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The broad use of composite materials in high technology demands the further development 
of theoretical models of nonuniform structures. In accordance with the surveys [2, 7], an 
important direction in this regard is the study of transients in reinforced shells with 
allowance for the discrete placement of the ribs. Such studies are conducted using refined 
models. 

In the present study, within the framework of the geometrically nonlinear theory of 
shells and the Timoshenko rod theory, we examined the equations of motion of reinforced 
shells with allowance for the discrete placement of the ribs. The shells that we will dis- 
cuss are subjected to unsteady axisymmetric loading. We construct a numerical algorithm 
which allows us to effectively examine unsteady wave processes in the given structures. A 
numerical example is presented. 

i. Formulation of the Problem. The reinforced shell is examined as a system consisting 
of the shell proper (the skin) and ribs (rings) rigidly attached to the skin along contact lines. 
The mathematical model describing the unsteady deformation of the structure is a hyperbolic 
system of nonlinear differential equations from the Timoshenko theory of shells and rods. 
In constructing the mathematical model of the equations of motion, we used the simplified 
variant of the nonlinear shell and rod theory proposed by Novozhilov [8]. It was assumed 
that the extensions, shears, and angles of rotation were small compared to unity. Here, the 
extensions and shears were of a higher order of smallness than the angles of rotation. 
The strain state of the skin can be determined by three components of the generalized dis- 
placement vector u, w, 4- To describe the strain state of the j-th rib, we will use a genera- 
lized vector giving the displacement of the center of gravity of the rib cross section with 
the components uj, wj, and @j. The contact conditions linking the middle surface of the skin 
and the centers of gravity of the cross sections of the reinforcing elements have the form 

uj = u (a j) + h j ¢  (o~j), 

w j  = w (czj), ~ j  = q~ (~zj), (1.1) 

where aj  is the coordinate of the line of contact of the j-th rib with the shell; hj = 0.5 × 
h + Hj; h is the thickness of the shell; and Hj is the distance from the axis of the j-th 

rib to the surface of the shell. 

We will use the Hamilton-Ostrogradskii variational principle to derive the equations of 
motion of the reinforced shell. With allowance for the integral representation of contact 
conditions (I.I) in [i], we write the variational equation as follows: 
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where Al and A 2 are coefficients of the first quadratic form; k~ and k= are the principle 
curvatures of the coordinate surface; s = a~Al; t represents the space and time coordinates; 
PI, P2, and m] are components of the generalized load vector; p and Pj are the densities of 
the materials of the skin and the j-th ring; Fj is the cross-sectional area of the j-th ring; 
and ~(~I - alj) is the Dirac delta function. 

In Eqs. (1.2), we introduced the following relations connecting components of the 
force-moment tensor of the middle surface of the shell and the components of the strain 
tensor: 
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The below expressions connect the components of the strain tensor in terms of the components 
of the displacement vector for the skin and the j-th ring 
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We introduced the following notation in Eqs. (1.3-1.4): El, E2, G13 , 91, ~2, Ej are physico- 

mechanical parameters of the skin and the j-th ring; Fj and lj are geometric parameters of 

the j-th ring. 

By virtue of the independence of the variations 6u, 6w, and 6¢, we can use Eq. (1.2) 
to obtain the equations of motion of the reinforced shell in differential form 
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Equations (1.5), (1.3), and (1.4), are supplemented by the corresponding boundary conditions 
and zero initial conditions. 

2. Numerical Algorithm for Solution of the Problem. The numerical algorithm that w i l l  
be used to solve the boundary-value problem is based on finite-difference discretization of 
variational equation (1.2) and an explicit finite-difference scheme of integration over 
time [3]. When allowance is made for the discrete placement of the ribs of reinforced 
shells, the main difficulty encountered in solving boundary-value problems for such shells is 
the presence of discontinuous coefficients in the equations of motion. Following [6], we 
will seek a solution on the smooth part and "join" the different solutions at the lines of 
discontinuity. In the problem being examined here, the line of discontinuity is the projec- 
tion of the center of gravity of the cross section of the j-th rib on the middle surface 
of the skin. 

We will discretize the domain of the variable al in such a way that the coordinates of 
the center of gravity of the cross section of the j-th rib on the midline coincide with an 
integral point of the grid region. We will isolate a transitional element joining the skin 
and the j-th rib - such as for ~lj - I/~ 5 ~x 5 a~j+~/= - and we will write the joining con- 

ditions for this element 
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where T22 c = E2hAsw'k2, qlsc = G13k2hAs¢ ' As = AaIA I, Aa 1 is the interval of the space co- 
ordinate. 

The difference scheme for Eqs. (1.5), (1.3), and (1.4) on the smooth part of the 
solution is written in the form 
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We similarly approximate the equations of motion of the joint element (2.2). The above 
algorithm makes it possible to solve the initial equations of motion with second-order 
accuracy for both the space and time coordinates in problems of the theory of reinforced 
shells in which allowance is made for discrete rib placement. 
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Fig. 3 

We make use of the necessary condition of stability from [5] to study the stability of 
linearized difference equations (2.3-2.5). In accordance with this condition 

At <~ 2/~, (2.6) 

where ~ = max (~o, ~j), J = i, £ are the highest natural frequencies of the discrete systems 

for the skin and j-th transitional element; and At is the interval of the time coordinate. 

As the studies showed, shear vibrations of the skin had the highest natural frequency. 
For shell thicknesses less than the space-coordinate interval, condition (2.6) results in 
a decrease in the efficiency of explicit difference scheme (2.3-2.5). The interval of in- 
tegration can be made larger by using the method proposed in [4] to regularize difference 
schemes for uniform shells and plates of the Timoshenko type. 

3. Numerical Results. As a numerical example, we will examine the problem of the non- 
steady behavior of a reinforced conical shell. Let the shell, of length L, be subjected to 
a instantaneous load P2(t). The load is applied in the direction normal to the shell surface. 
We assume that the ends of the shell are rigidly fastened, i.e., the boundary conditions at 
the points S = S O , S = S N have the form u = w = # = 0. The shell is reinforced by two ribs 
at the points S = $I, S = S 2. 

In calculating the nonsteady behavior of conical shells, we will use a coordinate system 
in which the S coordinate is reckoned from the edge of the shell. The coefficients of the 
first quadratic form and the curvature of the coordinate surface in this system are written 
in the form 

A I = I '  A 2 = R s '  kl----0' k~:Rslc°s°~' R s = R ° ~ S s i n ~ '  (3.1) 

where a is the angle of taper; and R 0 is the radius of the shell in the section S = S O . 
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Using Eqs. (2.3-2.5) and allowing for (3.1), we find that the maximum natural frequency 
of vibration of the discrete system is as follows for conditions (2.6) 

¢Omax:Cn~[l + ASv. sin~z C~. [[ AS I' v.AS] 
2Ro -F - = 7  ---=--- s in  c~ + + As / c~, L\ Ro ) ~ J  
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C~I = Ea C22 E2 C~3-~ 12G1~ 
p(1--v1%) ' 9 ( 1 - - ~ a v ~ )  ' p 

The problem was solved with the following geometric and physicomechanical parameters for 
the skin and reinforcing elements: 

E1 = E~ . . . . .  E~ = 7- 101° Pa ; v I - -  v 2 = 0,3; 9 = PJ = 2,7.  l0  s kg/m3" 

L = 0 , 5  m; R o = 5 . 1 0 - 2  m; S o : 0 , 1  m; a = ~ / 6 ;  h =  1-10 -2  m; 

Hy== 1 , 5 . t 0  -2  m; Fj_--_3.10 - 4  m2; p2(t)=AmH(t), where Am-- t0 6 Pa 

H(t) = {5, t~>o 
0, / < 0  

We assumed that the geometric parameters of the ribs were identical. The centers of gravity 
of the ribs are projected on the middle plane of the skin at the points S l = 0.4 L; $2 = 0.8 × 
L. 

Figures I-3 show the results of calculations performed in the given problem for the 
deflection w, strain e22 , and stress 022. Curves 1-3 correspond to these quantities at the 
dimensionless times E l = 2, ~2 = 3, Es = 4(~ = t-c11/L) in the space coordinate. The non- 
steady behavior of the reinforced structure was calculated for the time interval ~ = 15. 
As shown by the numerical results, the maximum values of w, e22, and 022 are seen at the time 

= 1-2. These results make it possible to evaluate the effect of discrete reinforcement 
on the kinematic and force parameters of the given structure. 
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