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W A V E S  IN A P R E S T R E S S E D  E L A S T I C  L A Y E R  IN C O M P R E S S I O N  

I N T E R A C T I N G  W I T H  AN I D E A L  F L U I D  

A. M. Bagno, A. N. Guz',  and G. I. Shchuruk UDC 533.6.013.42 

The laws established for the propagation of waves in laminated media are widely used in seismology, seismic 

exploration, acoustics, and other disciplines [2-6, 16-20]. There are also the studies [6, 16, I7], which examined wave 

processes in such systems as part of a larger investigation of the transmission of signals in large bodies of water covered with 
ice. These studies are of considerable interest and are being used in the solution of several important practical problems in 
underwater acoustics. At the same time, most of the results in [2-6, 16-20] were obtained using the classical theory of 
elasticity. This approach makes it impossible to describe many of the properties of actual solids or to examine and explain the 

observed effects. Among the models that more fully reflect the behavior of actual elastic bodies is the model of a prestressed 
body in [7-12]. This model makes it possible to consider the initial stresses present in real materials and obtain information 
on their effect on the characteristics of the wave process. 

In connection with this, we use this model here to study the effect of preliminary deformation on the phase velocities 

of waves in a system comprised of an elastic layer and a fluid, we will formulate hydroelastic problems for bodies with 

initial stresses and solve them in accordance with [8-12] in order to analyze the propagation of small perturbations in a 
compressible layer interacting with an ideal fluid. We will conduct our investigation in the coordinates of the tmitbrm initial 

state z i within the framework of linearized three-dimensional equation [8, 10-12]. We then restrict ourselves to consideration 

of the plane problem by assuming that the external forces acting on the elastic and liquid media are distributed uniformly 
along the axis oz 3. In this case, the system of equations describing joint motions will have the form 

~ 0 2 _ 0 2 

(~ iJ~  a z / o - ~  ~ , £  ~tZ) % = O; (1) 

~j _= ~vOg ~ o__~_~. 
i iy,~oz[ 3, (2) 

| o~+ ~p=0;  (3) 
o-7 
10p 

Po 0-7 + ~" ~" = 0; (4) 

O•pP 
2 = const; ( 4  = a 0 , a 0 

P,J = - P % '  5 = 

z 2 = h = o ,  Q2 ] z ,  = h = o;  

Ou 2 

(5) 

(6) 

(7) 

(8) 

Here, Eq. (1) describes the motion of an elastic body subjected to uniform initial strains; Eqs. (2) are used to determine the 
components of the stressvectoron the surface of the solid; Eq. (3) describes small vibrations of a quiescent ideal compressible 
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fluid; Eq. (4) is the continuity condition; Eq. (5) is the linearized equation of state of uie liquid medium; Eqs. (6) determine 
the stresses in the liquid; the absence of stresses on the free surface of the elastic layer of thickness h is characterized by Eqs. 

(7); Eqs. (8) are nothing more than the dynamic and kinematic conditions on the interface of the ideal liquid half-space and 

the compressible elastic layer. We will use the representations of general solutions proposed in [7-12] to simplify the 

solution. In the case of plane strain being considered here, they will have the form 
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where the potentials x i satisfy the equations 
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Here and below, we use the following notation: v i represents components of the fluid-velocity perturbation vector 7; p and p 

are perturbations of density and pressure in the liquid; P0 and a 0 are density and sonic velocity for the liquid in the quiescent 

state; u i are components of the vector describing the displacement of the solid fi; ~ is the density of the material of the elastic 
layer; X i are the initial extensions; Ni ° are components of a unit normal to the surface of the body in the initial deformed 

state; Sii ° are the initial stresses; aij and #ij are coefficients of the equations of state of the solid, dependent on the form of the 
elastic potential (expressions for them were given in [9]); Qj are components of the stress vector on the surface of the solid; 

Pj are components of the stress vector in the liquid. 
Study of the dispersion properties of the given system is of particular interest in the analysis of wave processes in 

laminated media. In connection with this, we will henceforth focus on deriving the characteristic equation. We will obtain it 
in the most general case, for prestressed compressible bodies whose elastic properties are described by a potential of arbitrary 
form. To do this, we will seek the parameters characterizing the wave process within the class of harmonic travelling waves. 

It should be noted that that the functions chosen here 

= ~ ( z l ) e x p l i ( k z  2 - w t ) l ,  ( j = l , 2 ) ,  (13) 

are the simplest and most convenient for theoretical studies and do not significantly limit the generality of the results that are 
obtained. Inserting (13) into ( t l )  and (12), we obtain two uncoupled ordinary differential equations. Based on physical 

considerations, the following functions will be solutions of these equations: 
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To derive the dispersion equation, we take solutions (14) and (15) and insert them in succession into Eqs. (13) and 
boundary conditions (7) and (8). After completing the obvious transformations, we obtain a system of five linear homoge- 

neous algebraic equations. We then change these equations to dimensionless form, introducing the dimensionless quantities as 
follows: 
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After we equate the determinant of this system to zero, we obtain the sought dispersion equation. In dimensionless 
quantities, it will have the form 

where 
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We should note that we omitted the bars above the dimensionless quantities in the above expressions to simplify the 

notation. 
Dispersion equation (18) is a general equation and can be used to obtain relations characterizing wave processes for 

a number of special cases. For example, if we make the thickness of the elastic layer h approach infinity, we obtain two half- 

spaces. The propagation of surface waves along their interface was examined in [13, 15]. If we also set P0 equal to zero in 
this case, then (18) becomes an equation that describes the parameters of surface waves in an elastic half-space. This topic 

was studied in [1]. Given these simplifications, the characteristic equations we obtain within the framework of linearized 
theory are also valid for arbitrary prestressed compressible bodies whose form is independent of the elastic potential. 

The results of studies conducted earlier using the classical theory of elasticity [2-5] can also be obtained from (18). 
This requires only that X i approach unity and t h a t  Sii 0 approach zero in (18). With the additional simplifications mentioned 

above, (18) becomes the well-known and widely studied equations of Rayleigh [5, 22] and Strouhal [5, 23]. 
We subsequently solved dispersion equation (18) numerically on a computer, examining the case when the layer is 

loaded only along the oz 1 axis, i.e., $11 ° ;~ 0, $22 ° = 0. As is known [11, 12], there is no analogy between linear and 
linearized problems for such an initial stress state, and results for predeformed bodies cannot be obtained from solutions from 

the classical theory of elasticity. It should be noted that we used the theory of large (finite) initial strains [7, 12] in deriving 
dispersion equation (18). The latter is thus a general equation and, with additional simplifications [9, 12], can be used to 

obtain (as special cases) equations that are valid for variants of the theory of small initial strains. We chose organic glass as 

the material for the elastic layer for our numerical calculations. As is known, organic glass is a brittle material and can be 

subjected only to small initial strains before fracturing. We therefore examined uniform initial states with relatively small 

strains (all° = 0.004). As a result, the coefficients of the equations of state of the elastic layer were determined within the 

framework of the theory of acoustoelasticity [14]. Also, as was already noted, dispersion equation (18) was derived for elastic 
potentials described by arbitrary functions that we assumed could be continuously differentiated only twice. No other 

restrictions were imposed on the functions. At the same time, the form chosen for the elastic potential is important in the 
numerical realization of the problem and can have a significant effect on the results of theoretical calculations. As was noted 
in [t4], to have the theoretical results agree satisfactorily with experimental observations for compressible prestressed 
materials characterized by a high degree of stiffness (organic glass, steel), it is necessary to use elastic potentials that depend 
on three invariants. In light of this, we wilt use the simplest three-invariant potential --  Murnaghan's potential [2t] --  to 

describe the elastic properties of. a solid layer made of organic glass. 
Figures 1-4 show the results of numerical solution of dispersion equation (18). Figures 1 and 2 show the dependence 

of dimensionless phase velocity e(e = c/c s, Cs 2 =/z/o)  on the thickness of the elastic layer h, (fi = ksh, k s is the wave 
number of the shear waves in the body without initial stresses) in the absence of initial strains (6110 = 0). 

The character of the effect of pretensioning (~i O = 0.004) is illustrated in Figs. 3 and 4 by graphs showing the 
dependence of the relative change in phase velocity %[% = (c o - c)/c], c is phase velocity for the modes in the body 
with-out initial stresses and c o is the phase velocity in the prestrained body) on the thickness of the elastic layer h. The 
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calculations were performed for organic glass and liquids characterized by the following parameters: organic glass - a  = 

-3.91.109 Pa; b = -7.02"109 Pa; c = -14.1.109 Pa; o = 1160 kg/m3; X = 3.96"109 Pa; /z = 1.86.109 Pa [12, 14], 

liquid -Oo = 700 kg/m 3, P0 = t000 kg/m3; a o = 1459 m/see; a o = 2000 m/sec. 

Figure 1 illustrates the effect of sonic velocity in the liquid on the velocities associated with the modes of the system. 

The dispersion curves were obtained for liquid media characterized by the following parameters: Po = 1000 kg/m 3 and a 0 = 

2000 m/see (dashed lines); 00 = 1000 kg/m 3 and a 0 = t459 m/see (solid lines). It is not hard to see that the compressibility 

of the fluid significantly alters the wave properties of the system. The effect is particularly noticeable in regard to the 

frequencies at which the second and subsequent modes are excited. For the first mode, phase velocity typically iincreases only 

with an increase in the thickness of the elastic layer. Our analysis shows that use of the approximate model of an incompress- 

ible liquid in calculations leads to greatly exaggerated values of phase velocity for the higher modes and gross errors in the 

determination of the frequencies at which these modes are excited. 

Figure 2 shows features of the effect of liquid density. It shows dispersion curves obtained for liquids characterized 

by the same sonic velocity (a 0 = 1459 m/see) but different densities. Here, the solid lines correspond to the case when the 

elastic layers interact with a fluid having the density 1000 kg/m 3. The dashed curves were obtained for a fluid with Po = 700 

kg/m 3. For the relations in this figure as well, density affects phase velocity in the first mode only with an increase in the 

thickness of the elastic layer. For the higher modes, this effect is seen mainly in the number of the exciting frequencies. 

Figures 3 and 4 reflect the effect of initial stresses on phase velocity. Figure 3 shows e = fin) for fluid half-spaces 

characterized by different sonic velocities. The dashed lines were obtained with a o = 2000 m/see, while the solid curves 

were obtained with a o = 1459 m/see. An analysis of the graphs in this figure shows that the effect of initial su'esses (6110 = 

0.004) is closely allied with the compressibility of the fluid. For the less compressible fluids (a b = 2000 m/sec), the presence 

of initial stresses leads to a decrease in phase velocity in the higher modes near the thicknesses at which these modes are 

excited. With a further increase in the thickness of the elastic layer, preliminary deformation increases phase velocity. Figure 

4 illustrates the effect of initial tension (~ll ° = 0.004) on wave velocity for fluids with different densities. This figure shows 

the function ce = f(h) The solid lines correspond to the case in which P0 = 1000 kg/m 3, while the dashed lines were 

obtained for a hypothetical fluid with a density equal to 700 kg/m 3. Sonic velocity was assumed to be the same in both cases 

(a 0 = 1459 m/see). 

Thus, it follows from the relations shown in Figs. 3 and 4 that there are certain layer thicknesses for which initial 

stresses will have no effect on the phase velocities of the higher modes excited by the interaction of the layers with a fluid. 
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