reacts input {calx-of-iron phlogiston ash} output 

{iron ash}) 
REDUCE (reacts input { calx-of-iron phlogiston}output {iron }) 
INFER (components iron are {caN-of-iron phlogiston}) 

DALTON is a similar program that deals particularly with atomic modelling. 
The major problem with all these data-driven programs is that an idea of 

what to look for is built into the heuristics. Given the notion that the results of a 
chemical reaction are determined by the participating chemicals, compositional 
deduction becomes largely a matter of experimental accuracy. The really 
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creative insight was that this could be done at all. BACON plays with the data 
until it has fitted an accurate formula, but this has nothing to do with the great 
effort Kepler made in overcoming his prejudices against ellipses. Until Kepler's 
time, it was assumed that all heavenly motions were circular. Of course, it was 
to prevent this kind of thing that Bacon argued for an unbiased view of data. In 
practice, this is impossible. An open-minded astronomer would look impartially 
at the different figures for radii and circumferences in vain. Why does STAHL 
never conjecture that phlogiston does not exist? The best it does is to go into an 
infinite loop. It cannot break out of the initial presentation of the data. 

All the programs in the BACON family suffer from extreme rigidity of 
behaviour, built into the heuristics. The only creative characteristic which they 
have is the ability to derive only sensible discoveries from data. There is no 
flexibility, ambiguity, multiple representation or elaboration of ideas. It seems 
that when heuristics are tightened to avoid the generation of trivialities (as both 
AM and Eurisko were prone to do in the long run), all flexibility of representa- 
tion is lost. 

A final example of a discovery system is the program SPARC/E (Dietterich 
and Michalski 1986). This worked in the domain of sequence prediction using 
playing cards as the elements of sequences. Rather than be restricted to a single 
way of interpreting the data (as with the BACON programs), there are three 
different models which the program attempts to fit to the data. This proceeds by 
simultaneously generalising the data and specialising the models. The models 
are the disjunctive normal form (DNF) which express rules for sequences as 
disjunctions of card properties, the decomposition model which lists a set of 
mutually exclusive implications, and the periodic model, which deals with 
sequences of fixed period. While this method extends the applicability of 
discovery heuristics away from a single model, the fundamental problem 
remains and is quickly revealed when the program is presented with a sequence 
that does not fit any of its models: it cannot adapt its knowledge of sequence 
forms in any flexible manner. 

5. META-RULES FOR CREATIVE FLEXIBILITY 

The rigidity of rule-based systems has led some researchers to advocate the use 
of meta-rules: rules which can reason about and create rules. In some senses, 
Eurisko was performing such meta-activities, but in a true meta-rule system, the 
idea is that each layer of rules maintains a strict control on its domain. The data, 
rule, meta-rule hierarchy is fixed. One proponent of this approach is Yazdani 
(Yazdani 1989), who, during work on a story generating program, noticed that 
some of the more inventive stories were found in unwanted outputs produced 
when the program went wrong. This led to a description of creativity as an 
"almost random" generative procedure coupled with a validation process. The 
generation is "almost" random as only small variations on already known 
themes are used. To control these variations, a set of meta-rules is required to 
work on the rules producing the known theme. 
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An example of this approach is the program MUSCADET,  a knowledge 
based theorem prover for topological linear spaces (Pastre 1989). Its proofs are 
built by heuristics which, in turn, are constructed by meta-rules supposed to 
capture the reasoning of a mathematician. However, this approach makes the 
program more concerned with proof structure than with the mathematical 
objects themselves. It cannot distinguish between important and trivial issues 
from a mathematical point of view. This seems a very artifical method of 
providing adaptability. 

A variation on the meta-rule idea is seen in the DAY-DREAMER program 
(Mueller 1987). This is a planner that operates in two interacting domains: the 
personal world and the objective world. Both these domains are controlled by 
their own goals. Events in the objective world (say a failed plan) can affect the 
personal goals (say the need for comfort, revenge). The program then "day- 
dreams" by fantasising different situations in which the personal goals are met. 
Successful plans are abstracted and stored in memory. When the program next 
encounters a suitable objective world situation, these plans can be re-instan- 
tiated and applied. These day-dreamed plans can be adapted to fit into different 
objective goal situations by making appropriate variable changes. This provides 
some flexibility in the plan representation, but there is a fundamental problem 
of how to decide which variables can be changed and how. The abstraction 
process could benefit from multiple representation: methods describing how a 
plan could be used in different types of situation. One advantage of having these 
plans built in "dream-time" is that it allows them to be elaborated to discover if 
they are of any use. If not, the program can continue its fantasy with other 
possibilities. 

The trouble with the meta-rule approach is that, whilst rules are given some 
scope for flexibility, it is pre-determined by the meta-rules. This requires that 
the programmer foresee the ways in which rules are allowed to be flexible, and 
this knowledge is then coded in a priori. Thus the issue of flexibility is really 
only hidden by this division of rules into layers. Perhaps what are needed are 
"meta-meta" rules? But, again, this would just bury the issue further. According 
to Douglas Hofstadter, we should 

side-step the topless tower of bureaucracies and meta-bureaucracies above by making rule-like 
behaviour emerge out of a multi-level bubbling broth of activity below. This means that you 
give up the idea of trying to explicitly tell the systems as a whole how to run itself. Instead, you 
content yourself with defining explicit micro-behaviours that will interact in vast numbers... 

(from (Hofstadter 1986a)). In other words, the structure of representations 
need to be examined to see how they can be broken down into components. 
These components could then be used as building blocks for further representa- 
tions. If two representations are built from similar building blocks, then an 
analogy exists between them. It may be possible, then, to deduce the com- 
ponents of a representation by examining its roles in analogies. 
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6. ANALOGY IN CREATIVITY 

It would seem that analogy has much to do with the problems of creativity. In 
particular it addresses the problem of how links can be forged between two 
schemata, once they are activated simultaneously. 

A standard method of approach to analogy is Gentner's Structure Mapping 
Theory (Gentner 1983). An example of the kind of situation which can be 
handled by this method is deriving an analogy between the relation (planet, sun) 
and (electron, nucleus). Each object has a number of properties stored in a 
frame-like structure, and there are relational links (such as sun is-hotter-than 
planet) between the object in each domain. The problem addressed is that of 
which properties and relations in one domain can be mapped on to the other 
domain. Notice, though, that the representation of each object and domain is 
essentially a rigid, syntactic structure. There is no question of these structures 
becoming flexible, or ambiguity about the properties tolerated. As a simple 
example of this problem, consider the vast number of properties and relations 
which are left out of the representation, for example, sun is-more-yellow-than 
planet or sun only-seen-at-day-time. It is clear that people can easily associate 
such properties (with a little imagination) but with a fixed structure, the 
programmer has to decide which properties are in and which are out. Further, 
there is no way of distinguishing which properties are more essential than others 
(for example, the fact that the sun is further away from human observers than 
the Earth, is purely relative). Consequently, analogy research (of this kind) does 
not have much to say about creative behaviour. 

One positive contribution that is made concerns the elaboration of mappings. 
Analogies can be constrained or guided by pragmatic considerations (for 
example; see (Keane 1988)). In such systems goals, plans and roles drive the 
mapping process. This helps avoid useless maps for semantic reasons rather 
than syntactic ones. However, the actual mapping process is still between rigid 
structures. 

7. TOWARDS FLEXIBLE REPRESENTATIONS 

One of the classic rigid representations is the script (Schank and Abelson 
1977). This is a generalised description of a sequence of events that is expected 
to take place in a given situation. The most famous example is that of the 
restaurant script, illustrated in figure 3. A script drives expectations and 
provides explanations when things go wrong (for example, the diners have no 
money; the food is disgusting). The rigidity of scripts is demonstrated when 
trying to apply the restaurant script to a fast-food restaurant, a superficially 
similar activity but with very different expectations. Should a new fast-food 
script be invented or can the old script be adapted? 

To help make scripts more flexible, Schank developed the notion of an 
explanation pattern, or XP (Schank 1986). An XP is a "core" explanation that 
can be fitted to many circumstances. As well as the central script it carries a 
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RESTAURANT SCRIPT 

actors: diners, waiters, chefs, managers. 

props: ~ables, chairs, food, menu, money, bill, cutlery, plates. 

initial state: diner hungry, empty chair, diner has money. 

sequence: diner enters, diner sits, diner reads menu, diner orders, 

waiter brings food, diner eats food, waiter brings bill, 
diner pays ~aiter, diner leaves. 

final state: diner has less money, manager has more money, 

diner is not hungry. 

Fig. 3. A Restaurant Script. 

number of indices to the kind of situation to which it could apply. Indices exist 
for the type of failure needing explanation, the type of event involved and the 
goals motivating the explanation. The explanation process starts with a question 
about an event. By determining the associated indices a standard question is 
generated and all the XPs fitting this form are accessed. The XPs are "tweaked" 
to fit the exact circumstances, if possible, by changing round actors, props, time 
ordering etc. A collection of explanations specific to the event is thus generated. 
The indexing system makes the central script much more widely applicable than 
before, so the representation is acting dynamically. However, the tweaking 
technique is basically driven by heuristics, so there is only a partial escape from 
rules. The question to ask is: how do the tweaking rule arise? The obvious 
temptation is to suggest meta-tweakers to tweak the tweakers! However, even 
with this partial flexibility there are some gains. 

Explanations are often based on memories of similar events. If an event is 
unusual and an explanation found it is remembered when a similarly unusual 
event occurs. Such remindings are the basis of many analogies which are often 
used in common sense reasoning, which is always creative in a small way. The 
XP system captures this kind of creativity. However, to be truly adaptable, the 
core script of an XP would have to change. Schank has achieved flexibility by 
adding on indices to minimal scripts. To follow Hofstadter's philosophy fully 
would require the scripts to be broken down into "micro-explanations". This 
core rigidity is manifested in the kinds of explanations produced by the imple- 
mented system -- they are acceptable but somewhat obvious. There are never 
any highly original explanations produced. 

The indexing system begins to show how primary and secondary process 
interaction can be modelled. A specific event is encountered during secondary 
processing: as part of the focus of attention. The indices fired by the anomalies 
in the event match various XPs in memory: a primary process. The XPs are 
then made specific (made conscious) by being tweaked. Again, the two flaws in 
this model are the rule-like nature of tweaking and the rigidity of the memory of 
XPs. 
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What happens when several XPs meet the required conditions? In the 
current implementation, all XPs are treated sequentially. However, a system can 
be imagined where XPs compete for notice by "consciousness". This could be 
on the basis of recency in memory; the amount of tweaking that has to be done; 
the popularity of each XP and so on. As a result, only one XP will be used 
unless others are then "consciously" sought. This would produce the bubbling 
up effect present in AM's agenda mechanism, which is related to constraint 
relaxation and the defocusing of attention. If this processing were done in 
parallel then various factors (for example, time-delay, limited resources) could 
produce an "almost random" behaviour. 

As explanations are related to memories, the stock of XPs grows with 
experience. A question not considered by Schank is when to make a new XP, 
rather than heavily tweaking an old one. This problem, in some ways similar to 
AM's concept creation problem, would need control to prevent the creation of 
many useless or trivial scripts. 

A different approach to flexible representation is found in classifier systems 
(Holland 1986). These consist of a collection of rules (called classifiers) and a 
message list. If a rule's if-part matches a message on the message list then it can 
post its then-part as a new message. The basic cycle is as follows: 

1. Place input messages on current message list. 
2. Find all rules that can match messages. 
3. Each such rule generates a message for the new message list. 
4. Replace current message list by new message list. 
5. Process new message list for any system output. 
6. Return to step 1. 

If a rule posts a message which another rule can match, then they are 
coupled. Using this technique, chains of inferences can be set up. The power of 
classifier systems comes by assigning weights to each classifier in the rule list. 
This can be done in such a way that the most successfully used classifiers get the 
strongest weights. Classifiers can then compete for the right to post their 
messages in response to other messages. A classifier's bid depends not only 
on its strength but also on how specific it is. More specific rules outbid more 
general ones (weights being equal). Because the chains of inference are not 
buifi-in but arise through selective competition, the high-level inferencing 
behaviour is very flexible. Such bid-passing would happen in step 3 of the above 
cycle. A rule would pass its bid to the rule which posted the message to which it 
is responding. 

This kind of behaviour is reminiscent of blackboard systems (Craig 1988). 
However, classifier systems have the advantage of learning from their environ- 
ments. By using a suitable credit-apportionment scheme (the so-called bucket- 
brigade algorithm) a classifier-system can learn appropriate chains of response 
for different situations, whilst still retaining general rules for situations not yet 
encountered. Thus classifier systems have all the fight characteristics for 
creative behaviour: they have flexible representation; can tolerate ambiguity; 
they avoid functional fixity (by having multiple competing representations) and 
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learn from their environment (that is, elaborate the consequences of their 
actions). Further, by representing classifiers as bit strings, genetic algorithms can 
be employed to enable the system to learn an appropriate classifer set. These 
algorithms are designed in such a way that useful combinations of classifers 
(creating new ones) are more likely to be produced than useless ones. Going by 
the strengths of the classifiers, there is an evolutionary effect, whereby only the 
"fittest" classifiers will survive. 

8. DECENTRALISED SYSTEMS 

One of the sources of the flexible behaviour of classifier systems is in their lack 
of a central controller (for example, a planner). Each classifier operates at a 
local level and it is only as chains are constructed that high-level characteristics 
become apparent. This kind of behaviour is called emergent, since global, high- 
level properties emerge without explicit control from the interaction of many 
local, low-level actions. This kind of approach avoids the structural limitations 
which get imposed by central controllers (for example, the fixed set of rules 
governing grammar based systems), and allow for flexibility as a high-level 
property. 

Minsky has argued for guch a distributed theory of mind, describing the mind 
as an integrated society of agents each with its own specialised task (Minsky 
1985). Such societies are built up by learning from experience. Memories are 
controlled by special agents called k-lines which, in appropriate conditions, will 
reset a group of agents to the state they were in when last these circumstances 
were experienced. Minsky does not make clear how such agents could be imple- 
mented, or any learning algorithm by which k-lines could be established. His 
work serves rather to motivate the ideas of distributed control, and makes the 
important connection between memory, thinking and perception. This follows 
Hofstadter's view that "Cognition equals re-cognition', (Hofstadter 1983). 

One approach towards decentralisation of control and emergent behaviour is 
connectionism (see (Pollack 1989)). These networks are generally used to 
model very low-level behaviour such as vision. Whilst they are good at gener- 
alising from a given data set, the learning procedures are very artificial and 
much research is still needed before connectionism could be applied to the 
larger problems of creativity. Some relevant progress has been made in the 
domain of sequence prediction, though so far only relatively simple sequences 
can be handled (Elman 1988). 

Emergent behaviour is very much at the centre of research into artificial life 
(Langton 1989), whose aim is to discover how life-like behaviour can emerge 
from large collections of local agents. These systems thus simulate the develop- 
ment of societies of individuals. By changing the level of description, they can 
be seen as models of how mental agents interact within a mind. 

A leading researcher in this approach to AI and creativity is Douglas 
Hofstadter (see, for example (Hofstadter 1986b)). One of Hofstadter's early 
programs, Jumbo (Hofstadter 1983), introduced the idea of temperature- 
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controlled randomness. The temperature of a system is a measure of the amount 
of order that has already been discovered. Little order corresponds to a high 
temperature (and a large amount of randomness) and high order is represented 
by low temperature (little randomness). The image suggests that a system will 
"freeze" into states of high order. When not much information has been 
gathered, the large random factor allows unusual paths to be explored. Once 
some order is found, however, the random factor diminishes and the system 
works on standard lines to complete the model. 

Jumbo's domain was the solving of anagrams (or "jumbles"). There were 
various operators for swapping letters and syllables around, and rules for 
assessing what combinations of letters made good (that is, English-like) syllables 
and which syllables went well together. 

An extension of these ideas is found in the Seek-Whence program (Meredith 
1986), which tried to analyse integer sequences arranged in patterns. For 
example, consider the following sequences: 

a. 1 2 3 4 5 5 4 3 2 1  
b. 1 2 3 4 4 3 2 1  

What is to b as 4 is to a? The problem is to determine the role that 4 has in a 
and to find a filler for the counter-role in b. Suppose the role in a is determined 
as "the fourth digit in the sequence". Then the answer is 4. However, an alterna- 
tive role: "the number surrounding the central pair" gives the answer 3. This 
seems a much more satisfactory solution as it takes into account the structure of 
the sequences. But what fills the counter-role in the following sequence? 

c. 1 2 3 4 4 4 4 3 2 1  

Seek-Whence construct hypotheses about such sequences (seeking whence they 
came) from primitive structural units (cycles, constant, successor, . . . )  which it 
uses to make predictions. It operates on three levels. The cytoplasm contains 
the elements of the sequence and groupings of such elements. These are seen as 
"manifestations" of "ideal" concepts in the platoplasm. Useful groupings are 
preserved as templates in the socratoplasm. Such templates may eventually 
become hypotheses. There is a cycle of information flow between these levels 
(new data from the cytoplasm and predictions from the socretoplasm). If a 
hypothesis is rejected, it dissolves releasing its components to break up and re- 
arrange themselves. Again there is a temperature measuring the amount of 
order that has been discovered and controlling the randomness allowed in the 
building of hypotheses. 

A major problem is that old hypotheses that have been rejected keep on 
getting rebuilt (functional fixity). To deal with this, hypotheses are freeze-dried 
in order to provide a check against recycling. However, this solution is out of 
the spirit of decentralisation as it requires a central memory. A further weak- 
ness is shown up in the limited number of sequences the system could actually 
parse. The set of primitives used for representation was too narrow, but there 
could be problems with scaling as this would increase the number of possible 
combinations and lead to even more useless hypotheses swamping the system. 
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Apart from this major problem, Seek-Whence represents a positive move 
towards flexible representations (at the high level) emerging from low-level, 
local interactions. 

The program Copycat uses similar methods for constructing analogies 
(Mitchell and Hofstadter 1990). Copycat tries to construct analogies between 
strings of letters. For example: 

if  abc ~ abd  
then ijk --" ? 

The program tries to find structures in the first mapping that have analogues in 
the second and so derive a suitable answer. In this example, the first mapping 
might be perceived as having the form "replace the last letter by its successor", 
in which case the answer ijl would be produced. 

There are three parts of the Copycat architecture: the Slipnet, the working 
space and a pool of structuring agents called codelets. The working space 
represents the system's current understanding of the situation: the structures it 
has found and the maps between them. The Slipnet is a network of the system's 
permanent concepts such as successorship, and their semantic relations. The 
links in this network are weighted and activation can spread along the links in 
proportion to these weights. The weights vary according to the context. Thus, if 
the idea of opposites has already been useful then the link from leftmost to 
rightmost will be strong (being an opposite relation). The activation of the 
concepts in the Slipnet provides guidance for the kinds of structures that should 
be tried out in the workspace. These are constructed by the codelets. Each 
codelet also has a weight (adjusted by the Slipnet) which determines its urgency. 
These weights provide a probability distribution by which the codelets are 
selected for running. Effectively, the tasks are run in parallel at rates propor- 
tional to their urgency. This distribution is adjusted by the temperature of the 
system; the measure of disorder. At low temperatures only the most urgent 
codelets will be picked (the strictly relevant ones), but at high temperatures all 
codelets are more or less equally likely. Once more, there is a feedback between 
levels of description: the high-level emergent structure influences the low-level 
building activity. 

The major development of Copycat from Seek-Whence is in the introduction 
of the Slipnet. This is used as a guide by which to avoid useless combinations 
and to encourage useful ones. It also explicitly allows for the toleration of 
ambiguity by showing which concepts are allowed to slip into others. However, 
it is surely a disadvantage to have this built in as an a priori. It might be better if 
the system learned which concepts could slip and so be able to invent slippages 
of its own. It is unclear whether or not Copycat requires "freeze-dried" 
memories in order to prevent the repetition of bad ideas. Perhaps these get 
reflected in the activations in the Slipnet. 

It seems that most of the characteristics of creativity are beginning to emerge 
in the Copycat program. However, it is very limited in its domain of application. 
In particular the kinds of maps which can be handled are of a very simple form, 
that would only need context-free grammars to describe them. It is interesting to 
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consider how it would be able to scale up to context sensitive rules. This would 
require the addition of a memory in order for the system to move about over 
the structures. If the sequence is regarded as written on a Turing Machine tape, 
a parallel tape is required, and the ability to move in both directions, reading 
and writing. 

9. CREATIVITY THROUGH AN EMERGENT MEMORY MECHANISM 

A new theory of creativity has been formally defined, implemented in several 
variations, and tested extensively (see (Rowe 1991) for full details). In this 
theoretical model, which can be viewed as a concrete realisation of Minsky's 
"Society of Mind" ideas, autonomous agents can combine to generate solutions 
to problems -- either (relatively) unconstrained new proposals (output crea- 
tivity), or possible solutions to a highly constrained problem situation (input 
creativity). Successful representations that emerge can be kept intact, and may 
subsequently function as agents that cooperate in further problem solving 
(corresponding to Minky's k-lines, see below). 

This kind of mechanism is an emergent memory. Instead of concepts or 
categories being recalled whole, because they match a certain input, concepts 
are reconstructed in appropriate situations. If the same situation is encountered 
again and again, eventually one memory link may come to represent the whole, 
but the partial memories would still exist to be used in combination with others. 
This provides flexibility, as often an experience is similar, but not identical, to a 
previous one. In such a case, a substantial part of the previous representation 
may be constructed (in as far as it conforms to the external constraints of the 
new situation) and then smaller memories and the construction agents them- 
selves, may be used to fill in the gaps. 

Minsky proposed the idea of agents that form links between other agents, so 
as to create memories (Minsky 1985). He called such agents k-lines, but gave 
no details as to how such agents could operate. A formal theory of learning 
based on this idea has been developed, and it provides the basis the model to be 
described below. 

Cognitive units are thought to have activation levels which determine how 
active they currently are, how much attention is focused on them. This corre- 
sponds to the notion of bidding. An agent's bid represents its claim to be 
processed. The higher the bid, the more chance of it acting. Thus the process of 
task selection is a theory of attention. 

The emergent-memory model has been implemented (in a program called 
'GENESIS'). This implementation is based on the k-line idea, and has been 
tested extensively. In this system, there are two kinds of agents: builders that 
construct representations and k-lines which group together successful agents. 
The cue for the creation of a k-line is when some subgoal has been reached in 
the current problem situation. The k-line collects together all agents which have 
worked towards this subgoal and becomes an agent in its own right. It may be 
activated in future if half (or some other threshold) of its component agents are 
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used together. It responds by activating the remaining agents. In this way, 
memories are reconstructed in a bottom-up fashion but with higher level 
representations able to guide the process. All agents have weights which help 
determine which potentially relevant agents become activated. These weights 
are altered according to the bucket-brigade algorithm used in classifer systems 
(Holland 1986). Following this algorithm, successful sequences of agent activity 
are rewarded by a pay-off whereas unsuccessful sequences are gradually 
reduced in weight. 

This computational model of cooperating, autonomous agents gives us a 
general framework to support creative behaviour. And, moreover, within this 
framework two classes of psychological theory can be directly compared. The 
crucial difference resides in just one component of the model: the task selection 
strategy. 

9.1. Task selection strategy: the point of comparison 

One class of psychological theory of creativity centres around the notion of 
a four-stage model of creative behaviour. The four stages are: preparation, 
incubation, illumination and verification. 

Preparation is the stage of concentrated work, accumulating data and trying 
out various approaches. Incubation is the time when the mind is relaxed or 
working on a different problem. The third stage, illumination, is the moment of 
insight when the solution found is made conscious. This stage seems impossible 
to predict or control. Verification consists of a further period of conscious work 
when results can be checked out, for example, against new data. 

A modern theory based on the four-stage model has been put forward by 
Colin Martindale based on various theories and experiments connecting 
creative problem solving with levels of cortical arousal and focus of attention. 
Measures of cortical arousal can be displayed, for example, as an electroence- 
phalogram (EEG) which depicts brain-wave patterns picked up as voltage 
changes on various parts of the head. The focus of attention is the extent to 
which short-term memory and consciousness are concentrated (Martindale 
1981). In low states of cortical arousal, attention is unfocused. This corresponds 
to primary processing: the activation of many cognitive units to a small degree. 
At high arousal levels, attention is highly focused, corresponding to secondary 
processing (high activation of a small number of units). It has been shown, for 
example, that creative people exhibit a marked decrease in cortical arousal 
whilst solving problems creatively (Martindale and Hines 1975). This was 
measured by alpha-wave activity. However, when given uncreative tasks to do, 
or when elaborating an idea, creative people do not show this distinctive arousal 
pattern. 

The four-stage model of the creative process has been challenged by Robert 
Weisberg, who argues that this model is not supported by experimental 
evidence and its continued acceptance is due to the propagation of myths about 
the creative process in psychological folklore (Weisberg 1986). 

Weisberg's criticism of the incubation stage, in particular rests on the results 
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of a number of experiments that have tried to isolate incubation in laboratory 
conditions. One such experiment, conducted by Olton, involved observing 
expert chess players solving chess problems (Olton 1979). One group was 
allowed to take a break (to encourage incubation) while the second worked 
continuously. However, there was no significant difference between the per- 
formance of the two groups. 

In a second experiment, by Read and Bruce, subjects were shown pictures of 
actors from the 1960s whose names were not easy to recall (Read and Bruce 
1982). During the following week, subjects kept a diary of their attempts to 
recall these names. Only about 4 percent of successful recalls involved spon- 
taneous remembering of the names and most of these incidents were reported 
from only four of the thirty subjects. All other cases involved conscious effort of 
remembering, showing that incubation (unconscious processing) and illumina- 
tion are not necessary for insight to take place. 

Weisberg's claim is that creativity is merely a part of normal solving, and 
there is no special creative process. It is intelligence combined with a large 
amount of domain knowledge that enables a person to have creative insights, 
but the mechanisms are just the same as those used in normal everyday problem 
solving. 

The main weakness of Weisberg's view is that it fails to account for the 
peculiar experience of illumination which seems to occur on some occasions 
(those associated with creativity), but not on others. This observed effect is 
explicitly accounted for in the cortical arousal theory as a return from low to 
higher levels of arousal. 

The crucial element of difference between the two psychological theories is 
the arousal mechanism proposed by Martindale. The alternative view is that 
there is no such special mechanism for creative thinking. To model the process 
of regression, the terraced scan search method is used (Hofstadter 1983). 
Cortical arousal is represented by the temperature parameter. This parameter 
varies according to the state of the problem solving process. When there is little 
order discovered, the temperature is high. This corresponds to a low level of 
arousal. This is because a high temperature increases the amount of randomness 
in the task selection process. In other words, it flattens the gradient of activation 
across agents. This is precisely what low cortical arousal is hypothesised as 
doing. At times when little progress has been made on a problem, arousal is low 
and attention defocused. This means that weak cognitive units may receive 
some attention. A low temperature arises as the system converges on a solution. 
At low temperatures, only the strongest bidding agent is likely to run. This 
corresponds to attention being highly focused on one or two units under high 
levels of cortical arousal. If a representation is found to be incorrect it is 
abandoned. Thus temperature increases after such an event. This corresponds 
to a regression from secondary processing (focused attention) to primary 
processing (unfocused attention), which, Martindale suggests, is a key mecha- 
nism for creative thought. 

Weisberg claims, however, there is no such mechanism. Rather, creative 
thinking is just a part of normal thinking. Normal problem solving involves 
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trying out the most likely ideas first and correcting them if they prove 
inadequate. If an idea is completely wrong, it may be replaced by a competing 
one. In the computational theory, this corresponds to task selection being a 
best-first process. The highest bidding agent is the one that runs. ff a representa- 
tion is wrong then it is abandoned. The bucket-brigade credit-assignment 
scheme means that agents on the chain that led to this representation are all 
eventually weakened (if the same mistake is repeated). This means that an 
alternative move will be stronger, leading to the building of a different repre- 
sentation. The difference between the two theories can thus be seen as a 
difference in task selection strategy. 

9.2. Computational behaviour 

As with many aspects of intelligence, models of creativity present researchers 
with the difficult task of showing that the claimed phenomenon (in this case 
creative problem solving) is indeed modelled by their programs. The card game 
Eleusis was chosen as the application domain within which the GENESIS 
models operate. Gardner selected this game as one which models the classic 
creative act: theory discovery in science (Gardner 1977). In this game the dealer 
thinks up a card-sequence rule (e.g., red odd follows black even, etc.) -- output 
creativity -- and then the individual players must discover the rule -- input 
creativity -- as a result of evidence collected by playing cards which the dealer 
declares to be correctly following the rule or not. In addition, the scoring is such 
that overly complex rules are counterproductive. The best score for the dealer is 
obtained from a rule that is quickly discovered by just one of the players. 

In a number of experiments based around a simplification of this sequence 
prediction game, called micro-eleusis, the two k-line programs (one for each 
selection strategy) were compared with each other and also with some other 
programs. GENESIS with the best-first strategy (GENESIS-BF) models Weis- 
berg's "normal problem solving" theory and the terraced scan version (GENESIS- 
TS) models the cortical-arousal theory. Both programs took turns as dealers and 
players. 

The GENESIS programs construct theories about sequences which can be 
re-used. The theories are stored in k-lines which are "freeze-dried" abstractions. 
However, they are constructed in a bottom-up fashion creating a society of 
inter-related meaningful chunks. The abstraction process leads to increased 
applicability through (sometimes partial) analogies. The reconstructive nature of 
the k-line theory means that the representations are flexible: there is no a priori 
commitment to certain models. The threshold activation of k-lines enables them 
to be activated in partially matching situations. The competition between 
theories, governed by the bucket-brigade algorithm, provides a controlled 
relaxation of constraints. The terraced-scan version goes further in allowing 
only partially relevant theories a chance to be activated. Both versions allow 
multiple representations of the notational and structural kinds. The best-first 
selection method favours staying with one theory until it is sufficiently weak- 
ened for another to take over. The terraced-scan method encourages the 
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creation of multiple representations and allows them opportunities to be used 
without the risk of their weights being penalised because of short-term prob- 
lems. However, it also allows many useless or over-complex theories to be 
produced. The terraced scan tries to control the randomness, but does not 
direct the combination process (beyond the requirements of the external 
situation, that is). The best-first method, on the other hand, always has a reason 
for its combinations. There is still room for further self-criticism, however. It 
has a method of elaboration in the bucket-brigade algorithm which can be 
harsh, but prevents the build up of useless k-lines. The terraced-scan version of 
the bucket-brigade algorithm tends to upset the k-line organisation. 

As can be seen from the two graphs of average scores obtained by the two 
programs, they both settled down to play reasonable games as both dealers and 
players. The most negative observation from this data is that GENESIS-TS is 
getting progressively worse as a dealer. This was because it produced rules that 
look complex but which are, in fact, so full of non-determinism that they are 
trivial. One such rule is illustrated in Figure 4 as a finite-state automaton in 
which the arcs are labelled with the cards that are playable to effect that 
transition -- the labels are self-explanatory given that "b" is black, "r" is red, "o" 
is odd, and "e" is even. The GENESIS-BF version, by way of contrast, does 
seem to learn an appropriate output creativity, whereas GENESIS-TS suffers 
from too much randomness. 

In addition, the two programs played a number of games against two human 
players, and although the humans beat the programs, the overall performance of 
the programs was quite creditable. GENESIS-TS scored just over half of the 
human scores (the two human players scored almost exactly the same totals), 
and GENESIS-BF was less impressive at just one quarter of the average human 
score. In terms of scores as dealers, both programs and one of the humans were 
equal; the other human scored just over twice as highly. From these trials we 
conclude that the programs can be said to exhibit significant creative behaviour, 
both output creativity (when dealing) and input creativity (when acting as 
players). 

One of the most important results is the behaviour of GENESIS-BF in its 
analysis of micro-eleusis sequences. As commitment to one theory is weakened 
by the bucket-brigade algorithm, another (possibly completely different) has the 
chance to take over. The effect of this is an "aha!" experience as an unfruitful 
path is suddenly replaced by a more profitable one, possibly of a quite different 
sort. This is important as it seemed to be a weakness of the best-first model that 
it couldn't account for this phenomenon that is explicitly modelled by tempera- 
ture change in the terraced scan model. The terraced scan can also help 
GENESIS to get out of ruts, but at a higher cost in speed and complexity. 

9.3. Conclusions for GENESIS study 

The GENESIS study has looked at both psychological factors and artificial 
intelligence mechanisms. Using non-classical AI techniques, based on the 
models of Artificial Life, an emergent memory model was developed with which 
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the two opposing psychological theories could be compared. The theoretical 
background to this led to two hypotheses concerning the action of memory. A 
behavioural result was that analogy can be seen as an emergent property of 
memory, rather than being an explicitly programmed mechanism. 

The most significant psychological implication arises from the "aha" behav- 
iour of the best-first search. This repairs the chief weakness of Weisberg's 
theory which argues that there is no special mechanism for creativity, yet a 
distinctive brain-wave pattern is sometimes observed. The fact that this special 
effect can be objectively observed (e.g., on an EEG) may indicate that it is an 
effect, rather than a cause, of the emergence of an insight. The "no-special- 
mechanism" viewpoint now seems to be stronger than the cortical arousal 
theory. 

There are two main implications for artificial intelligence. Firstly, that 
Minsky's k-line theory can be made to work reasonably well. There is still room 
for improvement, though, particularly the needs for feature selection and self- 
criticism. The second result is that the terraced scan (devised by Hofstadter) is a 
useful search algorithm in some cases. It is useful for avoiding local optima. 
However, it may need work to make it more stable and efficient. When there is 
some kind of learning strategy, the terraced scan interferes with its action. It 
may be possible to devise a learning algorithm which co-operates with the 
terraced scan. 

The central result, on which these others rest, is that a multi-agent system 
with an emergent memory mechanism, displays, to an extent, the required 
characteristics of creativity. That is, it develops flexible knowledge representa- 
tions, it can tolerate ambiguity, it makes use of multiple representations, it is 
guided by semantic as well as syntactic changes and it assesses the consequences 
of its creations. 

10. SUMMARY 

Creativity is an important, but elusive, phenomenon intimately bound up, it 
seems, with the notion of intelligence. We have surveyed a wide range of AI 
programs which have, in their various ways, explored some aspect or interpreta- 
tion of this phenomenon. We have reviewed these programs using a set of five 
characteristics that we believe must be central to any 'mechanism' for creative 
behaviour. 

Finally, from the shortcomings of the earlier programs we developed an 
argument for the mechanism underlying creative behaviour to be a co-operating 
collection of autonomous primitive agents whose activities will give rise to 
flexible, high-level representations. This theory has been formally defined, 
implemented in the GENESIS system, and several implementational alternatives 
have been explored (see (Rowe 1991) for full details). 
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