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Abstract. In this paper, a study of the centerline macrosegregation phenomenon which occurs often 
in the industrial casting of steel billets is described. Previous work on this subject was reviewed 
and it was concluded that the most likely explanation of this macrosegregation, is the occurrence 
of internal deformations in the solid, dendrite skeleton of the solidifying steel. After modelling 
these deformations, a simplified computational procedure to solve the transport and deformation 
equations describing the solidification process was devised. Care has been taken to ensure that the 
entire computational procedure can be implemented within a Computational Fluid Dynamics code, 
PHOENICS. The results of preliminary computations show good agreement between calculations 
and experiments and hence show that internal deformations in solidifying blooms and billets are the 
main cause of centerline macrosegregation. 

1. I n t r o d u c t i o n  

Over  the past 25 years, a lot of  attention has been [ d to studies of  the solidi- 
fication process of  metal alloys. Attention has been focused on the solidification 
in industrial casting processes and has mainly concerned either aluminum or steel 
alloys, because of  their huge industrial and economic importance. 

One of  the most intrigueing problems the industry faces with respect to casting 
processes, is the fact that usually, the chemical composit ion of  the steel is not 
uniform. In the steel industry this problem has plagued manufacturers both with 
the old, static, ingot casting process as well as with the more recent continuous 
casting process. 

Two kinds of  segregation can be observed: one, the so called microsegregation 
demonstrates itself at the length scale of  the dendrites (typically 10-100 #m); the 
other, called macrosegregation,  occurs at the length scale of  the cast product  itself. 
Both types of  segregation have the same principal cause: the difference between 
the solubility of  the dissolved elements in the liquid phase and in the solid phase. 

The problems in industry are caused by the macrosegregation effect. Since 
segregation effects can be large (the concentration of  the elements dissolved in the 
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Fig. 1. Measured concentration distribution of carbon as a function of the distance to the 
surface of the cast product. 

steel, can vary as much as a quarter of their nominal values), macrosegregation puts 
limits on the castability of specific steel grades. It would therefore obviously be of 
great economic importance if it were possible to control the solidification process 
in such a way as to counter the macrosegregation. This can be done by using 
electromagnetic stirrers to enhance mixing of the liquid steel in the solidifying 
product. Another way would be to change the cooling conditions, under which the 
solidification takes place, in such a way that a uniform composition is obtained. 
Before using such methods in practice, it would be helpfull if numerical simulations 
could be performed to predict the influence of these actions on the formation of 
macrosegregation. 

Our research was aimed at finding a theory to explain the cause of macroseg- 
regation and, more specifically, to explain and calculate one particular kind of 
macrosegregation: the centerline macrosegregation. An example of this kind of 
segregation, typical for high carbon steel grades, is given in Figure 1 (obtained 
from measurements performed at the Hoogovens Steelworks in The Netherlands). 
The two characteristic features of the distribution shown in Figure 1 are the peak 
of positive segregation in the center of the cast product and the minimum corre- 
sponding to negative segregation just near the peak. 

The solidification of steel in a casting machine is a complex process involving 
the transport of heat, liquid steel and the elements dissolved in the steel. These 
transport processes are described by differential equations expressing mathemat- 
ically the conservation of mass, solute mass, heat and liquid steel momentum. 
Hence, to calculate the segregation these equations have to be solved. Since all 
these equations show the same mathematical structure, a commercial software code 
known as PHOENICS [13] could be used to solve them, reducing the time spent 
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on programming. PHOENICS is a general Computational Fluid Dynamics code, 
specially written to solve transport equations of the kind encountered in this study. 

This study closely follows the work by Lesoult et al. presented in [8, 9, 10]. 
However, whereas in these references a Lagrangian formulation is used to express 
the governing equations, the more common Eulerian formulation has been used 
in this study which made it possible for us to use the PHOENICS code. Also, the 
computational procedure, as explained in section 5 of this article, differs from the 
one proposed in [8, 9, 10]. 

2. Formation of Macrosegregation 

Several mechanisms have been proposed to explain the observed macrosegregation: 

1. Interdendritic flow of liquid steel due to solidification shrinkage and changes in 
the density of the liquid. These density changes can be caused by temperature 
changes (natural convection) or by changes in the composition of the liquid 
steel ([6, 7, 11]). 

2. Movements of both liquid and solid phases due to deformations of the dendritic 
layer in the mushy zone and of the solid shell ([8, 9, 10, 12]). 

3. Diffusion of the dissolved elements in the liquid pool ([15]). 

The actual calculation of macrosegregation (both numerical and in certain sim- 
plified situations, analytical), started with the publication by Flemings and his 
coworkers of their papers [6, 11] at the end of the sixties. Flemings derived a 
simple mathematical formulation, in which it was assumed that there was no trans- 
port or deformation of the solid. He also neglected diffusion within the liquid. 
Hence, he only considered fluid flow and assumed that this flow was caused by 
solidification shrinkage and by the dependence of the liquid density on temperature 
and composition (for the latter see also [7]). Flemings found a negative centerline 
segregation instead of the positive one usually observed. More importantly, the 
calculated segregation was an order of magnitude smaller than the experimentally 
observed one. Flemings performed some calculations for static ingots, but similar 
calculations were carried out in [14] for the continuous casting process with similar 
results. Hence, the conclusion was drawn that solidification shrinkage and density 
changes in the liquid are not an important cause of centerline macrosegregation. 

Since the time these results were obtained, focus has shifted to other possible 
causes of macrosegregation, of which deformations of the solid shell and of the 
solid, dendritic skeleton in the mushy zone, have received most attention. In this 
respect the study in [12] by Miyazawa certainly has to be mentioned, in which 
macrosegregation in continuously cast steel slabs was calculated. In this study, 
deformations were caused by bulging of the slab between the rolls which support it 
during casting i.e., only externally prescribed deformations were assumed. Internal 
deformations were not taken into account. Miyazawa's study was the first one 
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to actually achieve a good agreement between numerical results and practical 
evidence. 

However, in the case of continuously cast steel billets and blooms, there are only 
a few supporting rolls and it is therefore unlikely that external deformations of the 
type Miyazawa assumed, are the cause of segregation. Recently, Lesoult et al. have 
presented in [8, 9, 10] results of calculations in which internal deformations of the 
dendritic layer, caused by thermal contractions and expansions, are considered to be 
the main cause of macrosegregation. Again, a good agreement between numerical 
results and practical evidence was obtained. 

Hence, in this study, emphasis is placed on internal deformations of the solid 
phase as the main cause of macrosegregation. 

3. Governing Equations 

The solidification of steel in a casting machine is a complex process involving a 
mixture of liquid and solid iron in which severable elements are dissolved. The 
most difficult part of the steel to describe is the mushy zone in which a complex 
structure of dendrites is formed between which there is a flow of interdendritic 
fluid. Due to the different solubilities of the dissolved elements in solid and liquid 
iron, this interdendritic fluid is rich in solute elements. Hence, displacement of this 
fluid can cause segregation effects. As stated in the previous section, we assume 
that deformations (more in particular internal deformations) are the main cause of 
macrosegregation. To actually calculate this macrosegregation, several transport 
equations describing mathematically the conservation of mass, solute mass, energy 
and liquid steel momentum, have to be solved. 

In this section the transport equations for the continuous casting process will be 
presented. The objective here is to present the equations in the form in which they 
were used in the numerical study. A full and extensive mathematical derivation of 
the equations will not be presented as the equations are all (except for the equation 
expressing the conservation of solute mass) in a 'standard' form, common for two- 
phase flows (see for instance [1]). The assumptions made when these equations 
were derived, are the following: 

1. Only the steady state is considered. 

2. There are no microscopic concentration gradients in the interdendritic liquid, 
due to the high diffusivity of solute in the liquid and the small dendrite arm 
spacing. 

3. The ratio between the concentration of solute i in the solid at the microscopic 
solid/liquid interface, c* i, and the concentration in the liquid, cu, is given by 
the equilibrium distribution ration ki. 

4. Diffusion in the solid is neglected (on a macroscopic scale that is). This 
hypothesis is supported by the result of the work in [15], in which a numerical 
study to calculate the influence of diffusion was performed. 
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Hence, the interest is in equations describing the steady state casting process, 
in which convective transport and thermal conduction are taken into consideration 
and deformations of the solid phase are allowed for. 

Mass balance 
We consider an element of volume located in the flowing steel string of the contin- 
uous casting process. This volume element is located at a fixed position relative to 
the casting machine and the steel moves through it. An equation that accounts for 
the conservation of mass over the volume element is given by 

V . (PlflVl + PsfsVs) = 0, (1) 

where p, f and g denote density, volume fraction and velocity respectively and 
where the subscripts I and s denote the liquid and the solid phase respectively. 

The two terms V .  (P l fS t )  and V .  (Psf~gs) can be interpreted as the net mass 
flow of the liquid phase and the solid phase respectively, out of the volume element 
under consideration. Since only the steady state is considered, there is no mass 
change in the volume element and therefore both terms sum to zero. 

Implicit in using Equation (1) is the assumption that the volume element is large 
enough to ensure that the definition of a volume fraction makes sense, but small 
enough that it can be treated as a differential element. 

Solute mass balance 
The solute mass balance is given by a corresponding equation: 

V . (plfzgIcu + Psfsgscsi) = 0. (2) 

In Equation (2), ~si represents the average concentration of solute i in the solid 
phase of the volume element. Since it has been assumed that this volume element 
is large enough to ensure a sensible definition of a volume fraction, one has to 
distinguish between the average concentration of solute i in the solid phase, ~i ,  
in the volume element and the concentration in the solid c*~i at the microscopic 
solid/liquid interface. This is so, because diffusion in the solid is usually small 
(the exception being carbon). In contrast to this, it can usually be safely assumed 
that diffusion in the liquid is large enough to ensure that cu is uniform within the 
volume element (assumption (2) at the beginning of this section). 

Since equation (2) expresses the conservation of solute mass in an element of 
volume, the concentration of solute i can be calculated from it. However, this leads 
to the problem that in equation (2) there are two unknown concentrations: cti and 
~i.  This means that an additional equation, linking cu and ~ i  with each other, is 
needed. This additional equation can be found by considering microsegregation 
and by recalling the fact that V • (PsfsgsCsi) is the mass of solute i, solidifying in 
the volume element, per time unit and per volume unit. 

As far as microsegregation is concerned, one can distinguish between two 
limiting cases: in the first case there is no diffusion in the solid. This means that the 
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mass of solute i solidifying will be equal to the mass of solute i with concentration 
* ~7 cs~ in the envelope with total mass V • (p~f~ ~) just solidified. Hence: 

* ,j v .  (p fs  e i) - c iV. (p L 

Because of assumption 3, c~i = kicti can be written and it follows that: 

V . (psfsUsCsi) ~- kiCliV. (PsfsVs). (3) 

* ~ ]~iCli In the second case, diffusion in the solid is complete and hence esi c~i 
must hold. Substituting this expression in Equation (2) gives: 

V .  (Psf~g~csi) -= kicliV " (Psf~Vs) + P~fsg~ " V(k~ct~). (4) 

Equations 3 and 4 can be combined using a parameter ?i: 

V "  ( P s f s ~ s C s i )  = ~ i e l i V  ' ( P s f s V s )  --~ ~ i P s f s ~ s  . ~ ( ]~ iCl i ) .  (5)  

The parameter 7i varies between 0 and 1.* 7i = 0 results in Equation (3), which 
describes the situation of no diffusion in the solid phase and ?i = 1 results in 
Equation (4), in which there is complete diffusion in the solid. Intermediate cases 
can be thought of with some but not complete diffusion giving a value for ?i 
between 0 and 1. 

Equation 5 has to be rewritten because of the fact that implementing the second 
term on the righthand side within the PHOENICS code would give problems. This 
has to do with the fact that this term contains the scalar product of a velocity g~ and 
a gradient vector, which means that this term cannot be integrated in a conservative 
way over a control volume, as is the prescribed way within PHOENICS. Hence, 
Equation (5) is rewritten in the form: 

V .  (p~f j~s ,z)  = (1 - ~i)kictiV . (p, fsg,) + 7iV" (p~fskiUscti). 

Substitution of this equation in Equation (2) gives: 

V .  (ptfzgtct~) --- (7.z - 1)k~ct~V. (Psfsg~) - "yiV" (p, fski~scti). (6) 

Equation (6) is in the form suitable for implementation in PHOENICS. 

Energy balance 
The energy equation is given by: 

V .  (pLft~l(cpzT + L) + psfs~sepsT) = W. (AX~T) (7) 

where cp denotes the specific heat capacity, L the latent heat, T the temperature and 
A the thermal conductivity. In the transition range, in which solid and liquid phases 
coexist, cpz and cps are taken to be equal. Equation 7 expresses the balance between 

* In the appendix we will describe a way to estimate this parameter by relating it to quantities in 
a microsegregation model. 
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on the one hand energy (both latent heat as well as sensible heat) convected out of 
the volume element and on the other hand the energy conducted into the element. 

Momentum balance 
Finally, the equation for the flow in the mushy zone is given by the well known 
d'Arcy-equation: 

~ _ ~s _ K ( ~ p  _ Pal) ,  (8) 
~fz 

where K denotes permeability, p pressure, # viscosity and ] the gravitational accel- 
eration. The d'Arcy-equation is a simplified form of the more general equations 
describing the conservation of momentum in two-phase flows (see for instance 
[1]). The d'Arcy-equation in fact gives the fluid velocity, gl, in a porous medium 
in which there are only two external forces working on the fluid: the gravitation- 
al force and the friction exerted by the solid phase on the fluid. A measure for 
the porosity of the solid phase is the permeability of K. According to [12] the 
permeability is given by the empirical relation: 

K----n f? 

in which a is taken as a constant and equal for all directions. 

4. D e f o r m a t i o n  M o d e l  

In the following it is assumed, for simplicity, that the steel strand is cylindrical, 
although the actual product has a square cross section. Because of the axisymmetric 
cooling conditions imposed on the string, it is assumed that the entire solidification 
process has this same symmetry. 

In the past, most of the effort has been devoted to solving the energy equation 
(Equation (7)) alone. This can easily be done if use is made of a few simplifications. 
First of all, because the steel bloom is much longer than it is thick, thermal conduc- 
tion in the longitudinal direction (z-coordinate) can be neglected compared with 
thermal conduction in the radial (r-coordinate) direction. Secondly, it is assumed 
that deformations have a negligible effect on heat transport and that the steel moves 
with a constant speed (the casting speed u). Thirdly, it is assumed that macroseg- 
regation doesn't influence the temperature distribution inside the bloom. It is then 
possible to use a microsegregation model (like the one proposed in [2] which is 
explained in more detail in the appendix) everywhere in the bloom, which provides 
an additional equation to link locally the volume fraction of solid, fs, with the 
temperature T. This equation then, together with the energy equation itself, makes 
it possible to calculate the temperature distribution inside the bloom. 

Such calculations have been described in, amongst others, [14] and in [5]. In 
the latter case, it was observed from these calculations that the temperature in the 
center of the product dropped, in the later stages of the solidification, much faster 
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than the temperature at the surface. The authors used this observation to construct 
a model that could, at least qualitatively, explain the observed macrosegregation 
pattern. 

They assumed that, because of the small temperature drop of the surface of the 
product, the outer part of the cast product did not shrink much near the end of 
the solidification process. The inner part (with a much larger temperature drop) 
however, did shrink significantly. Since inner and outer part are connected, it was 
assumed that the inner part shrank towards the outer part, resulting in a volume 
expansion in the center of the steel strand near the end of the solidification process. 
This expansion was supposed to suck liquid steel to the center from its surroundings. 
Since the equilibrium distribution ration ki is less than 1 for all dissolved elements, 
the liquid steel in the mushy zone will have a high concentration of these elements. 
The liquid sucked into the center will therefore enrich the center, thereby depleting 
its surroundings. In this way, qualitatively, the segregation pattern as shown in 
Figure 1 can be explained. 

The model of the deformations that occur in the solidifying steel bloom is 
described in this section. In order to describe the deformations of the solid phase 
its velocity ~Ts is needed. This can be seen if it is realized that deformations occur 
because of a displacement of solid and that ~Ts is the displacement velocity of 
the solid. Since deformations are really displacements of some part of the solid 
relative to another part, the gradients of the velocity must be involved. It then turns 
out that V • ~8 can be interpreted as the relative change of volume of a material 
(i.e. Lagrangian) volume element per time unit. Hence, if equations from which 
~78 can be calculated are specified then the deformations are known. A schematic 
model has been used in this study because of the different and complex processes 
taking place (thermal deformation of the solid shell and of the solid phase in the 
mushy zone; the ferrostatic pressure exerted by the liquid core; externally imposed 
deformations caused by the casting machine). First of all, it is assumed (based on 
the original idea in [5]) that the only deformations that are important are thermal 
deformations. Secondly, the complicated structure of the bloom was dealt with. 
Part of it is completely solid, part of it is completely liquid and part of it is a 
mixture of solid and liquid. To account for these different parts of the bloom, in 
line with [10], the bloom was divided into 4 zones, each of which deforms in its 
own special way (see Figure 2). 

Zone I is the solid shell. It is bounded by the surface of the product and the 
solidus surface. Since the basic deformation is assumed to be a volume expansion 
in the center of the bloom, we neglect all deformations in zone I. 

Zone II is bounded by the solidus surface and the surface for which f~ = 0.1. In 
this zone a solid structure is present. The solid skin in zone II contracts during the 
casting process and as explained earlier, only thermal contraction was taken into 
account. The governing equations are given by: 

V .  (ps~) = 0 (9) 
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Fig. 2. Schematical representation of the different zones in the bloom, each of which deforms 
in its own way. z~R denotes the z-position where the solidus line reaches the outer surface 

= R ) .  

ps(T)  = ps(To) exp(- s(T - T0)) (10) 

in which To denotes an arbitrary reference temperature and o~s the thermal expan- 
sion coefficient of steel. 

Zone III is bounded by the fluid meniscus at the top of the steel bloom and by 
the surface for which f~ = 0.1. Although there is some solid material present in 
this zone, it is assumed that there is no solid structure and therefore there are no 
deformations in this zone. 

Finally, zone IV consists of a small tubular piece of mushy material in the center 
of the bloom. In a cross section this is the hottest and consequently the weakest 
part of the bloom and therefore it is assumed that this zone deforms only as a 
reaction to deformations imposed by the surrounding zones. According to [8] the 
ratio between the diameters of zones IV and II is taken to be 0.1. 

5. Computational Procedure 

Having specified the deformation model, the equations (Equations (9) and (10)) 
that should permit the calculation of the velocity of the solid are now available. 
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Hence, the equations for calculating the temperature T (energy Equation (7)), 
the solute concentrations ~ i  (Equation (2)) and cli (Equation (6)), the velocities 
~71 (the d'Arcy-equation (8)) and Ys (the deformation Equations (9) and (10)) 
and pressure p (total mass balance, Equation (1)) are available. In principle, all 
equations are coupled and must therefore be solved simultaneously. However, due 
to the complicated interactions between the different variables this would be a 
complicated thing to do and if numerical difficulties were to be encountered, it 
would be hard to find their cause. It is expected that the consequences of this 
decoupling are not very large, since it is a well-known fact that the temperature 
distribution can be satisfactorily calculated from the energy Equation (7) (with 
the help of a microsegregation model). Especially since the temperature is, in the 
present crude deformation model, the most important quantity, it is reasonable 
to expect this decoupling of the solving of the equations not to have a large 
effect. Hence, the following computational procedure was used for performing the 
calculations: 

Step 1. Effects of deformations and macrosegregation are neglected. The tem- 
perature is calculated with the help of the energy Equation (7) and of the 
microsegregation model of [2]. Thermal conduction in the axial direction is 
neglected compared to thermal conduction in the radial direction (this is the 
type of calculation performed in [5] and [14]). In this way the temperature is 
obtained. 

Boundary conditions: z = 0 T = r c a s t  Cli -= C0i 
r = 0 0 T / O r  = 0 

r = R Either T or OT/Or  is specified. 

In these conditions Tcast is the casting temperature and coi is the nominal 
concentration of solute i present in the steel. 

Step 2. With the known temperature field, the deformations are calculated with 
the help of Equations (9) and (10). It has been assumed that the deformations 
are concentrated in the radial direction and that no deformation takes place in 
the axial direction. Hence %z is taken to be constant and equal to the casting 
speed u. This calculation then provides us with the velocity of the solid phase. 
Boundary conditions: at solidus isotherm v~r = 0. 

Step 3. The volume fraction fs is calculated from the energy equation (Equation 
(7)). To be able to do this, it is assumed that deformations have a negligible 
effect on the temperature field and that they only influence the fs-values. Using 
this assumption, the energy equation can be considered to be an equation in 
which only the f~-values are unknown. Hence, the energy equation becomes 
a differential equation from which the f~-values can be calculated. 
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Boundary conditions: z = 0 f~ = 0 
r = 0 0 f ~ / O r  = 0 

Step 4. With the help of the now known f~ and ~7~-values, it is possible to calculate 
the liquid velocity ~Tz using the equations for the mass balance (Equation (1)) 
and the d'Arcy-equation 8. Although the d'Arcy-equation, strictly speaking, 
only holds for the mushy zone, it has been used also in the region where 
there's only fluid. This can be done by setting fl = 1 in the d'Arcy-equation. 
The effect of this step is that in this region a uniform velocity profile exists, 
where a Poiseuille-profile would be expected. 

Boundary conditions: r = 0 vz~ = 0 
r = R andz < Zsn  vtr  = 0 

z = 0 Vlz = ( p s / P l ) U  and Vlr = O. 

Step 5. Finally, the Equations (2) and (6) for the solute mass are solved to obtain 
czi and ~si and hence the concentration distribution is obtained. 

Boundary conditions: z = 0 cli = coi 

r = 0 0 c u / O r  = 0 

r = 0 0 ~ i / O r  = 0 

6. Results 

As a test situation calculations for a high carbon steel grade, impured with a small 
amount of phosphor were performed. The actual cooling conditions imposed, were 
taken from measurements performed at Hoogovens IJmuiden. The values of the 
constants that occur in the governing differential equations and in the boundary 
conditions are tabulated in Table I. 

The values of the permeability constant ~ and the liquid viscosity # are not 
specified. The reason for this is the fact that they only occur as the ratio (~c /#)  in 
the d'Arcy-equation. It can be proven that the value of the ratio x~/# only determines 

the magnitude of the pressure gradient Vp but that its value has n o  influence on 
the actual distribution of gl which is what we're interested in. Hence, the values of 
~c and ¢ do not influence the final concentration distribution. 

Results are presented in Figures 3 and 4. Figure 3 shows the development of 
~s~/coi (in which COl denotes the nominal concentration of solute i in the steel) as 
a function of the volume fraction fs at the centerline of the steel (r = 0) for both 
carbon and phosphor. Noteworthy are the sharp transitions in the csi/cOi-curves near 
f~ = 0 (for both carbon and phosphor) and near f~ = 1 (for phosphor only). The 
principal reason for the sharp transition near f~ = 0 and the resulting discontinuity, 
is the fact that for fs = 0, there is no solid phase present and hence, the value of 
~ i  is undefined. In the numerical implementation this value has been taken equal 
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TABLE I. Values used in calculations 

Constant Value Unit 

Co(carbon) 1 % 
C0(phosphor) 0.01 % 
Cp 670 J/kgK 
ff 9.81 m/s 2 

kcarbon 0.35 - 
]~phosphor 0.06 - 
L 2,72 x 105 J/kg 

R 0.05 m 
[/"cast 1833 K 
u 0.05 rrds 
c~s 8 x 10 .5 - 

7carbon 1 - 
7phosphor 0.01 - 
A 30.0 W/inK 
pt 7.0 IX 10 3 kg/m 3 
ps 7.4 × 10 3 kg/m 3 
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in the center of the product for both carbon and phosphor. - -  

I 
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Development of the carbon concentration as a function of the solid volume fraction 
carbon; . . . . . .  phosphor. 

to  0 (numer ica l ly  speak ing  the actual  value taken for  gsi in the l iquid region is 

i r re levant  s ince it is mul t ip l ied in the t ransport  equat ion  with fs  wh ich  is 0 in the 
l iquid region) .  H o w e v e r ,  the first solid fo rmed  will  have  gsi = kicu ,,~ kicoi and 

thus,  ~i/Coi ~ ki. Hence ,  in the first numer ica l  vo lume -e l e men t  wh ich  has f~ > 0, 
there is a sharp t ransi t ion in the ~ i / c 0 i - g r a p h .  Hence ,  the discontinuit ies.  Similar  
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Fig. 4. 
function of the distance to the center of the product. 
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m 

Distribution of the calculated concentrations in the bloom after solidification as a 
carbon; . . . . . .  phosphor. 

results were obtained, using microsegregation models (see [4]). Hence, these sharp 
transitions do not seem to matter very much in our numerical procedure. 

The most interesting result is depicted in Figure 4. This figure shows the radial 
distribution of esi/coi, in which the interest lies. As can be seen, the calculations 
show the characteristics as found in measurements (Figure 1): there's a large peak 
of positive segregation in the center of the bloom (r = 0) with a slight negative 
segregation at its side and with a more or less constant concentration distribution 
(with a concentration approximately equal to the nominal concentration) in the rest 
of the steel. The values calculated for esi/coi at the center are approximately 1.1 
for carbon and 1.2 for phosphor. These values agree well with the measured values 
in spite of the relatively crude model that was used to calculate the centerline 
macrosegregation. 

7. Conclusions 

Although this study is of a preliminary nature, it can be concluded that the model 
used in this study, captured the important effects of centerline macrosegregation. 
This was possible, in spite of all the simplifications made in the model and in the 
computational procedure. Hence, it can be concluded that thermal deformations in 
the mushy zone are the main cause of centerline macrosegregation and that it is 
essential to capture these deformations well as our model seems to do. Another 
important conclusion that can be drawn is the fact that it has been possible to 
perform all calculations (including those describing the deformations in the mushy 
zone) within a general Computational Fluid Dynamics code (PHOENICS). This 
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means that time can be saved programming the equations and that general  software 
(as incorporated in PHOENICS) can be used to solve the problem. 

Appendix 

In section 3 it was mentioned that the parameter "Yi, which is a measure of the diffu- 
sion of solute i in the solid phase, could be linked to several parameters that occur in 
the microsegregation model originally proposed in [2]. In this model, a solute mass 
balance is taken over a secundary dendrite arm and (with several assumptions) this 
then leads to an equation giving a relation between the concentration of solute cli 
and the volume fraction f~. If the correction, proposed in [3] is taken into account 
in the original model of [2], the equation describing cti as a function of fs  reads: 

ki-1 
czi = c0i(1 - (1 - 26~iki)f~)1-2~iI¢i (11) 

in which Ozi is given by the relations: 

- ~ exp ( - ~ a / )  

4 D~it~ 
ai = L-~d • 

The parameters Dsi ,  t~ and Ld denote respectively the molecular diffusion coef- 
ficient of solute i in the solid, the solidification time and the secundary dendrite 
arm spacing. These parameters can be either measured or calculated ([4]) and this 
provides the means of calculating &i. 

An alternative method of determining Equation (11 ) using the equations derived 
in section 3 of this article is presented here. Take as a starting point Equation (6) 
for the solute concentration in the liquid: 

v .  ( p J S m i )  = (~i - 1 ) k i c k e r .  (psL~8)  - .y~v.  (psLk~sc~i ) .  

It is assumed that there is no macrosegregation and no deformation of the solid. 
These assumptions are expressed by the relations: 

Ps = P Z = P  

Vlr -~ Vsr = 0 

Ylz -~ Vsz  ~ U 

and p constant 

in which u denotes the casting speed. 
Substitution of these expressions in Equation (6) gives: 

, ~ ~del i  d fd~ ( (1  - L )  + 7 ~ ± ' ) - ~ - z  = (1 - k ~ ) ~  . 
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Integration of this equation with the boundary condition cu (fs = 0)  = coi 

gives: 

ki--I 
cu = c0i(1 - (1 - 7iki)fs),-~,k~. 

This equation now has the same form as Equation (11). Hence, it can be concluded 
that the parameter 7i is given by the relation: 

q/i = 2&i. (12) 

The importance of this result is that it provides the means of estimating the para- 
meter in a well known microsegregation model and hence, the possibility of giving 
a quamitatave estimate of the parameter's value for the different elements. 
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