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Abstract. We present brief pr6cis of three related investigations. Fuller accounts can be found 
elsewhere. The investigations bear on the identification and prediction of coherent structures in tur- 
bulent shear flows. A second unifying thread is the Proper Orthogonal Decomposition (POD), or 
Karhunen-Lo~ve expansion, which appears in all three investigations described. The first investiga- 
tion demonstrates a close connection between the coherent structures obtained using linear stochastic 
estimation, and those obtained from the POD. Linear stochastic estimation is often used for the 
identification of coherent structures. The second investigation explores the use (in homogeneous 
directions) of wavelets instead of Fourier modes, in the construction of dynamical models; the par- 
ticular problem considered here is the Kuramoto--Sivashinsky equation. The POD eigenfunctions, of 
course, reduce to Fourier modes in homogeneous situations, and either can be shown to converge 
optimally fast; we address the question of how rapidly (by comparison) a wavelet representation 
converges, and how the wavelet-wavelet interactions can be handled to construct a simple model. 
The third investigation deals with the prediction of POD eigenfunctions in a turbulent shear flow. We 
show that energy-method stability theory, combined with an anisotropic eddy viscosity, and erosion 
of the mean velocity profile by the growing eigenfunctions, produces eigenfunctions very close to 
those of the POD, and the same eigenvalue spectrum at low wavenumbers. 

1. Introduction 

Coherent  structures are observed in most turbulent flows. Their relative intensity 

depends on inflow and boundary conditions, flow geometry and streamwise position 

in the flow. It is tempting to think that they may represent instability modes either 

of  a laminar precursor or of  the turbulent flow, which have grown to non-linear 

maturity. Dynamical  models can be constructed using these coherent structures, 

which can then be used for many purposes: prediction of  transport or noise, active 

control of  the flow, and so forth. Such possibilities raise several questions: how 

best to identify structures in experimental data; how to predict structures in flows 
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that have not been extensively documented; what mathematical choices to make in 
implementing such models. 

The Proper Orthogonal Decomposition or Karhunen-Lo~ve expansion has been 
used for the identification of coherent structures (Aubry et al., 1988). It has been 
shown in many respects to be optimum. However, other techniques have also been 
put forward, in particular linear stochastic estimation (Adrian, 1979). We would like 
to know what connections there may be between these two methods for identifying 
coherent structures. Below (in Section 2) we explore this. 

Many flows are homogeneous in one or more directions. In a homogeneous 
direction, the POD reduces to a Fourier representation. Such a representation is 
optimum, in the sense that it converges no slower, and usually faster, than any other 
representation. However, a Fourier representation is not particularly well suited to 
phenomena in a turbulent flow. Fourier modes are of infinite spatial extent, while 
eddies in a turbulent flow are quite finite in their spatial extent. A much more 
attractive possibility would be the wavelet, since it also is of limited extent, but 
this is not optimum. Just how far from optimum is it? If we use wavelets, we 
will have wavelet-wavelet interactions in space, and we have to make a decision 
regarding appropriate truncations of these interactions. In Section 3 we examine 
these questions. 

Obtaining the POD eigenfunctions for a given flow either requires exten- 
sive experimental measurements (Herzog, 1986), or extensive post-processing 
of data from direct numerical simulation of the flow. Either is expensive and 
time-consuming. We would like a simpler way of obtaining the eigenfunctions, 
particularly in flows for which neither DNS nor extensive measurement exist. In 
particular, we can implement our suspicion that the coherent structures may (at 
least in some circumstances) result from a disturbance of the turbulent profiles of 
mean velocity and stress, a disturbance which is unstable, and which grows non- 
linearly, leading the system to a new attractor, consisting of the flow plus coherent 
structures (Poje and Lumley, 1991; Leibovich, 1991). In this new stable state, we 
may hope that the coherent structures will resemble the non-linear growth phase 
of the instability mode. We pursue these questions in Section 4 below. 

2. Linear Stochastic Estimation 

In this section we comment on the connection between the POD and linear stochas- 
tic estimation, as applied by Adrian and coworkers in Adrian (1979), Adrian and 
Moin (1988), Adrian, Moin and Moser (1987) and Moin, Adrian and Kim (1987). 
Elaboration of this material can be found in Berkooz (1991). Suppose one wanted 
to find an estimate for u(x) given u(x')  (at some other point), an estimate which 
would minimize the mean square difference between u(x) and the estimate. For 
the sake of simplicity of exposition, we limit ourselves to complex scalar functions 
of a single variable. Suppose, moreover, that one seeks an estimate linear in u(x~); 
this is called a linear stochastic estimate. We are examining V(x, x ~) such that 
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V(x,  x ')u(x')  will be the estimate for u(x), and we want to search through the 
class V(x,  x') to find A(x,  x') such that: 

rain {lu(x) - V(x ,x ' )u(x ' ) l  2) = (lu(x) - A(x,x')u(x')l 2} (1) 
V(~,~') 

is achieved by A(x,  xl). We indicate by (.} an ensemble average. We use the 
, classical calculus of  variations (cf. Adrian, 1979), which leads directly to: 

A(x ,x ' )  = (u(x)u*(x')} . (U(Xt)U*(X')) -1. (2) 

In (2) the two point correlation tensor R(x,  x') = (u(x)u* (x~)} appears with a 
normalization. Using classical results for the POD, we can write (Berkooz, 1991) 

A ( x , x ' )  -- E~=l Ail¢i(x')l 2 = ~ ¢i(x)fi(x')' (3) 
i = l  

where f i(x ')  =/~i¢* (x') / ~ = 1  AjlCj(x')l 2. We may interpret f i(x ~) as the relative 
contribution of ¢i to u(x ~) on the average. 

It is remarkable, and is the point of this section, that we get exactly the same 
result from a simplified PDF model based on the POD. Here we assume that the 
coefficients ai in a modal expansion u(x, t) = Eai(t)¢i(x)  are jointly normal 
and independent, with zero mean and variance ,~i. Let us compute the estimator 
(u(x) I u(x~)} . Since we have an expression for the PDF (through our assumption 
on the ai) we can compute this explicitly. Recall from probability theory that if the 
xi are independent and normal with zero mean and variance 0-/2 for i = 1 , . . . ,  m 
then 

x~ I ~ ~j = c 0-]c (4) 
j = l  E?_-i  0-~ " 

(See the formula for the conditional expectation of joint normal variables in Feller, 
1957.) Using (4), we have 

( ~ ) )~i,¢i(X')12U(X t) 
~¢~(~1) 1 z ~ jCj(x ' )=  ~(~') = ~ (5) j=l E~=~ Aj I¢j(~')t 2 

which gives (Berkooz, 1991) 

E~%1 A~l¢i(x')12~(x')¢i(x)/¢~(x') (~(x) I ~(x')) = 
Ej%~ aj I¢~(x I) 12 

~ ~ * ~ ' ~  (x)~(x') ~----,i=1 ~'~'i \ ,,,~'z 

= EF-~ AjlCj(x')l 2 (6) 
This is exactly the same result obtained from linear stochastic estimation: (3). 

This single result helps to place linear stochastic estimation in context: it is not 
a different animal altogether, but is just the POD with a simplifying assumption 
on the PDF of the coefficients. As long as we are not discussing transport (which 
probably requires non-zero third moments) the assumption on the coefficients is 
physically not unrealistic. 
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3. Wavelets 

All the flows of interest to us have one or more homogeneous directions. We 
are accustomed to use in these directions the Fourier transform, which is the 
homogeneous equivalent of  the POD. However, the Fourier transform is not nearly 
so appropriate in the homogeneous case as is the POD in the inhomogeneous case. 
This is because the Fourier modes are not confined to a neighborhood, but extend 
to infinity without attenuation. All disturbances in fluid, and coherent structures in 
particular, are localized. There is therefore considerable motivation to find another 
representation that is more appropriate. 

In Tennekes and Lumley (1972) it was suggested that a more appropriate quan- 
tity would be the energy surrounding a wavenumber ~, say from t~/a to ate, where 
a ---= 1.62. In physical space, this packet with appropriate phase relations is confined 
to a region, essentially dropping to zero in about 27r/t~ from the origin. Tennekes 
and Lumley called these 'eddies', but the are an example of what are now called 
wavelets. 

While wavelets appear to make more physical sense, we might worry because 
we would be discarding the optimality of the Fourier representation; would conver- 
gence be much slower, so that we would need many more terms, or would we lose 
considerable energy if we used the same number of terms? A main result of a recent 
paper (Berkooz et al., 1992) is that very little energy is lost when using a wavelet 
basis instead of a Fourier basis. Although wavelets are physically appealing, it 
would also be nice to have reassurance from calculations that physical behavior 
would be preserved in a wavelet representation in which interactions are truncated. 
To set our minds at rest on this point, Berkooz et al. (1992) also display a rela- 
tively low-dimensional wavelet model of the Kuramoto-Sivashinsky equation with 
truncated interactions that shows dynamical behavior similar to the full equation. 

Without getting involved with mathematical details, an orthonormal wavelet 
basis is constructed by starting with a function, say ~(x) ,  similar to the eddy 
suggested by Tennekes and Lumley (1972). From this, construct a set ~j ,o (x )  =- 

( x2  j ) ,  j = 1, 2 , . . .  Each of these is shrunk affinely, but is geometrically similar to 
the original function. Now consider the translates of ~ j  ,0: ~ j, k ( x ) = g! j ,o ( x - k2  j ), 
k = l , 2 , . . .  

Berkooz et al. (1992) consider a periodic, homogeneous stochastic process. 
It is then obvious that the POD decomposition becomes identical to the Fourier 
decomposition. Now, if, for a given e, we need N ( e )  POD modes in order to satisfy 

N(e) 
E (ai(t)12) -- E (lai(t)12} <- e (7) 
i<1 i=1 
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then, if the {bi} are the coefficients in a wavelet basis, they show that, for some 
constant C, depending only on the process (and not on e): 

Ib (t)12> < c c  
i > l  i----I 

(8) 

for some A/'(c) > N(¢) only slightly bigger than N(¢) (the precise statement is 
given in Berkooz et al., 1992). This suggests that we will not be too much worse off 
using a wavelet basis, but it would be reassuring to have numerical confirmation. 

3.1. NUMERICAL RESULTS 

Berkooz et al. (1992) wished to apply these ideas to a simple situation. The three- 
dimensional, three component Navier-Stokes equations are too complicated for a 
first effort. 

The one-dimensional, scalar Kuramoto-Sivashinsky (K-S) equation appears in 
a variety of contexts, such as quasi-planar fronts, chemical turbulence, etc. It shares 
some properties with Burgers' equation and the Navier-Stokes equations, but is 
much easier to deal with. Up to a rescaling, this equation can be written as: 

ut  + uz~ + u x . ~ z  + u ~ u  = O, O <_ x < L (9) 

u periodic on [0, L], where L, the length of the spatial domain, is the only free 
parameter in the problem. 

Although the dynamical behavior for small values of L is fairly well understood 
(see Hymans and Nicolaenko, 1986 for an overview), many open questions remain 
concerning the limit L --+ oc (Zaleski, 1989; Pomeau et al., 1984). As can be seen 
from the numerical simulations, for L > 30, a chaotic regime involving both space 
and time disorder occurs (see Fig. 1, where we plot a space-time representation of 
a typical solution, L = 400, 0 < t < 100; the grey scale represents the magnitude 
of u). 

In order to check the estimate (8), we compare the energy resolved by a given 
number of modes using either a Fourier (POD) or wavelet basis. Note that, to 
compare the Fourier and wavelet bases, all the translates in the wavelet basis 
must be considered. Here are some results (see Fig. 2; the numbers indicate the 
percentage of the mean of u 2 that is captured by the indicated number of modes): 

Number of modes wavelets (m = 6) wavelets (m = 8) Fourier 

64 (j = 6) 70.84% 71.5% 72.2% 

96 (3' = 6, 5) 79.1% 79.43% 83.3% 

127 (0 _ j _ 6) 84.1% 84.9% 89.7% 

255 (0 ___ j < 7) 99.9% 99.9% 99.9% 
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Fig. 1. A typical solution of the periodic Kuramoto-Sivashinsky equation (L = 400). 

The scale j = 6 which captures most of the energy on the average, corresponds 
to a characteristic length 2-6L ~ q~l, which is also the length scale associated 
with the most unstable wavelength elm. In agreement with the general shape of the 
energy spectrum, the scales 0 <_ j _< 5 are shown to capture more energy than the 
scales in the dissipative range (j _> 7). The above figures show that (for sufficiently 
smooth splines) the wavelet projection captures almost the same amount of energy 
as the Fourier (= POD) decomposition (within 5%). 

These results prompted Berkooz et al. (1992) to conclude that from an average 
energy point of view wavelets were a reasonable candidate for a modal decompo- 
sition of the K-S equation. The localized nature of the wavelets may give a unique 
view of the spatial attributes of the coherent structures. We outline their approach. 
They conjecture the existence of a dynamically relevant length scale Lc such that 
interactions between physical regions of distance greater than Lc are dynamically 
insignificant (a dynamical St. Venant principle). Determining the validity of this 
conjecture is part of their study. They use this conjecture to remove terms in a 
wavelet-Galerkin projection that correspond to interactions between regions of 
distance greater than Lc. To study whether the dynamics of coherent structures are 
indeed locally determined they construct truncations corresponding to a small box 
size LB in the larger box of size L. 
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Fig. 2. 
(lower curve), as functions of the number of modes. 
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The energy resolved by the Fourier (POD) basis (upper curve) and the wavelet basis 

They need to address the role of unresolved physical space (i.e. modes located 
outside the box of size LB). It is obvious that the Dirichlet type of boundary condi- 
tion imposed will create a boundary layer which will affect the dynamics, especially 
in small boxes which are of interest to us. There are two plausible approaches to 
remove this effect. One approach uses a stochastic boundary condition (which is 
hard to implement numerically and treat analytically). The other approach appeals 
to the conjecture on the existence of Lc. One takes a box of size LB greater than 
2Lc so that one can periodize the small model using resolved relatively distant 
modes instead of unresolved ones. They opted for the second approach. 

We present some preliminary results of the integration of one such model. They 
resolved a box of size LB = 50 (this is 1/8 of the original box). Figure 3 shows the 
spat|o-temporal evolution of the full system, with a Fourier basis. Figure 4 shows 
the spat|o-temporal evolution of a (rescaled) model with Lc = 50 x 3/8, which is 
in excellent qualitative agreement with the dynamics of the full system. As in Fig. 1, 
Figs 3 and 4 indicate by grey scale the magnitude of u. If Lc is too small, after a 
long initial transient, the system eventually settles down to a periodic oscillatory 
state, in which no interaction between the localized structures is observed. This 
can be avoided by an increase in Lc, which adds significant non-linear interactions 
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Fig. 3. Full simulation of the Kuramoto-Sivashinsky equation (Fourier basis). 
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Fig. 4. Wavelet simulation of the K-S equation (4 mode) with LB = 50 (rescaled). 

between relatively distant physical space locations. It might also be avoided by a 
stochastic boundary condition. 

Thus we see that: we do not lose any significant amount of energy by changing 
from a Fourier to a wavelet basis; and it is possible to use a wavelet basis with 
truncated spatial interaction to reproduce complex dynamical behavior reminiscent 
of that governed by the Navier-Stokes equations. 

4. Eduction of  Coherent Structures 

Ideally, one would like to apply the POD approach to a wide range of flows where 
coherent structures are known to play an important role in the dynamics. The 
POD procedure, however, requires the two-point velocity autocorrelation tensor as 
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input, thus necessitating complete documentation of the flow before the analysis can 
proceed. For flows with very high Reynolds numbers or complicated geometries 
this can be prohibitively expensive given current computational and experimental 
capabilities. In this section we will describe an analytic procedure for extracting 
basis functions (structures) which approximate those given by the POD but which 
requires much less a priori statistical information about the flow. 

The method presented here is based on energy stability considerations put 
forth by Lumley (1971). A fuller description can be found in Poje (1993); Poje 
and Lumley (1994). First, the instantaneous flow field is decomposed into three 
components in order to isolate the large scale structures. Evolution equations can 
then be written for the coherent velocity field and the coherent kinetic energy. 
A procedure can then be formalized to search for the structures which maximize 
the instantaneous growth rate of coherent energy, the rationale being that the 
structures which on average have the largest growth rates will compare well with 
the structures which contribute the most to the average turbulent kinetic energy 
(POD eigenfunctions). 

As an example we consider turbulent channel flow assumed statistically homo- 
geneous in both the downstream (Xl) and cross-stream (x3) directions. In order to 
extract spatial structures from the total velocity field, we avoid traditional Reynolds 
averaging and instead decompose the instantaneous velocity field into three com- 
ponents: the spatial mean (U), the coherent field (v) and the incoherent background 
turbulence (u~). 

 i(x, t) = u(x2) + vi(x, t) + t). (lO) 

The spatial mean is an average over the Xl-X3 plane; we will indicate it by [...]. 
We introduce a second averaging procedure, denoted by {...}, which eliminates 
the small-scale turbulence while leaving the coherent field intact. 

(ui(x, t)) = U(x2) + vi(x, t). (11) 

Practically this can be accomplished in several ways (Reynolds and Hussain, 1972; 
Liu, 1988; B rereton and Kodal, 1992; B erkooz, 1991). We will refer to this average 
as a phase average. For our purpose here it is sufficient that the phase average and 
space average commute, and that the cross-correlations be negligible. 

(u~vj} = [u~vj] = 0. (12) 

It is possible to devise various models to support Equation (12). Given these 
averaging procedures, we can manipulate the Navier-Stokes equations to arrive at 
evolution equations for the coherent velocity field. 

D v i / D t  + VjVi, j  ~--- - -~ , i  -~- PVi , j j  ~- Tij,j -- S i j V j  --~ [ViVj]j (13) 

where D / D t  denotes the mean convective derivative, Sij the mean rate of strain, 
and u the kinematic viscosity, "zij represents the rectified effects of the small scale 
fluctuations on the coherent field and is defined by 

Ti j [ U i U j ] _  t !  = ' ' ( u i u j ) .  (14) 
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This can be thought of as a perturbed Reynolds stress, which is unknown and 
will ultimately require modeling. In the limit of a complete random turbulence 
containing no structure (i.e. ( . . . )  --- 0) this quantity is equal to the usual Reynolds 
stress. In the case when the turbulence is completely structured so that ( . . . )  = [:..], 
~-ij is identically zero. 

We now follow classical energy method stability analysis for the coherent field. 
First, the growth rate of the volume averaged coherent energy E is defined as a 
functional of  the coherent velocity field. 

~(v, U, v, r )  = (1 /2E)  d E / d t .  (15) 

Integration by parts and continuity are used to eliminate the non-linear convective 
and pressure terms. We seek the solenoidal velocity field which maximizes ,~. 
Application of the calculus of variations then gives the Euler equations for the 
maximizing v field in the form of an eigenvalue relation. 

)kVi -~ S i j V  j = --Tr,i -Jr- llVi,jj -q- Tij,j 

vi,i = 0. (16) 

We consider coherent fields which are periodic in the homogeneous directions. 
This allows a decomposition into poloidal and toroidal components which satisfy 
continuity exactly (Joseph, 1973) 

vl = 9,12 - v,3; v2 = -(9,11 + 9,33); v3 = ~I',23 + v,r. (17) 

The two scalar functions are then expanded in normal modes in the streamwise and 
spanwise directions. 

~ ( x )  = f fW(x2)exp{i(klXl  + ]~3X3) } 

V(X) = v ( x 2 ) e x p { i ( k l X l  + k3x3)}. (18) 

Substituting the above into Equation (16) and eliminating the pressure 7r results in 
two coupled equations, forming a differential eigenvalue problem. 

In order to proceed we need to specify a mean velocity field and a model for 
the unknown stress terms. 

4.1. CLOSURE MODELS 

We have investigated two different models for the unknown stress terms appearing 
in the eigenvalue relation. It should be noted that, modulo the modeled terms, 
Equation (16) is linear in the coherent velocities, providing an inexpensive means 
of determining basis functions. This linearity is an essential advantage of the 
method and for this reason we will constrain any stress model to be both linear and 
homogeneous in the v field insuring that the governing equation remains a regular 
eigenvalue problem. Tensorially this requires 

7-ij -- 7-kkSij/3 = rijkl(Vk,l + Vl,k). (19) 
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Fig. 5. Isotropic eddy viscosity model, o**o POD; . . . . . . . .  isotropic model; (a) k3 = 3.00, 
(b) k3 = 6.00, (c) k3 = 12.00, (d) spectrum. 

The nature of the averaging procedure implies that the scales of the coherent 
field and the background turbulence are different. Assuming that the background 
turbulence evolves on much shorter time and length scales than the structures, 
it seems plausible that a Newtonian stress-strain relationship like that for the 
molecular stresses will provide the basis for a model. We set 

7-ij -- 7-kkSij / 3  = Pt(Vi,j -F Vj,i). (20) 

Due to the inhomogeneity of the turbulence in the wall normal direction, we specify 
ut as a function of z2 corresponding to experimentally determined values of the 
traditional eddy viscosity. We will refer to this basic model as the isotropic eddy 
viscosity model. 

Using the basic stress model and an analytic expression for the fully turbu- 
lent mean profile (Reynolds and Tiederman, 1967) we have solved the resulting 
equations numerically. Figure 5 shows comparisons between the calculated first 
order eigenvectors and the POD results of Moin and Moser (1989) obtained from a 
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numerical data base; the results are shown as a function of distance from the wall, 
for three different values of the cross-stream wavenumbers (recall that the stream- 
wise wavenumber is zero). Figure 5d compares the first order eigenvalue spectrum 
obtained both ways, as a function of cross-stream wavenumber. Although there are 
qualitatively similarities in the shape of the structures, the modes predicted by the 
stability method fall off much more rapidly away from the wall than do the POD 
functions. The eigenvalue spectrum clearly shows that the stability analysis favors 
modes which have a much higher wavelength than the maximum energy modes of 
the POD. 

Although there may be a number of reasons for this discrepancy, we choose to 
first examine more closely the closure model. We find that the isotropic eddy vis- 
cosity model creates no coupling between the different components of the coherent 
velocity. When there is no streamwise variation of the coherent field the only cou- 
pling terms in the equations are those multiplying the mean gradient. For realistic 
mean profiles, regions of high shear are confined to thin regions near the wall, and 
the structures predicted may be expected to fall off as quickly as the shear. 

We now seek to develop a stress model that allows for some anisotropy in the 
eddy viscosity, and thus couples the component equations through the stress terms. 
We begin with the evolution equation for the Reynolds stresses, where we are 
obliged to model a number of terms to obtain a closed system. We use standard 
second-order turbulence models. We model the pressure-strain correlation by a 
return-to-isotropy term and an isotropization-of-production term (Naot et al., 1970); 
we use an isotropic dissipation. We assume the stresses are in local equilibrium: 
D [ u i u j ] / D t  = 0. This reduces the evolution equation for the Reynolds stress to 
an algebraic expression. 

Now we set up a perturbation expansion in terms of mean field quantities, 
taking the coherent field as an order e perturbation to the spatial mean. On physical 
grounds, we argue that the perturbed stress field is due entirely to the presence of 
the structures and consequently we restrict the model to include only production 
due directly to coherent velocity gradients. This is in agreement with a cascade 
analogy for the complete flow: the coherent structures are fed energy directly by 
the mean gradients while the small scale turbulence is in turn fed by gradients 
of the coherent field. If we identify the 0th order stresses with an eddy viscosity 
tensor, then the closure model can be written as 

Tij - 7"kk~ij / 3  = - -u iksk j  (21) 

where the tensor viscosity has the following structure in this specific case: u13 = 
//23 ~ 0 ,  //33 ~ //22" 

Despite the absence of mean production terms, this model is still a major 
improvement over the isotropic eddy viscosity formulation. In the simple model 
the effects of the mean field have been neglected entirely. Here we have allowed 
for modulation of the perturbation stresses by the mean field through the 0th order 
stresses appearing in the production terms. Also we have unconstrained the model 
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Fig. 6. Anisot ropic  eddy viscosi ty model:  e o o o  POD; isotropic model ;  - - -  
anisotropic  model ;  (a) k3 = 3.00, (b) k3 ---- 6.00, (c) k3 = 12.00, (d) spectrum. 

in an important way since the tensorial form of the eddy viscosity allows the 
principal axes of the stress tensor to be unaligned with the axes of the rate of strain. 
This is more realistic considering the three-dimensionality of the coherent field. 
This model leads to the expected cross-coupling of the equations through the stress 
terms. 

Figure 6 shows eigensolutions for several values of k 3 (see the description 
of Fig. 5 for clarification). The results compare well with the POD eigenval- 
ues, especially for wavenumbers at or below the peak in the POD spectrum. The 
improvement with decreasing wavenumber is expected given the modeling con- 
siderations. The separation of scales between the background turbulence and the 
coherent structures increases as the wavenumber decreases adding to the expected 
accuracy of the stress model. The comparison of the two models indicates signifi- 
cant improvements in the results given by the anisotropic eddy viscosity form. The 
energy method procedure with the more refined closure model appears capable of 
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extracting structures which closely approximate those given by the POD at least at 
the energy containing scales of motion. 

Despite the general improvement, it is still clear that more needs to be done. 
From Figs 5 and 6, it is evident that the eigenspectrum produced by solution of 
Equation (10), while improved by the use of the anisotropic closure model, still 
predicts structures with maximum growth rate that are a factor of 2 smaller than 
those containing the most energy (as given by the POD). We next consider the 
effect on the spatial mean velocity field of the growing coherent perturbation. 

4.2. INTERACTION WITH THE MEAN 

At this point we consider the role of the mean velocity in the two methods. The POD 
structures are derived from solutions to the non-linear Navier-Stokes equations 
which allow for complicated interaction between the different scales of motion. 
The structures evolve in a mean velocity field that is changing due to the presence 
of the structures themselves. Conditionally averaged mean profiles clearly show 
the evolution of the local shear in the presence of coherent structures (see Fig. 7). 
It is clear from Fig. 8 that profiles with a larger region of high shear also have 
eigenfunctions which are non-negligible in a broader region. We see that structures, 
in the relatively long period before bursting, act to erode the shear that they see. 
The POD eigenfunctions are given by averages of contributions from different 

mean profiles. 
The stability method on the other hand does not allow for any interaction 

between the mean and the coherent field. The mean flow is imposed and the resulting 
structures are calculated. The mean profiles we have used are time averages which 
mask any contribution from the coherent field. As such the stability analysis predicts 
that the highest growth modes are those which can best extract energy from the time 
averaged mean shear which is concentrated in the small near-wall region. Since 
the structures have an aspect ratio of about 1, the narrow region of high imposed 
shear leads to a peak in the eigenspectrum at a large wavenumber. 

To allow the mean field to evolve under the influence of the coherent field, we 
follow Liu (1988) and write time evolution equations for the energy density of the 
coherent field. We allow the mean profile to depend on the coherent velocity as 
it does in reality. We expect that equilibrium solutions for the energy density as a 
function of cross-stream wavenumber will approximate the average energy content 
as given by the POD spectrum. 

We assume that the coherent field is given by the eigenmodes of the stability 
problem, but we now allow them to vary in time 

vi(x, t) = A ( t ) ~ i ( x )  (22) 

(uiuj )  (x, t) = E ( t ) B i j  (x) (23) 

where g21 = v e x p { i k x 3 } ,  ~2 = i k ~ e x p { i k x 3 } ,  ~3 = - D ~ e x p { i k x 3 } .  By 
examining the evolution equation for rij = {uiuj} - [uiuj], the forcing terms are 
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on the local shear of the coherent structures (Blackwelder and Kaplan, 1976). 
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Fig. 8. The eigenfunctions generated by the anisotropic eddy viscosity model with various 
mean velocity profiles. 

of the form (Uittj)Vi,j. Consequently, we assume the perturbation stresses also to 
be a product: 

rij (x, t) = A(t )E( t )Ri j  (x). (24) 

Since we have used an eddy viscosity in obtaining the coherent forms we further 
assume that: 

Rij(x)  = --uik( T~j,k + ~k,j) (25) 

w h e r e  ult = / ) 2 2  = / / 3 3  : //~-,/)12 : / ) 2 1  : / ~ , r , / / 1 3  - -  /-/23 : 0. A l l  tha t  r e m a i n s  is 
to model the mean profile. For this we adopt the quasi-steady model used in Aubry 
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Fig. 9, ooo,  the POD eigenvalue spectrum; . . . . . . . . .  the eigenvalue spectrum generated by 
the anisotropic model without mean flow interaction; the eigenvalue spectrum generated 
with mean flow interaction. 

et al. (1988). This allows the mean to respond to growing structures providing the 
necessary feed-back to the evolving modes. Using the friction velocity, Ur, and the 
channel half height, a, the scaled equation for the mean gradient is: 

OU(x2 ,  t ) / O z 2  = t e r { ( U l ~ 2 }  -[- (VlV2) - x2}. (26) 

The rate of dissipation of turbulent energy is given by a simple model adopted from 
second order closure schemes. 

De/Dt = Cl (C / ]~ ) (~ iuk )Ui ,  k - c 2 c 2 / k  -q- Transpor t .  (27) 

Substituting these various models into the energy equations results in a set of three 
coupled ODEs for the temporal evolution of the energies and dissipation. 

In order to evaluate the integrals appearing in these equations, we need to assume 
the spatial form of the averaged turbulence quantities Bij and the dissipation D (x2). 
For this simple model we have assumed that while the intensity of the turbulence 
varies its spatial dependence remains unchanged. We use experimental data for 
fully developed turbulent channel flow to determine both B and D. The coherent 
structures are found by energy stability analysis, as described above. 

5. C o n c l u s i o n s  

The POD has played a central role in identifying coherent structures in experimental 
or computational data, and in constructing low-dimensional models of turbulent 
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flows, models which resolve only the coherent structures and their interaction, and 
parameterize the smaller scale, less organized turbulence. However, use of the POD 
raises a number of questions: is it the best way to identify the coherent structures? 
When we construct low-dimensional models, are we tied to Fourier decompositions 
in homogeneous directions, or can we use wavelets, and get away from periodic 
boundary conditions and periodic arrays of structures? Can we find cheaper ways 
to obtain the forms of the POD eigenfunctions, the coherent structures? 

We have shown here that linear stochastic estimation, the other popular method 
for identification of coherent structures in experimental or computational data, is 
equivalent to the POD with the assumption that the coefficients in the POD are 
jointly Gaussian. For many purposes (so long as only second order quantities are 
being considered) this is a physically realistic assumption. 

When we construct low-dimensional models using the POD, if there are homo- 
geneous directions we have been accustomed to use Fourier decomposition. This 
is awkward physically, since the Fourier modes are not confined to a neighborhood 
while the disturbances to the real flow are. Here we have shown in connection with 
a one-dimensional equation that wavelets can be used instead with a negligible 
sacrifice in efficiency; and that simple assumptions regarding spatial interaction of 
the wavelets permits a relative simple model that reproduces the dynamics. This 
suggests that similar things are probably true of the Navier-Stokes equations, and 
that we will be able to construct low dimensional models for real flows, like the 
wall region of the boundary layer, using the more realistic wavelet representations, 
with reasonable truncations of the spatial interactions, thus freeing ourselves from 
periodic boundary conditions, and periodic arrays of coherent structures; we will 
thus be able to consider soliton coherent structures, which are much more realistic. 

In order to construct these low-dimensional models, it is necessary to have at 
hand the POD eigenfunctions. Up to the present, this required extensive statistical 
documentation of the flow, either experimental or computational. Clearly, the flow 
with coherent structures represents a new attractor for the flow. We do not know how 
to analyze this new attractor to find the coherent structures. The coherent structures 
are extracting energy from the mean velocity profile, modifying it, and giving up 
energy to the small scale turbulence, also modifying it. We have suggested simple 
models for both modifications, and have shown that, with these adjustments, the 
form of the instability in its non-linear growth phase is essentially the same as the 
POD eigenfunctions, and the peak of the eigenvalue spectrum is in the same place. 
The flow whose instability we consider, of course, is the real flow with the coherent 
structures already present - we do not know how to remove them before we have 
them. Fortunately, it does not seem to make any difference. We may hope that, in 
poorly documented flows, we will have the same luck, and will be able to extract 
the eigenfunctions by a similar, relatively cheap, procedure. 
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