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Summary. This is a study of two, two dimensional biological patterns - the pat- 
tern created in a confluent dish of normal fibroblast and the dermatoglyphic 
pattern on the primate palm and sole. Both patterns are characterised by 
a small repertory of different types of interruptions or discontinuities in 
fields of otherwise parallel aligned elements. Because these discontinuities 
are invariant under plastic deformations as well as rigid motions, a topolog- 
ical treatment is appropriate. A quantitative topological characterisation 
shows the pattern in the two systems to be essentially identical. Regarding 
both systems as exercises in packing elongated elements in the plane subject 
to certain constraints, both can be modelled by a smooth, planar, non- 
oriented vector field. In neither case can the development of pattern be 
accounted for solely in terms of the aggregate of autonomously arising 
local detail; the whole constrains and influences the local situations. The 
interrelationship of global and local constraints on packing is quantified 
by the index theorem, which accounts for the range of patterns that may 
develop. The study shows that to understand pattern development in these 
systems, it is necessary to include topological considerations in addition 
to an analysis of cell behaviour. 

Key words: Human - Morphogenesis - Pattern topology - Fibroblasts - 
Dermatoglyphics. 

A close look at the structure of a dense culture of diploid fibroblasts reveals 
the elongated cells packed side by side in parallel arrays; ditches or discontin- 
uities occur where arrays of cells with different orientations meet (Elsdale, 
1968, 1973). These characteristic features of the pattern are large compared 
to the sizes of the individual cells (Elsdale, 1972). Thus a square large enough 
to include a typical discontinuity in the fibroblast array contains hundreds 
if not thousands of cells. Fields of this size are too large to be appreciated 
solely in terms of the interactions of the individual cells, the local form building 
activities in any small area are clearly subordinated to influences generated 
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over  much  larger  areas.  F o r  this reason,  an account  of  the morphogenes i s  
o f  the f ib rob las t  sheet as the resul tan t  o f  ind iv idua l  cel lular  in terac t ions ,  and  
hence as the aggrega te  o f  a u t o n o m o u s l y  ar is ing local  detai l ,  is b o u n d  to remain  
incomplete .  

To comple t e  the p ic ture  it is necessary  to  ident i fy  and  quant i fy  the influences 
f rom the whole  and  their  local  effects. This raises the p r o b l e m  of  how to 
a c c o m o d a t e  bo th  local  and  g loba l  aspects  o f  the fo rm bui ld ing  processes  within 
a single, comprehens ive ,  and  quan t i t a t ive  m o d e l  o f  pa t t e rn  deve lopmen t  in 
this system. 

The  t r ea tmen t  we p rov ide  employs  ma thema t i c s  in the first  p lace  to quant i fy  
fea tures  o f  the pa t te rn .  W e  then show how a theorem in t o p o l o g y  can be 
e m p l o y e d  to quant i fy  the rec iproca l  inf luence o f  the whole  on local  detail .  
To  this extent  m a t h e m a t i c s  is used  as a tool  to invest igate  the system. In 

a n  a p p e n d i x  the ma thema t i c s  is p resen ted  somewha t  more  r igorous ly  to develop  
a model .  

The  essence o f  the  t r ea tmen t  is to r egard  pa t t e rn  deve lopmen t  as an  exercise 
in pack ing  e longa ted  e lements  (the ind iv idua l  f ib roblas t s )  in the plane,  and  to 
explore  the cons t ra in t s  unde r  which  this pack ing  occurs.  

I t  tu rns  out  tha t  it is necessary  to refer to no more  than  ra ther  general  
p roper t i e s  o f  the  cells. This  impl ies  tha t  our  mode l  m a y  have more  general  
app l ica t ion .  Wi th  this in m i n d  we have re inves t iga ted  h u m a n  dermatog lyph ics .  
W e  discover  tha t  the loop ,  the  whor l  and  the t r i rad ius  are topo log ica l ly  the  
same as the  d iscont inui t ies  we observe  in the f ib rob las t  pa t te rn .  Topo log ica l ly  
the two superf ic ia l ly  different  systems are ident ica l  and  c o n f o r m  to the same 
model .  There  is a p rac t ica l  spin-off ,  for  cer ta in  exist ing anomol i e s  in de rma tog ly -  
phics  are  r emoved  unde r  the new t rea tment .  

I t  appea r s  therefore ,  tha t  a t opo log ica l  a p p r o a c h  reveals  cer ta in  general i t ies  
under ly ing  pa t t e rn  deve lopment .  I t  wou ld  be surpr is ing  if  the me thods  and  
insights  a p p r o p r i a t e  to two d imens iona l  examples  had  no  uti l i ty in the exp lo ra t ion  
of  m o r e  complex  s i tuat ions .  

Material and Methods 

Normal human diploid lung fibroblasts were obtained from 12 18 week foetuses. Cell lines were 
established in the routine way (Elsdale, 1968) and were maintained in F10 medium, with Hepes 
buffer 10% newborn calf serum, penicillin, streptomycin, and Fungizone. For this investigation. 
multilayering of the fibroblast sheet was inhibited by the addition of 20 gg/ml collagenase (Boehr- 
inger, Mannheim GmbH) to the routine medium. The main purpose of this study was to investigate 
the way in which densely packed cells organise. Cultures were therefore set up between 2/3 and 
11/2 x confluence. Falcon plastic Petri dishes were employed throughout to avoid the introduction 
of an ordering pattern on cells, as we noted that other brands of dishes provided a biased substratum 
that influenced the alignment of the cells. To safeguard against setting up a ceil density gradient, 
initial plating was carried out with the dishes placed on a flat, absolutely level, glass plate and 
the cell suspension poured with a minimum of turbulence; the initial plating density was seen 
to be uniform over the dish and cell orientation was random. Cultures were fixed at various 
intervals from one to ten days in a 1:4 solution of methanoI and acetone at --20 ~ C and stained 
with May-Grunwald and Giemsa stains. 
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Cell movement and pattern simplification were studied with Wild time lapse cinemicrography 
apparatus. 

Small bounded fields to constrain cell packing were made in two ways. Silicone grease was 
extruded from a syringe onto the floor of a petri dish in the desired shape for a boundary. 
There were either parallel grids of straight lines or circles. Smaller and more varied shapes were 
outlined by scratching boundaries with a sharpened pin. The diameters of the fields sketched 
in these ways ranged from one to ten millimetres. 

Packing Pattern in Fibroblast Cultures 

Development of the Closely Packed Monolayer. We will first describe how the 
pattern of  arrays and discontinuities characteristic of the confluent fibroblast 
cultures arises and evolves over time, before embarking on the mathematical  
description and analysis of the pattern. We describe the commonplace situation 
where a Petri dish culture is initiated at a pre-confluent density from a cell 
suspension. 

The cells fall out of  the medium and adhere to the substratum on which 
they extend randomly distributed and oriented. The  cells move around and 
proliferate. The form of the cells, initially variable, becomes stabilised as con- 
fluence is approached, the cells adopting an uniform, elongated, bipolar spindle 
form (Elsdale and Bard, 1972). A tendency for the cells to adhere together 
side by side is evident before confluence, and these associations being more 
stable than other contacts eventually take over the culture. As a result the 
confluent culture consists of a patchwork of numerous independently formed 
parallel arrays. Where the cells in two adjacent arrays share the same orientation 
to within about  20 ~ the arrays merge at confluence; where the orientations 
differ significantly, merging is inhibited and a discontinuity arises (Elsdale, 
1972). Just as a culture reaches confluence, the appearance is confused, and 
there is a shake-down period of a day or so during which the culture accommo- 
dates to new close-packing requirements. The result is a tidy situation of arrays, 
in which the parallel alignment of neighbouring cells is precise, and clear discon- 
tinuities of  characteristic form that appear as empty ditches between raised 
banks of cells (Fig. l). 

In the normal way, a three dimensional pattern of orthogonal multilayers 
forms in response to post-confluent growth (Elsdale and Bard, 1972), obscuring 
the two-dimensional pattern on the floor of the dish. We postpone a treatment 
of  this important  aspect of morphogenesis in fibroblast cultures, because differ- 
ent mathematics is required. Multilayering however can be inhibited altogether 
by adding small amounts  of  bacterial collagenase to the medium to prevent 
collagen accumulation. Under  these circumstances all the cells produced by 
post-confluent growth are accommodated within the two-dimensional pattern 
we are interested in, the further evolution of which over time can be observed 
unobscured. 

This evolution is a simplification of the pattern resulting f rom the elimination 
of discontinuities (Elsdale, 1972). Elimination is initially rapid but slows as 
the discontinuities become spaced further apart. The process depends crucially 
on the maintenance of conditions favouring high cellular mobility. Merging 
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Fig. 1. A dense patchwork of arrays of fibroblasts. The points of low cell density at the meeting 
of arrays are the discontinuities. These are of  two distinct topological types (see text). Fixed 
preparation (16,2 x ) 
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of arrays is the concomitant  of  elimination. On prolonged maintenance, the 
number  of discontinuities may reduce from many hundreds to a mere handful. 
There are topological reasons why not all the discontinuities can be eliminated. 
Simplification is irreversible. 

What to measure ? Interfaces are the essential ingredients of  pattern. Thus the 
nerve tube, notochord,  and somites in a cross section through an amphibian 
neurula are distinguished by the interfaces between them (Hamilton, 1969); 
without these discontinuities there would be no embryonic axis, merely a formless 
condensation of otherwise indistinguishable cells. A field of fibroblasts in unin- 
terrupted parallel array is a bland and featureless continuum; it is the discontin- 
uities that are the distinctive ingredients of the packing pattern, and it is these 
that we are concerned with. 

Even though a fibroblast culture exhibits only an elementary kind of mopho-  
genesis, the details of  packing, and pattern simplification reveal a high degree 
of order (Elsdale, 1973). There are restrictions on the form of discontinuities 
and the excess number  of  one type over another that yield to a geometrical 
analysis. Using appropriate  mathematics,  precise quantitative measurements can 
be made, and quantitative theorems brought to bear; for this reason a treatment 
that is more than a mere description can be provided carrying important  insights 
into the nature of the system. 

Characterisation of Discontinuities by their Topological Index. Although a discon- 
tinuity can be seen to have a certain shape or form, the mathematical  characteri- 
zation does not take account of this form directly. Instead, it takes account 
of  the way the ceils are arranged in the immediately surrounding field. 

Consider by way of introduction a field of ceils in uninterrupted parallel 
array. Mark  a point anywhere within this field, and draw a circle about  it. 
Note the orientation of each cell encountered in the course of a tour around 
the circle. Obiously, in this case, the orientations are the same. We allude 
to this fact by saying that there is no rotation of the field elements about 
arbitrary points in the field. This is the mathematical  way of observing that 
a parallel array is a bland continuum. 

The situation around a discontinuity will be different. Here a rotation of 
the field elements is always observed. Thus to characterise a discontinuity we 
characterise the rotation of the field (elements) in its neighbourhood. We need 
to do two things; firstly, measure the amount  of rotation, and secondly, determine 
the sense or direction of the rotation along the lines of  finding out whether 
a screw has a left hand or right hand thread. These two items of information 
are expressed in the Topological Index (Lefschetz, 1957; Petrovski, 1966). This 
index, the basic measurement used in this treatment, is thus a composite parame- 
ter, it consists of  a figure giving the amount  of rotation, preceded by a sign 
+ or - which distinguishes which of two senses the rotation takes. 

A rotation of  360 ~ or 2~z radians (think of the radiating spokes of a cycle 
wheel) is counted as 1, and a rotation of 180 ~ or 7c radians as 1/z. How to 
compute indices, the use of the sign convention, together with a brief topological 
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analysis of  the index is presented in the section of the appendix entitled computa-  
tion of the index. For brevities sake, we shall often refer to a ~  1" or a 
" + 1/2" discontinuity ; bear in mind however that the index, properly speaking, 
is a measurement  made on the surrounding field. 

The index has a particularly important  and valuable property. Figure 2b 
for example, shows a typical three armed - 1 / 2  discontinuity. Examples of  
this discontinuity are often symmetrical, each arm lying at an angle of  120 ~ 
to the other two. Sometimes the arms are not symmetrically disposed. It  does 
not matter. Computa t ion  on drawn figures will show that the computed index 
is the same (Fig. 3). Thus all point discontinuities at the confluence of three 
arrays compute to the same index, - t / 2 ,  allowing for trivial measuring errors. 
Another  way of alluding to the same property is to note that the index remains 
unaltered where a discontinuity is subjected to small perturbations that do 
not destroy the underlying topology. In fact discontinuities are continually sub- 
jected to small perturbations, for fibroblasts are motile and individual cells 
move in and out of  the immediate neighbourhood of a discontinuity. 

Discontinuities Observed in the Packing Pattern. Bearing in mind how a culture 
grows to confluence, by the expansion and eventual merging or interdigitation 
of independent arrays, it might be thought that discontinuities would arise 
with a wide range of associated indices. In fact the pattern that emerges after 
confluence and shakedown reveals only two forms: discontinuities with associat- 
ed indices of  + 1/2, and - 1 / 2  (Fig. 2a, b). Furthermore,  these are the simplest 
forms;  the + 1/2 arises at the confluence of  two arrays, the - 1/2 at the confluence 
of three arrays. 

These are not, of  course, the only theoretical possibilities. We find two 
additional discontinuities during the shakedown perio& They have indices + 1 
and - 1  (Fig. 2c, d). These and all other discontinuities whose index is an 
integral multiple of  t/2 share the common  property of  decomposability. This 
is manifested in the fibroblast culture by instability (Elsdale, 1973). Thus the 
influx of cells along any diameter of a + 1 discontinuity results in the separation 
of two +1/2 discontinuities. (Fig. 4a), The - 1  is unstable along either one 
of the two planes of  slippage and two - 1/2s separate (Fig. 4b). The instability 
of the - 1  is also observed on the surface froth of  soap bubbles assuming 
hexagonal packing. 

Notice that all the discontinuities observed in fibroblast cultures have indices 
of  a 1/2 or integral multiples thereof. This represents a very important  restriction 
and allows the adoption of the mathematical  model given in the appendix. These 
discontinuities, and these alone, share the property that the fields in their neigh- 

Fig. 2. a A discontinuity of topological index + 1/a. This is one of the two stable types of discontinuity 
found in'mature fibroblast monolayers. Fixed preparation (36 x). b A discontinuity of index -1/2, 
the other stable discontinuity arising at the meeting of three arrays. Fixed preparation (x 100). 
c This discontinuity has index + 1. It is an unstable form arising as cultures approach confluence; 
through cell movement it decomposes into two + 1/2 discontinuities. Fixed preparation (x 150). 
d This discontinuity, whose index is - 1, is also unstable. It will decompose into two - 1/2 discontin- 
uities through movement along one of its two planes of slippage. Living cell under phase contrast 
( x 130) 
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bourhood are everywhere characterised by smooth change. Adjacent cells are 
everywhere similarly oriented. Discontinuities of  other indices are readily drawn 
on paper, but in all cases the tour around the circle will reveal one or more 
locations where adjacent elements point in sharply different directions. 

Two conclusions are drawn from these observations: 
1. Fibroblast  fields are characterised by smooth change around point discon- 

tinuities. 
2. + 1/2 and - - 1 / 2  discontinuities, alone observed after the shakedown, are 

the only two non-decomposable discontinuities possible under the restriction 
imposed by 1. 

The Elimination of Discontinuities. The rotation associated with a discontinuity 
is an established feature of the fibroblast field, and 'cannot  disappear by itself. 



The Topology of Two Planar Patterns 129 

A discontinuity can become effaced on the field boundary (with a concomitant 
change of the boundary index, see later), but as the process of elimination 
already referred to, takes place as well in the middle as the periphery of a 
dish, there must exist another more general mechanism responsible for simplifica- 
tion. 

Because the cells are continually moving around, discontinuities are, to a 
limited extent motile, bear in mind however that this is a mere figure of speech 
- o n l y  the cells do the moving. As a result of this "mot i l i ty"  discontinuities can 
approach one another. The mutual approach of +1/2 and a - a / z  creates a 
situation that allows for their mutual elimination. We have watched these mutual 
eliminations, they occur as in Figure 5. Mutual elimination reflects the additive 
nature of rotations. Under appropriate circiumstances a rotation in one sense 
can cancel the same amount of rotation in the opposite sense : 

(+ ' !2)+(-  1/2) ~0. 

This mechanism is stochastic and depends on the random encounters of 
discontinuities of unlike sign. The process slows rapidly as discontinuities become 
sparse, analogous to concentration dependent kinetics. 

Notice that in the equation above a unidirectional arrow is employed, not 
an equal sign. This follows because a change in the reverse direction is never 
observed and, would indeed be a discontinuous change if it did, contradict- 
ing our previous conclusion that fibroblast fields are characterised by smooth 
change. 

We draw two further conclusions: 
3. Simplification occurs as the result of mutual eliminating interactions be- 

tween pairs of discontinuities of unlike sign. 
4. The irreversibility of simplification is a consequence of the smooth nature 

of the fibroblast field. 

Restrictions on Packing Within Bounded Fields: The Index Theorem. There is 
more "s t ruc ture"  in a fibroblast field than the foregoing considerations bring 
out. There are restrictions on the balance of discontinuities of different sign 
related to the alignments of cells at the boundary of the field. The required 
intuition here is that the balance of positive and negative rotations within 
a finite field will dictate the alignments at the boundary, and conversely, a 
particular boundary alignment is consistent with a particular balance of positive 
and negative rotations within the field. 

As motivation consider the two simple situations below (Fig. 6). 
Figure 6a is the simplest situation that arises where fibroblasts are plated 

over an open rectangle consisting of two parallel scratches on the floor of 
a plastic dish. Cells extend preferentially along the scratches, and in this simplest 
case the space between is packed by a single array. Consider now the alignments 
at the boundary of the subfield defined by the dotted rectangle. On the sides 
marked A the cells align tangentially at the boundary, on the sides marked 
B radially to the boundary. There are two A regions and two B regions'; the 
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Fig. 5. Mutual Elimination of discontinuities. Cells move to and from the discontinuities along 
the paths sketched. The lower horizontal array moves closer to the upper one as the intermediate 
cells migrate out, resulting in a single parallel array 

Fig. 6. See text 

A regions alternate with the B regions. We term this a boundary with two 
gates. It  is obvious that any finite field in uninterrupted parallel array will 
have a two gated boundary (Fig. 8a), and any subfield in parallel array, part  
of  a larger and more complex field, can have an arbitrary 2 gated boundary 
defined on it. 

Figure 6b shows a simple situation that arises where fibroblasts are plated 
onto a scratch pattern essentially a circle with three openings. The cells align 
against the scratches as before and the open regions of  the circle tend to be 
colonised as shown in the figure. The field cannot be filled by a single array 
as before, at least one discontinuity is obligatory under close packing. The 
simplest case is a single - 1 / 2  discontinuity as shown. The boundary marked 
by the dotted line here has three A regions alternating with three B regions, 
hence three gates. It is obvious that every subfield enclosing just a single - 1/2 
discontinuity will possess a three gated boundary (Fig. 7c). 

These considerations reveal an alternative way of characterising discontin- 
uities (and their absence) in terms of the number  of  gates on arbitrary subfield 
boundaries enclosing them. We have illustrated how a two gated boundary 
is associated with a zero rotation and a three gated boundary with - 1/2 rotation. 

The next step, having recognised that the number  of gates on the boundary 
and the enclosed disconinuity are both reflections of the same rotation of the 
field, is to associate the topological index with both. Thus a two gated boundary 
has index 0 and a three gated boundary index -1 /2 .  Although arrived at f rom 
a consideration of the situation around single discontinuities or their absence, 
this characterisation in terms of the index, will remain valid, wherever such 
boundaries occur, or can be arbitrally defined, and regardless of  the number  
of discontinuities enclosed. 
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In the appendix indices of boundaries with different numbers of gates are 
computed directly from first principles without reference to enclosed discontin- 
uities, and it is shown how each additional gate reduces the boundary index 
by 1/2. From this the following series emerges: 

Number of gates: 0 1 2 3 4 5 6 . . . . .  

Boundary index: +1 +1/2 0 -1 /2  - 1  -11/2  --42 . . . . .  

Where only + 1/2 and - 1 / 2  discontinuities are permitted it is obvious that 
in the case of a boundary without gates the simplest field must contain more 
than one discontinuity - two + 1/z s in fact. Similarly, a four gated boundary 
cannot enclose less than two -1 /2  discontinuities, and a six gated boundary 
less than four under close packing. 

This shows in principle how the boundary index can reflect, in a quantitative 
way, packing in fields containing more than one discontinuity. Indeed a quantita- 
tive relation exists no matter how many discontinuities are present. 

This relation can now be stated in its general form. 

Index Theorem: The index of the boundary = the sum of the indices 
of the enclosed discontinuities. 

This theorem is a basic result in topology and of fundamental importance 
in our treatment of packing. 

Three implications of  the theorem are to be noted: 
I. Consider, by way of  example, fields of boundary index + 1, and assume 

n !- 1/2 and - 1/2 discontinuities only. The theorem i m p l i e s : - N o  field can contain 
an uninterrupted parallel array (no discontinuity), nor, only a single discontin- 
uity. The simplest field contains two + 1/2 discontinuities. Fields containing 
three discontinuities are impossible, and by extension so are all fields containing 
an odd number of discontinuities. Fields containing four, and by extension, 
any higher even number of discontinuities are possible, provided that for each 
-1/z introduced a complementary + 1/2 is also introduced so that the sum 
of the indices remains + 1. 

2. We found earlier, for example, that every field in uninterrupted parallel 
array has a two-gated boundary. Clearly the converse need not be true; the 
index theorem, however, adds the proviso that after all possible pairwise 
eliminations, the converse will be true. 

3. Note the dual nature of the index theorem. Where pattern first constitutes 
a boundary and spreads inwards to fill the enclosed field, the index of the 
boundary dictates the sum of the indices of the discontinuities within. Where, 
on the other hand, a pattern is established that spreads outwards from a centre 
to cover a bounded surface, the sum of the discontinuities dictates the alignments 
at the boundary. 

Fibroblast Packing Exemplifies the Index Theorem. Fibroblasts were persuaded 
to form small fields of different boundary indices, Prepared Petri dishes were 
employed bearing annular patterns of  radial and tangential scratches. The field 
size was chosen to accommodate a small and manageable number of discontin- 
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Fig. 7a-d .  Small bounded fields of varying boundary index, illustrating cell packing pattern as 
a consequence of the index theorem. Notice that cells align along scratches. Fixed preparations 
( x 50). A Boundary index + 1 : minimal number  of discontinuities, 2 • ( +  I/z). B Boundary index 
- 1 / 2 :  minimal  number  of  discontinuities. There is a single branch point. C Boundary index - 1 / 2 :  
there is an extra pair of  discontinuities of  opposite type. D Boundary index - 1 : minimal number  
of  discontinuities 2 x ( -  t/2 ) 
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Fig. 8a-d.  The boundary  index of all of these small bounded fields is zero. Notice that the index 
theorem does not predict the absolute number  of discontinuities nor their location. Fixed preparations 
( x 95). a A single parallel array is packed into the field, b One extra pair of  discontinuities their 
sum equals zero. e Two extra pairs of discontinuities, d Three extra pairs of  discontinuities 
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uities. 50 ram. dishes containing up to 18 well separated scratch rings were 
seeded with near confluent innocula of cells. Cultures were maintained with 
medium changes for up to two weeks, in the presence of collagenase to inhibit 
multilayering, prior to fixation and staining to provide permanent preparations 
for examination and photography. We have examined several hundred fields 
of indices ranging from + 1 to - 2  containing up to fourteen discontinuities. 

In scoring these cultures a crucial factor is how the cells align in the region 
of the boundary templates. The scratches persuade rather than coerce, and 
it was necessary in every case to ascertain the index of the boundary actually 
formed by the cells. It is important also to recognise that the boundary made 
by the cells is somewhat different from the scratch pattern insofar as the latter 
consists of abrupt alternations of groups of radial and tangential lines, whereas 
the cells negotiate the alternations smoothly (Fig. 19). The boundary index 
ascertained, this was compared with the sum of the indices within, derived 
from scoring discontinuities. Representative fields are shown in (Figures 7 and 
8). We conclude that fibroblast packing exemplifies the index theorem. 

Dermatoglyphics 

Characterisation of Discontinuities. The palmar surface of the primate hand 
and the plantar surface of the foot consist of closely-packed non-overlapping 
elongated elements; the dermal ridges (Cummins and Midlo, 1961). The pattern 
is essentially two dimensional. We shall show that this system provides a 
further illustration of pattern formation by elongated units subject only to 
packing necessities and boundary constraints. We are not concerned here with 
the fine details of the pattern used for purposes of individual identification; 
only in the features that are invariant through growth. 

Over most of the palmar surface the epidermal ridges run parallel to one 
another. Within the body of the hand four types of interruption or discontinuities 
are recognised: the arch, the loop, the whorl, and the triradius (Fig. 9a). The 
arch is not a proper interruption, merely a rippling in the array; no rotation 
of the field is associated with it, it will not be considered further. The loop 
and the whorl are related; two loops put together make a whorl. The triradius 
is clearly different. 

The triradius, with index -1/2 is immediately recognisable from its occur- 
rence in fibroblast cultures. The loop and the whorl look superficially different 
from the forms we have met, but appearances can be deceptive. The relationship 
between the fibroblast and dermatoglyphic forms is revealed in the following 
figure. In Fig. 10 the + 1 and + 1/2 fibroblast forms are drawn in heavy lines. 
Superimposed on them is a system of thinner lines everywhere perpendicular 
to those beneath. The new figures so produced are the whorl and the loop. 
(For completeness, try the same with the triradius.) Restated mathematically, 
the fibroblast and dermatoglyphic forms are related by orthogonal transforma- 
tion. This transformation, because it does not alter topological relationships, 
leaves the topological index unchanged. 
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Fig. 9. a The patterns found in dermatoglyphics , loop, whorl, triradius. Notice the ridge 
alignment at the edge of all of these fingertips are essentially alike; they all form fields whose 
boundary index is zero, and therefore indices of all the discontinuities sum to zero. b The handprint 
pattern is a further example of the Index Theorem. Tangential ridge alignment at the fingertips 
and wrist and nowhere else give a boundary index of 2. Hence the index therorem predicts 
the four excess triradii (see text), e A sic gated fibroblast field. There is a relative excess of 
four ( t/~) discontinuities over the (+ 1/2 ) discontinuities. Fixed preparation (x 35) 

Conc lus ion :  F i b r o b l a s t  pa t t e rns  and  de rma tog lyph ic  pa t t e rns  share the same 
topo logy .  

Penrose' Rule and the Index Theorem. The  fo rmal  ident i ty  jus t  no t ed  raises 
the ques t ion  whether  the same b o u n d a r y  cons t ra in ts  tha t  s t ructure  the f ib rob las t  
pa t te rn ,  also s t ructure  the de rma tog lyph ic  pa t te rn .  A n  excess o f  t r i radi i  over 
loops  and  whorls ,  and  the re la t ion  of  this excess to gross features  of  the h a n d  
was formal i sed  by  L.S. Penrose  (Penrose,  1965). He  was p r imar i ly  concerned  
with the use of  de rma tog lyph i c  da ta  in cl inical  d iagnosis ,  and  it was useful 
to have a quick way o f  checking tha t  all the charac te rs  on a h a n d  had  been 
coun ted  and  none  over looked .  F r o m  an empir ica l  s tudy of  no rmal ,  congeni ta l ly  
ma l fo rmed ,  and  n o n - h u m a n  p r ima te  hands  and  feet, he a r r ived  at the fol lowing 
universal  rule. 

Penrose" Ru le :  The  n u m b e r  o f  t r i radi i  p lus  one = The  number  o f  loops  
plus  the number  o f  digits,  

or, T +  1 = L + D  (1 w h o r l = 2  loops).  

The rule implies tha t  the number  of  excess t r i rad i i  is a lways one less than  
the n u m b e r  o f  digits.  
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Fig. 10a-c. Orthogonal transformation (see text) 

Is Penrose' Rule a special statement of the index theorem? To approach 
this question it is first necessary to measure the topological index associated 
with the boundary of the dermatoglyphic field. Take the normal hand. Inspection 
shows that at the periphery of the dermatoglyphic field the dermal ridges run 
predominantly radially or tangentially. At the wrist and over the ends of each digit, 
the ridges run tangentially; elsewhere, up the sides of the palm and the sides 
of each digit, the dermal ridges run radially (Fig. 9c). It is a nice coincidence 
that the treatment in terms of gates already used, and evolved in connection 
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with artificial boundaries, should be uniquely appropriate to this in vivo boundary. 
The normal hand has six gates. From the number of gates, the boundary 
index can be computed: Index = 1 - 1/2 (number of gates). The boundary index 
of the normal hand = - 2. 

With this information the index theorem may now be applied. The sum 
of the indices of the discontinuities within the dermatoglyphic f i e l d = - 2 .  
This implies four excess triradii over loops and whorls (counting a whorl as 
2 loops). This is the same result as given by Penrose' Rule. 

Penrose' Rule further states that in the case of malformed hands, the number 
of excess triradii is one less than the number of digits. In terms of the index 
therorem: if there are D digits, the boundary of the dermatoglyphic field will 
show D + 1 gates (the wrist, remember, adds one). The index therorem equates 
the sum of the indices of the discontinuities within the field with the figure 
1-1/2 (number of gates). If T represents tht total number of triradii and L 
the total number of loops and whorls, the sum of their indices will be 1 /2L-  1/2T. 
The index theorem therefore states: 

(1 /2L-  ~/2T)= (1 -1 /2 (D  + 1)). 

Simple arithematic shown that this is equivalent to: 

T - L - - D - 1  

where the left hand side represents the number of excess triradii. 

By a simple rearrangement we arrive at Penrose' original formulation: 

T + I = L + D .  

We thus demonstrate that Penrose' Rule is a special statement of the Index 
Theorem. 

Implications of Index Theorem and Removal of Anomalies. There are practical 
advantages to using the index theorem in preference to Penrose' Rule. First 
the Index theorem is more general in its application for unlike Penrose' Rule 
it can be applied to any portion of the hand. For example, consider the situation 
on the distal phalanges: the ridges run transversely across the finger at the 
joint, radially at the sides of the field, and tangentially over the top of the 
finger. This describes a boundary with two gates (Fig. 9a). 

The boundary index here is 0. The theorem tells us that within this subfield 
each loop will have a compensating triradius and each whorl, two. 

A second advantage is the elimination of apparent anomolies. For  example, 
to continue with the distal phalange; exceptionally, a condition known as anony- 
chia arises in which the nail is missing (Penrose, t965). As a result the radial 
orientation of the ridges at the boundary is continued over the top of the 
digit to provide a boundary to the distal phalange sub-field with only a single 
gate. The index theorem correctly predicts an unpaired loop whereas one must 
modify Penrose' formula to count nails instead of digits. This modification 
is of no avail however in the case of the clinical anomaly called "ridges-off-the- 
end"  syndrome (David 1971) where the ridges run radially off the fingertips 
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in the presence of a nail. Furthermore there is also the anomaly of a deficient 
triradius in the absence of  an extra digit, correlated with a tangential zone 
on the thenar region of the palmar boundary, that is to say an extra gate 
on the boundary in the absence of an extra digit (Penrose, 1965). All these 
oddities cease to be anomolous in the light of the index theorem. 

It appears therefore that it is neither the number of digits, nor  the number 
of  nails that is the fundamental parameter accounting for packing, but the 
number of  gates on the boundary. Furthermore in the case of severly malformed 
hands and feet, it is likely to be easier and more reliable to assess the number 
of gates on the boundary directly than to worry over digits and the complication 
of the presence or absence of  nails. In addition, the index theorem in the 
mathematical setting of the singularities in two-dimensional, non-oriented vector 
fields (see appendix) offers deep insights into the nature of the packing of 
dermatoglyphic fields, and permits formal comparison with other biological 
systems. 

Discussion 

How is the pattern developing within a mass culture of fibroblasts or on the 
surface of an embryonic hand to be described and accounted for? 

The fibroblast system is patterned by discontinuities in a sheet. Even though 
cells make up the system, the pattern cannot be wholly accounted for in cellular 
terms. First as we discussed in the introduction, the scale of discontinuities 
is large in comparison with cell size. Second, because pattern does not stem 
from different cells within the system taking distinct developmental pathways 
like those that would produce spots on a leopard skin: the system is made 
up of interchangeable elements. Furthermore,  while important aspects of pattern 
develop autonomously and locally and may be explained in terms of cell behavi- 
our, to a large extent, local detail reflects the operation of global packing 
constraints. This global-to-local influence is not easily dealt with in terms of 
cellular behaviour alone, and there is no biological language to carry the 
discussion further. 

A larger format  is required, and the elaboration of an appropriate model 
is our aim. 

The Model 

Both patterns studied are composed of close-packed linear flexible e lements -  
motile fibroblasts, and non-motile stringlike dermal ridges. Neither system is 
characterised by a repeating pattern, as on a wallpaper, appropriately modelled 
using Euclidean geometry. Instead, the formal elements are invariant under 
plastic deformations, as well as rigid motions, and thus require a topological 
modelling. For  this reason the elements are modelled by vectors in a vector 
field. The vector field is an appropriate format for modelling the qualitative 
aspects of pattern in a manner that permits quantitative measurements to be 
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made using the topological index. In both systems the elements pack side by 
side on a two-dimensional surface and, in the case of fibroblasts, under the 
known constraints of contact guidance (Weiss, 1961) and contact inhibition 
(Abercrombie, 1967), the model, therefore, employs a two-dimensional vector 
field. There is no evidence that fibroblasts or dermal ridges possess specific 
front and back poles; vectors, therefore, whose sole difference is a 180 ~ 
difference in orientation, are identified (or made equivalent) to give a non- 
oriented vector field or line field. Both patterns are characterised by smooth 
change around point discontinuities confirming that the vector field be taken 
as smooth or differentiable. The model arrived at is a smooth, planar, non- 
oriented vector field. 

The topology of this field allows for only three nondecomposable singula- 
rities, (mathematical analogs of discontinuities) corresponding to the observed 
discontinuities of index 0 (parallel array), and indices +1/2 , and -1 /2 .  Tl~e 
topology also includes other decomposable singularities, whose indices are inte- 
gral multiples of 1/2, including those corresponding to the unstable + 1 and 

- 1 discontinuities observed. 
The index theorem quantitates the additive nature of rotations in the vector 

field, in the vector field, and we have demonstrated corresponding behaviour 
in our two biological systems. 

Global Constraints and Implications of the Model 

The topological model applies to a confluent close-packed fibroblast culture, 
it does not apply to a sparse culture. Consider the difference between these 
two situations. 

Prior to confluence the cells behave largely independently of their neighbours 
or form small, local autonomous associations little influenced from without. 
Only a limited degree of order arises. Inherent in the multicellular system, 
mutual cellular influences assume increasing importance as close-packing is 
approached. After confluence, the entire culture close-packed, mutual influence 
is at its most restrictive, and a higher degree of order results therefrom. 

With the creation of a unitary, close-packed field, constraints arise that 
cannot be assigned to one sub-compartment of the field and not to another, 
constraints therefore which can be described and quantitated only in terms 
of the whole. Such we term global constraints, and they derive essentially from 
mutual influence and not from new behaviour on the part of the cells. 

The purpose of the model is to deal quantitatively with global constraints. 
A three-gated field, to take an example, must have at least one internal 

branch point. The model implies that the "cause"  of the branch point is the 
topology of the close-packed field, and is not to be located in some special 
feature of the elements in the region where the branch point forms. Similarly, 
the four principal triradii on the normal hand are a consequence of the six 
gated boundary. 

Notice that whereas explanation in biology often involves a mapping of 
variation in one level of organisation to something else varying in a lower 
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level, seen as the cause, in contrast, the interrelations of  the parts a r e  the 
cause here, and the phenomenon is not reduced. 

A topological analysis does not account for all aspects of pattern; it does 
not account for the absolute number and locations of discontinuities in a field, 
only their relative balance. By way of illustration consider again the distal 
phalange sub-field. The boundary index is 0. The normal phalange presents 
either an arch, or a loop and one triradius, or a whorl and two triradii. All 
three possibilities are consistent with the index theorem. Which one is realised 
in a particular case, depends upon variables in the developmental system; thus, 
it is believed that a flat contouring of the digital surface around the time 
the pattern is becoming established favours the arch, and a pronounced bulging, 
the whorl. 

The smaller the field, the more restrictive are the constraints formalised 
under the index theorem; for this reason the theorem virtually predicts pattern 
in small bounded fields. With this in mind, it is possible to envisage how 
boundary constraints could determine the reliable development of a simple 
pattern in young organ rudiments. It is interesting that the size of young organ 
rudiments (1 mm) is about the same as the diameter of our small bounded 
fields illustrated. Would it not be unparsimonious of the embryo not to make 
use of the ordering potential offered by boundaries? In the case of the dermato- 
glyphic field we know that the boundary dispositions are established first and 
the ridges develop from the periphery inwards. 

Cell packing under global constraints is a mindless affair although the overall 
system may be complex. The model suggests that on the basis of very general 
properties of the elements, the system achieves a high degree of organisation 
and entrainment without demanding much from the complex apparatus of the 
cell. 

Informal Mathematical Appendix 

The model we shall adopt to describe pattern in a mature fibroblast culture 
and of  dermatoglyphics is a variant of  a vector field in a planar region. As 
an element is a bipolar spindle (either a fibroblast or a dermal ridge) with 
position and orientation it can be identified with a line segment or vector. 
However, there is no "s t ruc tu re"  to warrant distinguishing between vectors 
of equal length originating from the same point and on the same line but 
pointing in opposite directions. Therefore the vectors v and - v  are identified. 
The resulting non-oriented vector field or line field is a rule which assigns 
to each point such a pair of vectors. Wherever possible, neighbouring elements 
lie parallel and the entire system is characterised by smooth change and demon- 
strates coherent behaviour. The vector field is therefore taken to be smooth 
or differentiable. This implies that given the equations describing the vector 
field in a neighbourhood of a point, the derivatives of  all orders will be continu- 
ous. 
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Topological Index 

The topological index provides intbrmation about properties of a vector field 
which remain invariant under plastic deformations accompanying growth and 
evolution of the field over time. In the case of the simplest field in which 
all line segments share a common direction (parallel array) the index is every- 
where zero. In other cases there will be singular points in the field where 
the vector is zero. These singularities are the mathematical analogue of the 
discontinuities observed in fibroblast cultures. The index around singularities 
takes on non-zero values. 

Computation of the Index 

We compute the index of a field F about a curve J. J, also called a circuit 
or Jordan curve, is a simple, closed, non-self-intersecting curve that passes 
through no singularities of the field F. Choose a sufficiently large number 
of sample points around tile curve and sum the angular differences between 
successive vectors in the course of describing one complete rotation of the 
curve. Divide the sum by 2n. Where the field rotates in the same direction 
as the circle is toured the sense of rotation is taken as positive, otherwise 
it is taken as negative. In the following examples we consider the indices 
of the five singularities relevant to this study, and how the sign convention 
operates. 

Example 1 (Fig. 11): Trivial Case: The parallel array. All vectors pointing the 
same way means no angular differences between them. Index 0. 

Example 2 (Fig. 12): Radially disposed elements about a singularity (a), Dia- 
gram (b) indicates the direction of the vectors on the curve J. As a clockwise 
tour of J is made the field rotates through 2n radians, also clockwise. In Fig. c 
these vectors are redrawn originating from the same point but without change 
of slope, in order to make plain the sense of rotation of the field (compare 
with Figure 13 c where the rotation is in the opposite sense). Index equals + 1. 

Example 3 (Fig. 13) : This figure combines features of the two previous examples. 
In the upper semicircle the field rotates through re; the lower semi-circle ties 
within a parallel array. Index + 1/2. 

Example 4 (Fig. 14): Singularity at the confluence of Four  Arrays. Diagram 
(b) shows the field intersecting J. As the clockwise tour of J is made, the 
field rotates counter clockwise see diagram (c). The total variation is 2~z. Hence 
Index = - 1 .  Therefore, by convention, the rotation is taken as negative. 

Example 5 (Fig. 15) : This singularity combines examples 1 and 4 and Index = 
- -  1 / 2  . 
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Formal Definition (Lefschetz, 1957; Petrovski, 1966) Where the field F is given 
by the ordered pair of real valued functions X and Y, 

F = X(x,y), Y(x,y) then the index of 
F around the circuit J, I(F,J) is given by the 
line integral 

liXdY-YdX. 
2 n J  X z + Y  2 

Where the curve encloses just one singularity, the index can be said to 
characterise the singularity. Hence the figures observed in fibroblast cultures 
corresponding to example 3a (Fig. 13a) are referred to as " + 1/2 discontinuities". 

The Index as a Topological Invariant of  the Vector Field 

There is no way by which a singularity can be continuously deformed into 
another of  a different index" two singularities of  different index are topologically 
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distinct. The index associated with a singularity is not altered under continuous 
deformations and orthogonal transformation. Certain orthogonal transforma- 
tions may be arrived at by continuous deformations. 

The index helps one to appreciate complementarity relations: 

(+  1/2) + ( -  1/2 )--+0. 

This means that a field or sub-field containing just one + L/2 and one -1 /2  
singularity can be continuously deformed into a field containing no singularities. 
(The directed arrow is used instead of an equal sign to indicate that the change 
can only go in one d i rec t ion- the  inverse change is a discontinuous deformation. 
The simplification of the fibroblast pattern resulting from the elimination of 
discontinuities and the stability of the large arrays so formed, provides further 
validation of the differentiable vector field model). 
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Notice that the mathematics only restricts or describes what may occur, 
it does not guarantee that it will occur in a fibroblast culture. 

The Index Theorem 

The theorem provides the basis for quantifying the global constraints " forc ing"  
local behaviour. As motivation, two simple theorems are stated and their implica- 
tions considered. 

Theorem 1. If  two circuits, J and j1 enclose the same singularities of the field 
F, then the index I of F computed around each is the same. 

I(F,J) =I(F,J1). 

This means that the result does not depend on the choice of curve, only on 
the enclosed singularities. There is a further additive property of indices. Consid- 
er three circuits, J, J1 and J2- J1 and J2 enclose non-overlapping regions of 
the field, each containing singularities, with J completely surrounding them 
both without capturing additional singularities (Fig. 16). 

Theorem 2. The index of F around J equals the sum of the indices around 
j1 and j2. Or if J = J ~ + J 2 ,  then, 

I(F,J) = I(F,J i) + ~[(F, J2). 

We extend the last result. Let f2 be a planar region where the vector field 
F is defined and whose boundary is a circuit J not passing through singularities 
of F. Each singularity in f2 es enclosed in a small closed curve and the index 
computed. The curves can be chosen so that they do not overlap. J captures 
no additional singularities. Theorem 2 is applied. 

Theorem 3 (Index). The sum of the indices of the singularities of a vector field 
F coritained within a planar region bounded by a circuit J equals the index 
of the field F around J. Where the boundary J is defined in advance as in 
the experiments described, the balance of singularities of each sign is determined 
by the index of  F on J. 

Where J encloses a random set of singularities, the sum of their indices 
determines the index of J. 

Boundary Index and Gates 

The radial field resulting from a template of radial scratches rotates through 
2 radians, giving a boundary index of + 1. The boundary index can be changed 
by the introduction of "ga tes"  

Example (Fig. 17): Consider the situation where half of the radial template 
(A) is replaced by a tangential line or gate (B). The cells plated onto this 
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field will be smoothly contoured around the transition points. It  is this field 
(C) we wish to measure, not the template and here the transition f rom radial 
to tangential is continuous. 

Compare  the amount  of angular rotation in the lower semicircles of (A) 
and (C). In A the field goes through rc radians while in C there is zero net 
rotation. In this example the gate has reduced the angular rotation by 7r. The 
upper halves are identical, therefore the index around the curve C =  1/2, 
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This is also true more  generally. Each gate on the b o u n d a r y  will reduce 
the net ro ta t ion  by n. Compare  these two bounda ry  a r c s - ( F i g .  18) one f rom 
a radial field and the other  where a por t ion  has been replaced by a gate. 

In Figure (a) the field describes a rota t ion th rough  0. The rotat ion in Figure 
(b) proceeds in the opposite direction and the amoun t  is - ( re-  0). The difference 
- ( n - 0 )  - 0  is - n .  Not ice  that  the difference is independent  o f  the size o f  
0, hence the size of  the gate. Not ice  the kind of  change in the field that  results 
(Fig. 19). This is equivalent to the removal  o f  the occasion for one + 1/2 discon- 
tinuity. 

To summarise,  if the bounda ry  has n gates, the a m o u n t  of  rotat io is ( 2 n -  nn). 
Dividing by 2n for the index gives the simple formula :  

B O U N D A R Y  I N D E X  = 1 - 1 / 2  ( N U M B E R  O F  GATES)  

Each gate reduces the b o u n d a r y  index by 1/2. 
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Addendum in proof 

Z u m  B e i t r a g  T o m  E l s d a l e  a n d  F r a n c e s  W a s o f f ,  F i b r o b l a s t  C u l t u r e s  a n d  D e r m a -  

t o g l y p h i c s :  T h e  T o p o l o g y  o f  T w o  P l a n a r  P a t t e r n s ,  S. 121-147 .  

NEGATIVE BATE POSITIVE BATE 

Whereas we have considered in this paper only gates on the boundary that reduce the boundary 
index by i/2 (negative gates), positive gates increasing the boundary index by 112 can also arise. 
A gate of this latter type is responsible for the dermatogtyphic anomaly dealt with on page 138. The 
difference between the two types of gate is a matter of the convergence of the tangential alignments. 
The alignments converge externally in the case of a negative gate and internally in the case of a 
positive gate, as illustrated in the accompanying figure. The rotation about the negative is 0, that 
around the positive gate 2~-0. Only negative gates are seen in fibroblast cultures because the cells 
are reluctant to bend and preferentially take the straighter course. 


